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General setting of stochastic bandit

Input parameters:

parameter set Θ

action space A
reward function class F = (fθ)θ∈Θ

time horizon T

Stochastic bandit environment:

nature chooses θ? ∈ Θ, fixed across time and unknown to the learner

at time t = 1, · · · ,T , learner chooses action at ∈ A and observes a random
reward rt with E[rt | at = a] = fθ?(a)

learner aims to minimize the worst-case (pseudo) regret

MinmaxReg(Θ,A,F ,T ) = inf
aT

sup
θ?∈Θ

Eθ?
[
T ·max

a∈A
fθ?(a)−

T∑
t=1

fθ?(at)

]
.

Linear bandit

fθ(a) = 〈θ, φ(a)〉 with a known feature map φ : A → Rd
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Non-linear bandit: a motivating example

A non-linear bandit example

fθ(a) = 〈θ, a〉3 : θ ∈ Sd−1, a ∈ Bd .

minimax regret

time horizon T
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A non-linear bandit example

fθ(a) = 〈θ, a〉3 : θ ∈ Sd−1, a ∈ Bd .

minimax regret

time horizon Td3

d3

d4

MinmaxReg(T , d) � min{T , d3 + d
√
T}.
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Non-linear bandit: a motivating example

A non-linear bandit example

fθ(a) = 〈θ, a〉3 : θ ∈ Sd−1, a ∈ Bd .

minimax regret

time horizon Td3

d3

d4

initialization
phase

learning phase

MinmaxReg(T , d) � min{T , d3 + d
√
T}.
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Curious phenomena

Curious phenomena in non-linear bandits:

phase transition in the regret

initialization phase: regret grows linearly and results in a fixed cost

→ find a good “initial action” to start learning

learning phase: regret grows sublinearly and looks like a linear bandit

→ bandit learning starts from the good initial action

Aim of this talk:

Questions
what is the optimal fixed cost in the initialization phase?

what algorithms should we use in different phases?

how to explore when learner has not started learning?

4 / 30



Curious phenomena

Curious phenomena in non-linear bandits:

phase transition in the regret

initialization phase: regret grows linearly and results in a fixed cost

→ find a good “initial action” to start learning

learning phase: regret grows sublinearly and looks like a linear bandit

→ bandit learning starts from the good initial action

Aim of this talk:

Questions

what is the optimal fixed cost in the initialization phase?

what algorithms should we use in different phases?

how to explore when learner has not started learning?

4 / 30



Curious phenomena

Curious phenomena in non-linear bandits:

phase transition in the regret

initialization phase: regret grows linearly and results in a fixed cost

→ find a good “initial action” to start learning

learning phase: regret grows sublinearly and looks like a linear bandit

→ bandit learning starts from the good initial action

Aim of this talk:

Questions
what is the optimal fixed cost in the initialization phase?

what algorithms should we use in different phases?

how to explore when learner has not started learning?

4 / 30



Curious phenomena

Curious phenomena in non-linear bandits:

phase transition in the regret

initialization phase: regret grows linearly and results in a fixed cost

→ find a good “initial action” to start learning

learning phase: regret grows sublinearly and looks like a linear bandit

→ bandit learning starts from the good initial action

Aim of this talk:

Questions
what is the optimal fixed cost in the initialization phase?

what algorithms should we use in different phases?

how to explore when learner has not started learning?

4 / 30



Curious phenomena

Curious phenomena in non-linear bandits:

phase transition in the regret

initialization phase: regret grows linearly and results in a fixed cost

→ find a good “initial action” to start learning

learning phase: regret grows sublinearly and looks like a linear bandit

→ bandit learning starts from the good initial action

Aim of this talk:

Questions
what is the optimal fixed cost in the initialization phase?

what algorithms should we use in different phases?

how to explore when learner has not started learning?

4 / 30



Plan of this talk

setting and main results

proof of upper bound

proof of lower bound

discussions and extensions

5 / 30



Setting: non-linear ridge bandits

parameter space Θ = Sd−1 = {θ ∈ Rd : ‖θ‖2 = 1}
action space A = Bd = {a ∈ Rd : ‖a‖2 ≤ 1}
reward function fθ(a) = f (〈θ, a〉) with a known link function f

Assumptions

monotonicity: f : [−1, 1]→ [−1, 1] is increasing (or f (−x) = f (x) and f is
increasing on [0, 1]) with f (0) = 0, f (1) � 1

→ best action is a = θ?

local linearity near 1: maxx∈[0.1,1] f
′(x)/minx∈[0.1,1] f

′(x) ≤ c <∞
→ essentially linear reward when 〈θ?, a〉 becomes large
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Literature review

Ridge bandit fθ(a) = f (〈θ, a〉):

linear bandit f (x) = x : optimal regret Θ̃(d
√
T ) [Dani et al. 2008, Chu et al.

2011, Abbasi-Yadkori et al. 2011]

generalized linear bandit with c1 ≤ |f ′(x)| ≤ c2: same as linear bandit [Filippi
et al. 2010, Russo and Van Roy 2014]

concave bandit (f is concave): same as linear bandit [Lattimore, 2021]

bandit phase retrieval (f (x) = x2): same as linear bandit [Lattimore and
Hao, 2021]

polynomial bandit (f (x) = xp, p ≥ 2): optimal regret achieved by noisy
gradient method [Huang et al. 2021]

General complexity measures for bandits:

decision-estimation coefficient (DEC) [Foster et al. 2021, 2022]

information ratio [Lattimore, 2022]

often do not lead to tight regret dependence on d
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Main Results
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Main results: minimax regret

Theorem (main upper bound, informal)

Under monotonicity and local linearity of f :

MinmaxReg(T , d , f ) . min

{
d2 ·

∫ 1/2

1/
√
d

d(x2)

max1/
√
d≤y≤x f

′(y)2
+ d
√
T ,T

}
.

a useful corollary:

MinmaxReg(T , d , f ) . min

{
d2 ·

∫ 1/2

1/
√
d

d(x2)

f ′(x)2
+ d
√
T ,T

}
.

the formal version:

MinmaxReg(T , d , f ) .
d/4∑
m=1

1

max
0≤y≤

√
m/d

min
z∈[y ,2y ]

(f (z + 1/
√
d)− f (z))2

+ d
√
T .
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Theorem (main lower bound)

Under monotonicity and local linearity of f :

MinmaxReg(T , d , f ) & min

{
d ·
∫ 1/2

1/
√
d

d(x2)

f (x)2
+ d
√
T ,T

}
.

both results within poly-logarithmic factors

pointwise upper and lower bounds

fixed cost depends on the entire function f
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Main results: learning trajectory in the initialization phase

t

xt = 〈θ?, at〉

1/
√
d

UB: d(x2
t )

dt
=

maxy≤xt f
′(y)2

d2
√

log(1/δ)/d

LB: d(x2
t )

dt
= f (xt)2

d

UCB

Theorem (learning trajectory)

there is an algorithm attaining the UB learning curve

for any algorithm, its learning trajectory lies below the LB learning curve with
probability at least 1− T δ under θ? ∼ Unif(Sd−1)

UCB algorithm makes no progress whenever t < d/f (1/
√
d)2!
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Examples

polynomial bandit f (x) = xp:

MinmaxReg �

{
min{d

√
T ,T} if 0 < p ≤ 2,

min{d
√
T + dp,T} if p > 2.

→ both Eluder-UCB and information-directed sampling give an additional
O(dp+1) term when p > 1

ReLU bandit f (x) = (x − 0.1)+: T = eΩ(d) is necessary for sublinear regret

importance of f at every point:

x

f (x)

fixed cost � d2

x

f (x)

fixed cost � d3
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Upper Bounds
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Upper bound: learning phase

Key feature in the learning phase

The learner has found a good “initial action” a0 such that 〈a0, θ
?〉 ≥ const.

A simple explore-then-commit (ETC) algorithm:

for the first m rounds, uniformly explore the following 2d directions:{
λa0 ±

√
1− λ2e1, · · · , λa0 ±

√
1− λ2ed

}
, λ = λ(const);

find the least squares estimate of θ?:

θ̂ = arg min
θ:〈θ,a0〉≥const

1

2

m∑
t=1

(rm − f (〈θ, at〉))2;

for the remaining rounds, greedily play at = θ̂.
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Analysis of learning phase

standard least squares analysis gives w.h.p.

m∑
t=1

(f (〈θ̂, at〉)− f (〈θ?, at〉))2 = Õ(d);

local linearity of f near 1 implies that

‖θ̂ − θ?‖2
2 = Õ

(
d2

m · f ′(1)2

)
;

instantaneous regret when greedily plays θ̂:

f (1)− f (〈θ?, θ̂〉) . f ′(1)(1− 〈θ?, θ̂〉) . d2

m · f ′(1)
;

total regret in the learning phase:

m · f ′(1) + (T −m) · d2

m · f ′(1)

m�d
√
T/f ′(1)
� d

√
T .
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(
d2

m · f ′(1)2

)
;

instantaneous regret when greedily plays θ̂:

f (1)− f (〈θ?, θ̂〉) . f ′(1)(1− 〈θ?, θ̂〉) . d2

m · f ′(1)
;

total regret in the learning phase:

m · f ′(1) + (T −m) · d2

m · f ′(1)

m�d
√
T/f ′(1)
� d

√
T .

14 / 30



Analysis of learning phase

standard least squares analysis gives w.h.p.

m∑
t=1

(f (〈θ̂, at〉)− f (〈θ?, at〉))2 = Õ(d);
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Upper bound: initialization phase

Target in the initialization phase

Find a good “initial action” a0 with a large inner product 〈a0, θ
?〉 ≥ const.

〈θ?, a〉

f (〈θ?, a〉)

〈θ?, a1〉 〈θ?, a2〉?

Certify that 〈θ?, a〉 ∈ [r − δ, r + δ] can be done with Õ(1/[δf ′(r)]2) samples
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Exploration and certification

Recursive step

Given an action apre with 〈θ?, apre〉 ∈ [xpre, 2xpre], where xpre is known, how to find
anow and certify that 〈θ?, anow〉 ∈ [xnow, 2xnow] with xnow > xpre?

idea: find a ⊥ apre with 〈θ?, a〉 � 1/
√
d and play anow = λapre +

√
1− λ2a

for proper λ, if 〈θ?, a〉 ∈ [1/
√
d , 2/

√
d ], then 〈θ?, anow〉 ∈ [xnow, 2xnow] with

xnow =
√

x2
pre + 1/d

exploration: easy, as P(〈θ?, a〉 ∈ [1/
√
d , 2/

√
d ]) = Ω(1) for uniform a

certification: should make use of apre!

〈θ?, a〉√
2

=

〈
θ?,

a + apre√
2

〉
−
〈
θ?,

apre√
2

〉
→ each terms uses Õ(d/f ′(xpre)2) samples for certification

→ total sample complexity is roughly d2
∫ 1/2

1/
√

d

dx2

f ′(x)2
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Certification details

Target of certification

Given actions a and a + b with 〈θ?, a〉 ∈ [x , 2x ], find a test which

outputs “failure” w.h.p. if 〈θ?, b〉 /∈ [z , 2z ];

outputs “success” w.h.p. if 〈θ?, b〉 ∈ [1.2z , 1.8z ].

pull both actions Õ(1/δ2) times to obtain

|f̂1 − f (〈θ?, a〉)| ≤ δ, |f̂2 − f (〈θ?, a + b〉)| ≤ δ;

test returns “success” iff ∃u ∈ [x , 2x ], v ∈ [1.2z , 1.8z ] such that

|f̂1 − f (u)| ≤ δ and |f̂2 − f (u + v)| ≤ δ:

→ if 〈θ?, b〉 ∈ [1.2z , 1.8z], then (u, v) = (〈θ?, a〉, 〈θ?, b〉) passes the test;
→ if 〈θ?, b〉 /∈ [z , 2z], then existence of (u, v) implies

|u − 〈θ?, a〉| ≥ 0.2z , or |u + v − 〈θ?, a + b〉| ≥ 0.2z ;

→ test works if δ < miny∈[x,2x+2z][f (y + 0.2z)− f (y)]/2.
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Formal statement

Theorem (formal lower bound)

Let δ > 0 be any parameter, and c > 0 be a large absolute constant. Define a
sequence {εt}t≥1 with

ε1 =

√
c log(1/δ)

d
, ε2

t+1 = ε2
t +

c

d
f (εt)

2, t ≥ 1.

Then if θ? ∼ Unif(Sd−1), any learner {at}t≥1 satisfies that

P

 ⋂
1≤t≤T

{〈θ?, at〉 ≤ εt}

 ≥ 1− T δ.

the continuous-time version of {εt} gives the differential equation

hard(?) to prove via usual arguments of hypothesis testing

19 / 30



Formal statement

Theorem (formal lower bound)

Let δ > 0 be any parameter, and c > 0 be a large absolute constant. Define a
sequence {εt}t≥1 with

ε1 =

√
c log(1/δ)

d
, ε2

t+1 = ε2
t +

c

d
f (εt)

2, t ≥ 1.

Then if θ? ∼ Unif(Sd−1), any learner {at}t≥1 satisfies that

P

 ⋂
1≤t≤T

{〈θ?, at〉 ≤ εt}

 ≥ 1− T δ.

the continuous-time version of {εt} gives the differential equation

hard(?) to prove via usual arguments of hypothesis testing

19 / 30



Formal statement

Theorem (formal lower bound)

Let δ > 0 be any parameter, and c > 0 be a large absolute constant. Define a
sequence {εt}t≥1 with

ε1 =

√
c log(1/δ)

d
, ε2

t+1 = ε2
t +

c

d
f (εt)

2, t ≥ 1.

Then if θ? ∼ Unif(Sd−1), any learner {at}t≥1 satisfies that

P

 ⋂
1≤t≤T

{〈θ?, at〉 ≤ εt}

 ≥ 1− T δ.

the continuous-time version of {εt} gives the differential equation

hard(?) to prove via usual arguments of hypothesis testing

19 / 30



Formal statement

Theorem (formal lower bound)

Let δ > 0 be any parameter, and c > 0 be a large absolute constant. Define a
sequence {εt}t≥1 with

ε1 =

√
c log(1/δ)

d
, ε2

t+1 = ε2
t +

c

d
f (εt)

2, t ≥ 1.

Then if θ? ∼ Unif(Sd−1), any learner {at}t≥1 satisfies that

P

 ⋂
1≤t≤T

{〈θ?, at〉 ≤ εt}

 ≥ 1− T δ.

the continuous-time version of {εt} gives the differential equation

hard(?) to prove via usual arguments of hypothesis testing

19 / 30



Information-theoretic insights

Let It = I (θ?;Ht) be the mutual information between the true parameter θ? and
the history Ht up to time t, then

It+1 − It = I (θ?; rt+1 | at+1,Ht)

≤ E
[

1

2
log
(
1 + E[f (〈θ?, at+1〉)2]

)]
≤ 1

2
E[f (〈θ?, at+1〉)2].

To argue that 〈θ?, at+1〉 should not be large, note that

I (θ?; at+1) ≤ I (θ?;Ht) = It .

Key insight

I (θ?; a) ≤ I =⇒ 〈θ?, a〉 .
√

I/d with high probability.

Applying the insight gives the desired recursion

d(ε2
t+1 − ε2

t ) . f (εt)
2.
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More on the above insights

reasoning behind the insight:

a | θ? ∼ Unif({a ∈ Sd−1 : 〈a, θ?〉 ≥ ε}) =⇒ I (a; θ?) � dε2

however, it does not hold with high probability: Fano’s inequality only gives

P(〈θ?, a〉 ≤ ε) ≥ 1− I (θ?; a) + log 2

Θ(dε2)
,

which is tight for the worst-case distribution of (θ?, a)

our solution: use χ2-informativity instead

21 / 30



More on the above insights

reasoning behind the insight:

a | θ? ∼ Unif({a ∈ Sd−1 : 〈a, θ?〉 ≥ ε}) =⇒ I (a; θ?) � dε2

however, it does not hold with high probability: Fano’s inequality only gives

P(〈θ?, a〉 ≤ ε) ≥ 1− I (θ?; a) + log 2

Θ(dε2)
,

which is tight for the worst-case distribution of (θ?, a)

our solution: use χ2-informativity instead

21 / 30



More on the above insights

reasoning behind the insight:

a | θ? ∼ Unif({a ∈ Sd−1 : 〈a, θ?〉 ≥ ε}) =⇒ I (a; θ?) � dε2

however, it does not hold with high probability: Fano’s inequality only gives

P(〈θ?, a〉 ≤ ε) ≥ 1− I (θ?; a) + log 2

Θ(dε2)
,

which is tight for the worst-case distribution of (θ?, a)

our solution: use χ2-informativity instead

21 / 30



More on the above insights

reasoning behind the insight:

a | θ? ∼ Unif({a ∈ Sd−1 : 〈a, θ?〉 ≥ ε}) =⇒ I (a; θ?) � dε2

however, it does not hold with high probability: Fano’s inequality only gives

P(〈θ?, a〉 ≤ ε) ≥ 1− I (θ?; a) + log 2

Θ(dε2)
,

which is tight for the worst-case distribution of (θ?, a)

our solution: use χ2-informativity instead

21 / 30



Formal proof via χ2-informativity

χ2-informativity between X and Y :

Iχ2 (X ;Y ) = inf
QY

χ2(PXY ‖PX × QY ).

error probability lower bound using χ2-informativity:

P(〈θ?, a〉 ≤ ε) ≥ 1− e−Θ(dε2) ·
√
Iχ2 (θ?; a) + 1.

suffices to upper bound Iχ2 (θ?; at+1) ≤ Iχ2 (θ?;Ht) for each t

issue: χ2-informativity does not satisfy the chain rule or subadditivity
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Conditioning technique

let Et = ∩s≤t{〈θ?, as〉 ≤ εs} be the error event

upper bound of conditioned χ2-informativity:

Iχ2 (θ?;Ht | Et) + 1

≤ min
Qt−1

∫
P(θ?,Ht |Et )2︷ ︸︸ ︷1(Et)

P(Et)
π(θ?)

∏
s≤t

ϕ(rs − 〈θ?, as〉)

2

π(θ?)Qt−1(r t−1) · ϕ(rt)︸ ︷︷ ︸
π(θ?)Qt (Ht )

dθ?dr t

= min
Qt−1

∫ [
1(Et )
P(Et )

π(θ?)
∏

s≤t−1 ϕ(rs − 〈θ?, as〉)
]2

π(θ?)Qt−1(r t−1)
· exp(〈θ?, at〉2)dθ?dr t−1

≤ exp(ε2
t ) · min

Qt−1

∫ [
1(Et )
P(Et )

π(θ?)
∏

s≤t−1 ϕ(rs − 〈θ?, as〉)
]2

π(θ?)Qt−1(r t−1)
dr t−1

≤
exp(ε2

t )

P(Et | Et−1)2
· min
Qt−1

∫ [
1(Et−1)

P(Et−1)
π(θ?)

∏
s≤t−1 ϕ(rs − 〈θ?, as〉)

]2

π(θ?)Qt−1(r t−1)
dr t−1
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Iχ2 (θ?;Ht | Et) + 1 ≤ exp(ε2
t )

P(Et | Et−1)2

(
Iχ2 (θ?;Ht−1 | Et−1) + 1

)
.

continuing this process gives

Iχ2 (θ?;Ht | Et) + 1 ≤
exp(

∑
s≤t ε

2
s )

P(Et)2
.

recursion of error probability:

P(Et+1) = P(Et) · P(〈θ?, at+1〉 ≤ εt+1 | Et)

≥ P(Et)
(

1− e−Θ(dε2
t+1)
√
Iχ2 (θ?;Ht | Et) + 1

)
≥ P(Et)− e−Θ(dε2

t+1)+ 1
2

∑
s≤t ε

2
s︸ ︷︷ ︸

=δ

.
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Discussions and Further Questions
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Suboptimality of UCB

Eluder-UCB algorithm [Russo and Van Roy 2014]: at each time t,

→ form the least squares estimator θ̂t = arg minθ
∑

s<t(rs − f (〈θ, as〉))2;
→ construct the confidence set of θ?:

Ct =

{
θ ∈ Sd−1 :

∑
s<t

(f (〈θ, as〉)− f (〈θ̂t , as〉))2 = Õ(d)

}
;

→ play action at = arg maxa maxθ∈Ct f (〈θ, a〉).

Theorem (lower bound for Eluder-UCB)

For every f , there exist a bandit instance such that for (a certain tie-breaking rule
of) Eluder-UCB, achieving a sublinear regret requires

T & max
K

min

{
K ,

d

f (
√

(logK )/d)2

}
.

for f (x) = x3, Eluder-UCB requires T & d4, but optimal is T & d3
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}
;

→ play action at = arg maxa maxθ∈Ct f (〈θ, a〉).

Theorem (lower bound for Eluder-UCB)

For every f , there exist a bandit instance such that for (a certain tie-breaking rule
of) Eluder-UCB, achieving a sublinear regret requires

T & max
K

min

{
K ,

d

f (
√

(logK )/d)2

}
.

for f (x) = x3, Eluder-UCB requires T & d4, but optimal is T & d3

25 / 30



Suboptimality of UCB

Eluder-UCB algorithm [Russo and Van Roy 2014]: at each time t,

→ form the least squares estimator θ̂t = arg minθ
∑

s<t(rs − f (〈θ, as〉))2;
→ construct the confidence set of θ?:

Ct =

{
θ ∈ Sd−1 :

∑
s<t

(f (〈θ, as〉)− f (〈θ̂t , as〉))2 = Õ(d)
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Suboptimality of online regression oracle

Online regression oracle model [Foster et al. 2020]: for any adversarial

sequence {at}, oracle outputs {θ̂t} such that

T∑
t=1

(f (〈θ?, at〉)− f (〈θ̂t , at〉))2 ≤ RegSq(T )

→ learner only observes θ̂t in the oracle model, but not rt ;
→ a natural choice of RegSq(T ) is Õ(d).

Theorem (lower bound for the oracle model)

For every f , there exist a bandit instance under the oracle model such that for
every algorithm, achieving a sublinear regret requires

T & max
K

min

{
K ,

d

f (
√

(logK )/d)2

}
.

Key modeling difference: in oracle model, choosing repeated action may not
reduce the estimation error
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Theorem (lower bound for the oracle model)

For every f , there exist a bandit instance under the oracle model such that for
every algorithm, achieving a sublinear regret requires

T & max
K

min

{
K ,

d

f (
√

(logK )/d)2

}
.

Key modeling difference: in oracle model, choosing repeated action may not
reduce the estimation error

26 / 30



Suboptimality of online regression oracle

Online regression oracle model [Foster et al. 2020]: for any adversarial

sequence {at}, oracle outputs {θ̂t} such that

T∑
t=1

(f (〈θ?, at〉)− f (〈θ̂t , at〉))2 ≤ RegSq(T )

→ learner only observes θ̂t in the oracle model, but not rt ;

→ a natural choice of RegSq(T ) is Õ(d).
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Infinite vs finite actions

in linear bandit, fewer actions lead to smaller regret

→ minimax regret decreases from Θ(d
√
T ) to Θ(

√
dT logK) with K actions

→ intuition: UCB needs to construct fewer confidence intervals

does similar phenomenon hold for non-linear bandits?

Theorem (lower bound for finite actions)

For every link function f and K = poly(d), there exist an K -armed ridge bandit
instance such that achieving a sublinear regret requires

T & min

{
K ,

1

f (1/
√
d)2

}
.

implication: for f (x) = x3, the fixed cost for the finite-action problem is
already d3, same as the infinite-action problem

reason: the learner cannot explore every direction in the initialization phase
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Unit sphere vs unit ball

What happens if we assume that θ? ∈ Bd instead of θ? ∈ Sd−1?

Theorem (modified upper bound)

Under monotonicity and local linearity of f :

MinmaxReg(T , d , f ) . max
r∈[0,1]

min

d2 f (r)

r4

∫ r/2

r/
√
d

d(x2)

max
r/
√
d≤y≤x

f ′(y)2
+ d
√
T ,Tf (r)

 .

Theorem (modified lower bound)

Under monotonicity and local linearity of f :

MinmaxReg(T , d , f ) & max
r∈[0,1]

min

{
d
f (r)

r2

∫ r/2

r/
√
d

d(x2)

f (x)2
+ d
√
T ,Tf (r)

}
.

minimax regret often exhibits only one elbow instead of two
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Further questions

fill in the gap between upper and lower bounds

It − It−1 ≤ Var(f (〈θ?, at〉) | at ,Ht−1)
?

. max
y≤εt

f ′(y)2

d

analyze the learning trajectory of information-directed sampling
at = arg maxa I (θ

?; rt | Ht−1, at = a)

more general reward functions such as fθ(a) =
∑m

i=1 fi (〈θi , a〉)
more systematic methods for exploration in the initialization phase

more complicated settings such as contextual bandits and RL
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Concluding remarks

Take-home message:

there could be a phase transition in the regret of non-linear bandits

in the initialization phase, the learner needs algorithms beyond UCB to
explore a good initial action, which incurs a fixed cost

in the learning phase, the learner can employ UCB-type algorithm around the
good initial action

learning trajectory of the initialization phase could be characterized by proper
differential equations

traditional learning algorithms may fail to obtain the optimal initialization
cost

Thank You!

30 / 30



Concluding remarks

Take-home message:

there could be a phase transition in the regret of non-linear bandits

in the initialization phase, the learner needs algorithms beyond UCB to
explore a good initial action, which incurs a fixed cost

in the learning phase, the learner can employ UCB-type algorithm around the
good initial action

learning trajectory of the initialization phase could be characterized by proper
differential equations

traditional learning algorithms may fail to obtain the optimal initialization
cost

Thank You!

30 / 30



Concluding remarks

Take-home message:

there could be a phase transition in the regret of non-linear bandits

in the initialization phase, the learner needs algorithms beyond UCB to
explore a good initial action, which incurs a fixed cost

in the learning phase, the learner can employ UCB-type algorithm around the
good initial action

learning trajectory of the initialization phase could be characterized by proper
differential equations

traditional learning algorithms may fail to obtain the optimal initialization
cost

Thank You!

30 / 30



Concluding remarks

Take-home message:

there could be a phase transition in the regret of non-linear bandits

in the initialization phase, the learner needs algorithms beyond UCB to
explore a good initial action, which incurs a fixed cost

in the learning phase, the learner can employ UCB-type algorithm around the
good initial action

learning trajectory of the initialization phase could be characterized by proper
differential equations

traditional learning algorithms may fail to obtain the optimal initialization
cost

Thank You!

30 / 30



Concluding remarks

Take-home message:

there could be a phase transition in the regret of non-linear bandits

in the initialization phase, the learner needs algorithms beyond UCB to
explore a good initial action, which incurs a fixed cost

in the learning phase, the learner can employ UCB-type algorithm around the
good initial action

learning trajectory of the initialization phase could be characterized by proper
differential equations

traditional learning algorithms may fail to obtain the optimal initialization
cost

Thank You!

30 / 30



Concluding remarks

Take-home message:

there could be a phase transition in the regret of non-linear bandits

in the initialization phase, the learner needs algorithms beyond UCB to
explore a good initial action, which incurs a fixed cost

in the learning phase, the learner can employ UCB-type algorithm around the
good initial action

learning trajectory of the initialization phase could be characterized by proper
differential equations

traditional learning algorithms may fail to obtain the optimal initialization
cost

Thank You!

30 / 30



Concluding remarks

Take-home message:

there could be a phase transition in the regret of non-linear bandits

in the initialization phase, the learner needs algorithms beyond UCB to
explore a good initial action, which incurs a fixed cost

in the learning phase, the learner can employ UCB-type algorithm around the
good initial action

learning trajectory of the initialization phase could be characterized by proper
differential equations

traditional learning algorithms may fail to obtain the optimal initialization
cost

Thank You!

30 / 30


