Beyond UCB: statistical complexity and optimal algorithm for non-linear ridge bandits

Yanjun Han (MIT IDSS)

Joint work with:

Jiantao Jiao Nived Rajaraman Kannan Ramchandran Berkeley EECS Berkeley EECS Berkeley EECS

AMCS Colloquium, UPenn October 21, 2022

General setting of stochastic bandit

Input parameters:

- $\bullet\,$ parameter set $\Theta\,$
- \bullet action space ${\cal A}$
- reward function class $\mathcal{F} = (f_{ heta})_{ heta \in \Theta}$
- time horizon T

General setting of stochastic bandit

Input parameters:

- $\bullet\,$ parameter set $\Theta\,$
- \bullet action space ${\cal A}$
- reward function class $\mathcal{F} = (f_{ heta})_{ heta \in \Theta}$
- time horizon T

Stochastic bandit environment:

- nature chooses $\theta^{\star} \in \Theta$, fixed across time and unknown to the learner
- at time $t = 1, \cdots, T$, learner chooses action $a_t \in A$ and observes a random reward r_t with $\mathbb{E}[r_t \mid a_t = a] = f_{\theta^*}(a)$
- learner aims to minimize the worst-case (pseudo) regret

$$\mathsf{MinmaxReg}(\Theta, \mathcal{A}, \mathcal{F}, T) = \inf_{a^T} \sup_{\theta^{\star} \in \Theta} \mathbb{E}_{\theta^{\star}} \left[T \cdot \max_{a \in \mathcal{A}} f_{\theta^{\star}}(a) - \sum_{t=1}^T f_{\theta^{\star}}(a_t) \right].$$

General setting of stochastic bandit

Input parameters:

- $\bullet\,$ parameter set $\Theta\,$
- \bullet action space ${\cal A}$
- reward function class $\mathcal{F} = (f_{ heta})_{ heta \in \Theta}$
- time horizon T

Stochastic bandit environment:

- nature chooses $\theta^{\star} \in \Theta$, fixed across time and unknown to the learner
- at time $t = 1, \cdots, T$, learner chooses action $a_t \in A$ and observes a random reward r_t with $\mathbb{E}[r_t \mid a_t = a] = f_{\theta^*}(a)$
- learner aims to minimize the worst-case (pseudo) regret

$$\mathsf{MinmaxReg}(\Theta, \mathcal{A}, \mathcal{F}, T) = \inf_{a^T} \sup_{\theta^{\star} \in \Theta} \mathbb{E}_{\theta^{\star}} \left[T \cdot \max_{a \in \mathcal{A}} f_{\theta^{\star}}(a) - \sum_{t=1}^T f_{\theta^{\star}}(a_t) \right].$$

Linear bandit

 $f_{ heta}(a) = \langle heta, \phi(a)
angle$ with a known feature map $\phi: \mathcal{A} o \mathbb{R}^d$

$$f_{ heta}(a) = \langle heta, a
angle^3: \qquad heta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^d.$$

$$f_{ heta}(a) = \langle heta, a
angle^3: \qquad heta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^d.$$

$$f_{ heta}(a) = \langle heta, a
angle^3: \qquad heta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^d.$$

$$f_{ heta}(a) = \langle heta, a
angle^3: \qquad heta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^d.$$

$$f_{ heta}(a) = \langle heta, a
angle^3: \qquad heta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^d.$$

$$f_{ heta}(a) = \langle heta, a
angle^3: \qquad heta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^d.$$

Curious phenomena in non-linear bandits:

- phase transition in the regret
- initialization phase: regret grows linearly and results in a fixed cost
 - $\rightarrow\,$ find a good "initial action" to start learning
- learning phase: regret grows sublinearly and looks like a linear bandit
 - $\rightarrow\,$ bandit learning starts from the good initial action

Curious phenomena in non-linear bandits:

- phase transition in the regret
- initialization phase: regret grows linearly and results in a fixed cost
 - $\rightarrow\,$ find a good "initial action" to start learning
- learning phase: regret grows sublinearly and looks like a linear bandit
 - $\rightarrow\,$ bandit learning starts from the good initial action

Aim of this talk:

Curious phenomena in non-linear bandits:

- phase transition in the regret
- initialization phase: regret grows linearly and results in a fixed cost
 - $\rightarrow\,$ find a good "initial action" to start learning
- learning phase: regret grows sublinearly and looks like a linear bandit
 - $\rightarrow\,$ bandit learning starts from the good initial action

Aim of this talk:

Questions

• what is the optimal fixed cost in the initialization phase?

Curious phenomena in non-linear bandits:

- phase transition in the regret
- initialization phase: regret grows linearly and results in a fixed cost
 - $\rightarrow\,$ find a good "initial action" to start learning
- learning phase: regret grows sublinearly and looks like a linear bandit
 - $\rightarrow\,$ bandit learning starts from the good initial action

Aim of this talk:

Questions

- what is the optimal fixed cost in the initialization phase?
- what algorithms should we use in different phases?

Curious phenomena in non-linear bandits:

- phase transition in the regret
- initialization phase: regret grows linearly and results in a fixed cost
 - $\rightarrow\,$ find a good "initial action" to start learning
- learning phase: regret grows sublinearly and looks like a linear bandit
 - $\rightarrow\,$ bandit learning starts from the good initial action

Aim of this talk:

Questions

- what is the optimal fixed cost in the initialization phase?
- what algorithms should we use in different phases?
- how to explore when learner has not started learning?

Plan of this talk

- setting and main results
- proof of upper bound
- proof of lower bound
- discussions and extensions

- parameter space $\Theta = \mathbb{S}^{d-1} = \{ \theta \in \mathbb{R}^d : \|\theta\|_2 = 1 \}$
- action space $\mathcal{A} = \mathbb{B}^d = \{ a \in \mathbb{R}^d : \|a\|_2 \leq 1 \}$
- reward function $f_{\theta}(a) = f(\langle \theta, a \rangle)$ with a known link function f

- parameter space $\Theta = \mathbb{S}^{d-1} = \{ \theta \in \mathbb{R}^d : \|\theta\|_2 = 1 \}$
- action space $\mathcal{A} = \mathbb{B}^d = \{ a \in \mathbb{R}^d : \|a\|_2 \leq 1 \}$
- reward function $f_{\theta}(a) = f(\langle \theta, a \rangle)$ with a known link function f

Assumptions

- parameter space $\Theta = \mathbb{S}^{d-1} = \{ \theta \in \mathbb{R}^d : \|\theta\|_2 = 1 \}$
- action space $\mathcal{A} = \mathbb{B}^d = \{ a \in \mathbb{R}^d : \|a\|_2 \leq 1 \}$
- reward function $f_{\theta}(a) = f(\langle \theta, a \rangle)$ with a known link function f

Assumptions

- monotonicity: $f : [-1,1] \rightarrow [-1,1]$ is increasing (or f(-x) = f(x) and f is increasing on [0,1]) with $f(0) = 0, f(1) \approx 1$
 - \rightarrow best action is $a = \theta^*$

- parameter space $\Theta = \mathbb{S}^{d-1} = \{ \theta \in \mathbb{R}^d : \|\theta\|_2 = 1 \}$
- action space $\mathcal{A} = \mathbb{B}^d = \{ a \in \mathbb{R}^d : \|a\|_2 \leq 1 \}$
- reward function $f_{ heta}(a) = f(\langle heta, a \rangle)$ with a known link function f

Assumptions

- monotonicity: $f : [-1,1] \rightarrow [-1,1]$ is increasing (or f(-x) = f(x) and f is increasing on [0,1]) with $f(0) = 0, f(1) \asymp 1$
 - \rightarrow best action is $a = \theta^*$
- local linearity near 1: $\max_{x \in [0.1,1]} f'(x) / \min_{x \in [0.1,1]} f'(x) \le c < \infty$
 - \rightarrow essentially linear reward when $\langle \theta^{\star}, a \rangle$ becomes large

Literature review

Literature review

Ridge bandit $f_{\theta}(a) = f(\langle \theta, a \rangle)$:

- linear bandit f(x) = x: optimal regret $\widetilde{\Theta}(d\sqrt{T})$ [Dani et al. 2008, Chu et al. 2011, Abbasi-Yadkori et al. 2011]
- generalized linear bandit with $c_1 \le |f'(x)| \le c_2$: same as linear bandit [Filippi et al. 2010, Russo and Van Roy 2014]
- concave bandit (f is concave): same as linear bandit [Lattimore, 2021]
- bandit phase retrieval $(f(x) = x^2)$: same as linear bandit [Lattimore and Hao, 2021]
- polynomial bandit $(f(x) = x^p, p \ge 2)$: optimal regret achieved by noisy gradient method [Huang et al. 2021]

Literature review

Ridge bandit $f_{\theta}(a) = f(\langle \theta, a \rangle)$:

- linear bandit f(x) = x: optimal regret $\widetilde{\Theta}(d\sqrt{T})$ [Dani et al. 2008, Chu et al. 2011, Abbasi-Yadkori et al. 2011]
- generalized linear bandit with $c_1 \le |f'(x)| \le c_2$: same as linear bandit [Filippi et al. 2010, Russo and Van Roy 2014]
- concave bandit (f is concave): same as linear bandit [Lattimore, 2021]
- bandit phase retrieval $(f(x) = x^2)$: same as linear bandit [Lattimore and Hao, 2021]
- polynomial bandit $(f(x) = x^p, p \ge 2)$: optimal regret achieved by noisy gradient method [Huang et al. 2021]

General complexity measures for bandits:

- decision-estimation coefficient (DEC) [Foster et al. 2021, 2022]
- information ratio [Lattimore, 2022]
- often do not lead to tight regret dependence on d

Main Results

Theorem (main upper bound, informal)

Under monotonicity and local linearity of f:

$$\mathsf{MinmaxReg}(T, d, f) \lesssim \min \left\{ d^2 \cdot \int_{1/\sqrt{d}}^{1/2} \frac{\mathsf{d}(x^2)}{\max_{1/\sqrt{d} \leq y \leq x} f'(y)^2} + d\sqrt{T}, T \right\}.$$

Theorem (main upper bound, informal)

Under monotonicity and local linearity of f:

$$\mathsf{MinmaxReg}(T, d, f) \lesssim \min \left\{ d^2 \cdot \int_{1/\sqrt{d}}^{1/2} \frac{\mathsf{d}(x^2)}{\max_{1/\sqrt{d} \leq y \leq x} f'(y)^2} + d\sqrt{T}, T \right\}.$$

• a useful corollary:

$$\mathsf{MinmaxReg}(T, d, f) \lesssim \min\left\{d^2 \cdot \int_{1/\sqrt{d}}^{1/2} \frac{\mathsf{d}(x^2)}{f'(x)^2} + d\sqrt{T}, T\right\}$$

Theorem (main upper bound, informal)

Under monotonicity and local linearity of f:

$$\mathsf{MinmaxReg}(T, d, f) \lesssim \min \left\{ d^2 \cdot \int_{1/\sqrt{d}}^{1/2} \frac{\mathsf{d}(x^2)}{\max_{1/\sqrt{d} \leq y \leq x} f'(y)^2} + d\sqrt{T}, T \right\}.$$

• a useful corollary:

$$\mathsf{MinmaxReg}(T, d, f) \lesssim \min\left\{d^2 \cdot \int_{1/\sqrt{d}}^{1/2} \frac{\mathsf{d}(x^2)}{f'(x)^2} + d\sqrt{T}, T\right\}$$

• the formal version:

$$\mathsf{MinmaxReg}(T,d,f) \lesssim \sum_{m=1}^{d/4} \frac{1}{\max_{0 \leq y \leq \sqrt{m/d}} \min_{z \in [y,2y]} (f(z+1/\sqrt{d})-f(z))^2} + d\sqrt{T}.$$

Theorem (main upper bound, informal)

Under monotonicity and local linearity of f:

$$\mathsf{MinmaxReg}(T, d, f) \lesssim \min\left\{ d^2 \cdot \int_{1/\sqrt{d}}^{1/2} \frac{\mathsf{d}(x^2)}{\max_{1/\sqrt{d} \leq y \leq x} f'(y)^2} + d\sqrt{T}, T \right\}.$$

Theorem (main lower bound)

Under monotonicity and local linearity of f:

$$\mathsf{MinmaxReg}(T, d, f) \gtrsim \min \left\{ d \cdot \int_{1/\sqrt{d}}^{1/2} \frac{\mathsf{d}(x^2)}{f(x)^2} + d\sqrt{T}, T \right\}.$$

Theorem (main upper bound, informal)

Under monotonicity and local linearity of f:

$$\mathsf{MinmaxReg}(T, d, f) \lesssim \min\left\{ d^2 \cdot \int_{1/\sqrt{d}}^{1/2} \frac{\mathsf{d}(x^2)}{\max_{1/\sqrt{d} \leq y \leq x} f'(y)^2} + d\sqrt{T}, T \right\}.$$

Theorem (main lower bound)

Under monotonicity and local linearity of f:

$$\mathsf{MinmaxReg}(T, d, f) \gtrsim \min \left\{ d \cdot \int_{1/\sqrt{d}}^{1/2} \frac{\mathsf{d}(x^2)}{f(x)^2} + d\sqrt{T}, T \right\}.$$

- both results within poly-logarithmic factors
- pointwise upper and lower bounds
- fixed cost depends on the entire function f

$$x_t = \langle \theta^\star, a_t \rangle$$

Theorem (learning trajectory)

$$x_{t} = \langle \theta^{\star}, a_{t} \rangle$$

$$1/\sqrt{d}$$

Theorem (learning trajectory)

Theorem (learning trajectory)

• there is an algorithm attaining the UB learning curve

Theorem (learning trajectory)

• there is an algorithm attaining the UB learning curve
Main results: learning trajectory in the initialization phase

Theorem (learning trajectory)

- there is an algorithm attaining the UB learning curve
- for any algorithm, its learning trajectory lies below the LB learning curve with probability at least $1 T\delta$ under $\theta^* \sim \text{Unif}(\mathbb{S}^{d-1})$

Main results: learning trajectory in the initialization phase

Theorem (learning trajectory)

- there is an algorithm attaining the UB learning curve
- for any algorithm, its learning trajectory lies below the LB learning curve with probability at least $1 T\delta$ under $\theta^* \sim \text{Unif}(\mathbb{S}^{d-1})$
- UCB algorithm makes no progress whenever $t < d/f(1/\sqrt{d})^2!$

Examples

• polynomial bandit $f(x) = x^p$:

$$\mathsf{MinmaxReg} \asymp \begin{cases} \min\{d\sqrt{T}, T\} & \text{if } 0 2. \end{cases}$$

 $\rightarrow\,$ both Eluder-UCB and information-directed sampling give an additional $O(d^{p+1})$ term when p>1

Examples

• polynomial bandit $f(x) = x^p$:

$$\mathsf{MinmaxReg} \asymp egin{cases} \min\{d\sqrt{T}, T\} & ext{if } 0 2. \end{cases}$$

- $\rightarrow\,$ both Eluder-UCB and information-directed sampling give an additional $O(d^{p+1})$ term when p>1
- ReLU bandit $f(x) = (x 0.1)_+$: $T = e^{\Omega(d)}$ is necessary for sublinear regret

Examples

• polynomial bandit $f(x) = x^p$:

$$\mathsf{MinmaxReg} \asymp egin{cases} \min\{d\sqrt{T}, T\} & ext{if } 0 2. \end{cases}$$

- $\rightarrow\,$ both Eluder-UCB and information-directed sampling give an additional $O(d^{p+1})$ term when p>1
- ReLU bandit $f(x) = (x 0.1)_+$: $T = e^{\Omega(d)}$ is necessary for sublinear regret
- importance of f at every point:

Upper Bounds

Key feature in the learning phase

The learner has found a good "initial action" a_0 such that $\langle a_0, \theta^* \rangle \geq \text{const.}$

Key feature in the learning phase

The learner has found a good "initial action" a_0 such that $\langle a_0, \theta^* \rangle \geq \text{const.}$

A simple explore-then-commit (ETC) algorithm:

Key feature in the learning phase

The learner has found a good "initial action" a_0 such that $\langle a_0, \theta^* \rangle \geq \text{const.}$

A simple explore-then-commit (ETC) algorithm:

• for the first m rounds, uniformly explore the following 2d directions:

$$\left\{\lambda a_0 \pm \sqrt{1-\lambda^2} e_1, \cdots, \lambda a_0 \pm \sqrt{1-\lambda^2} e_d\right\}, \quad \lambda = \lambda (ext{const});$$

Key feature in the learning phase

The learner has found a good "initial action" a_0 such that $\langle a_0, \theta^{\star} \rangle \geq \text{const.}$

A simple explore-then-commit (ETC) algorithm:

• for the first m rounds, uniformly explore the following 2d directions:

$$\left\{\lambda a_0 \pm \sqrt{1-\lambda^2}e_1, \cdots, \lambda a_0 \pm \sqrt{1-\lambda^2}e_d\right\}, \quad \lambda = \lambda (ext{const});$$

• find the least squares estimate of θ^* :

$$\widehat{\theta} = \arg\min_{\theta:\langle \theta, a_0 \rangle \ge \text{const}} \frac{1}{2} \sum_{t=1}^m (r_m - f(\langle \theta, a_t \rangle))^2;$$

Key feature in the learning phase

The learner has found a good "initial action" a_0 such that $\langle a_0, \theta^* \rangle \geq \text{const.}$

A simple explore-then-commit (ETC) algorithm:

• for the first m rounds, uniformly explore the following 2d directions:

$$\left\{\lambda a_0 \pm \sqrt{1-\lambda^2} e_1, \cdots, \lambda a_0 \pm \sqrt{1-\lambda^2} e_d\right\}, \quad \lambda = \lambda ({\sf const});$$

• find the least squares estimate of θ^* :

$$\widehat{\theta} = \arg\min_{\theta: \langle \theta, a_0 \rangle \ge \text{const}} \frac{1}{2} \sum_{t=1}^m (r_m - f(\langle \theta, a_t \rangle))^2;$$

• for the remaining rounds, greedily play $a_t = \hat{\theta}$.

• standard least squares analysis gives w.h.p.

$$\sum_{t=1}^{m} (f(\langle \widehat{\theta}, a_t \rangle) - f(\langle \theta^{\star}, a_t \rangle))^2 = \widetilde{O}(d);$$

• standard least squares analysis gives w.h.p.

$$\sum_{t=1}^{m} (f(\langle \widehat{\theta}, a_t \rangle) - f(\langle \theta^{\star}, a_t \rangle))^2 = \widetilde{O}(d);$$

• local linearity of f near 1 implies that

$$\|\widehat{ heta} - heta^{\star}\|_2^2 = \widetilde{O}\left(rac{d^2}{m \cdot f'(1)^2}
ight);$$

• standard least squares analysis gives w.h.p.

$$\sum_{t=1}^{m} (f(\langle \widehat{\theta}, a_t \rangle) - f(\langle \theta^{\star}, a_t \rangle))^2 = \widetilde{O}(d);$$

• local linearity of f near 1 implies that

$$\|\widehat{ heta} - heta^{\star}\|_2^2 = \widetilde{O}\left(rac{d^2}{m \cdot f'(1)^2}
ight);$$

• instantaneous regret when greedily plays $\hat{\theta}$:

$$f(1) - f(\langle heta^{\star}, \widehat{ heta}
angle) \lesssim f'(1)(1 - \langle heta^{\star}, \widehat{ heta}
angle) \lesssim rac{d^2}{m \cdot f'(1)};$$

• standard least squares analysis gives w.h.p.

$$\sum_{t=1}^{m} (f(\langle \widehat{\theta}, a_t \rangle) - f(\langle \theta^{\star}, a_t \rangle))^2 = \widetilde{O}(d);$$

• local linearity of f near 1 implies that

$$\|\widehat{\theta} - \theta^{\star}\|_{2}^{2} = \widetilde{O}\left(rac{d^{2}}{m \cdot f'(1)^{2}}
ight);$$

• instantaneous regret when greedily plays $\hat{\theta}$:

$$f(1) - f(\langle heta^{\star}, \widehat{ heta}
angle) \lesssim f'(1)(1 - \langle heta^{\star}, \widehat{ heta}
angle) \lesssim rac{d^2}{m \cdot f'(1)};$$

• total regret in the learning phase:

$$m \cdot f'(1) + (T-m) \cdot rac{d^2}{m \cdot f'(1)} \stackrel{m symp d \sqrt{T}/f'(1)}{symp} d\sqrt{T}.$$

Target in the initialization phase

Target in the initialization phase

Certify that $\langle \theta^{\star}, a \rangle \in [r - \delta, r + \delta]$ can be done with $\widetilde{O}(1/[\delta f'(r)]^2)$ samples

Recursive step

Recursive step

Given an action a_{pre} with $\langle \theta^*, a_{\text{pre}} \rangle \in [x_{\text{pre}}, 2x_{\text{pre}}]$, where x_{pre} is known, how to find a_{now} and certify that $\langle \theta^*, a_{\text{now}} \rangle \in [x_{\text{now}}, 2x_{\text{now}}]$ with $x_{\text{now}} > x_{\text{pre}}$?

• idea: find $a \perp a_{\rm pre}$ with $\langle \theta^{\star}, a \rangle \asymp 1/\sqrt{d}$ and play $a_{\rm now} = \lambda a_{\rm pre} + \sqrt{1-\lambda^2}a$

Recursive step

- idea: find $a \perp a_{\rm pre}$ with $\langle \theta^{\star}, a \rangle \asymp 1/\sqrt{d}$ and play $a_{\rm now} = \lambda a_{\rm pre} + \sqrt{1 \lambda^2} a$
- for proper λ , if $\langle \theta^{\star}, a \rangle \in [1/\sqrt{d}, 2/\sqrt{d}]$, then $\langle \theta^{\star}, a_{\text{now}} \rangle \in [x_{\text{now}}, 2x_{\text{now}}]$ with $x_{\text{now}} = \sqrt{x_{\text{pre}}^2 + 1/d}$

Recursive step

- idea: find $a \perp a_{pre}$ with $\langle \theta^{\star}, a \rangle \asymp 1/\sqrt{d}$ and play $a_{now} = \lambda a_{pre} + \sqrt{1 \lambda^2} a$
- for proper λ , if $\langle \theta^{\star}, a \rangle \in [1/\sqrt{d}, 2/\sqrt{d}]$, then $\langle \theta^{\star}, a_{\text{now}} \rangle \in [x_{\text{now}}, 2x_{\text{now}}]$ with $x_{\text{now}} = \sqrt{x_{\text{pre}}^2 + 1/d}$
- exploration: easy, as $\mathbb{P}(\langle heta^{\star}, a
 angle \in [1/\sqrt{d}, 2/\sqrt{d}]) = \Omega(1)$ for uniform a

Recursive step

- idea: find $a \perp a_{\rm pre}$ with $\langle \theta^{\star}, a \rangle \asymp 1/\sqrt{d}$ and play $a_{\rm now} = \lambda a_{\rm pre} + \sqrt{1 \lambda^2} a$
- for proper λ , if $\langle \theta^{\star}, a \rangle \in [1/\sqrt{d}, 2/\sqrt{d}]$, then $\langle \theta^{\star}, a_{\text{now}} \rangle \in [x_{\text{now}}, 2x_{\text{now}}]$ with $x_{\text{now}} = \sqrt{x_{\text{pre}}^2 + 1/d}$
- exploration: easy, as $\mathbb{P}(\langle heta^{\star}, a
 angle \in [1/\sqrt{d}, 2/\sqrt{d}]) = \Omega(1)$ for uniform a
- certification: should make use of apre!

Recursive step

Given an action a_{pre} with $\langle \theta^*, a_{\text{pre}} \rangle \in [x_{\text{pre}}, 2x_{\text{pre}}]$, where x_{pre} is known, how to find a_{now} and certify that $\langle \theta^*, a_{\text{now}} \rangle \in [x_{\text{now}}, 2x_{\text{now}}]$ with $x_{\text{now}} > x_{\text{pre}}$?

- idea: find $a \perp a_{\rm pre}$ with $\langle \theta^{\star}, a \rangle \asymp 1/\sqrt{d}$ and play $a_{\rm now} = \lambda a_{\rm pre} + \sqrt{1 \lambda^2} a$
- for proper λ , if $\langle \theta^{\star}, a \rangle \in [1/\sqrt{d}, 2/\sqrt{d}]$, then $\langle \theta^{\star}, a_{\text{now}} \rangle \in [x_{\text{now}}, 2x_{\text{now}}]$ with $x_{\text{now}} = \sqrt{x_{\text{pre}}^2 + 1/d}$
- exploration: easy, as $\mathbb{P}(\langle heta^{\star}, a
 angle \in [1/\sqrt{d}, 2/\sqrt{d}]) = \Omega(1)$ for uniform a

• certification: should make use of apre!

$$\frac{\langle \theta^{\star}, \mathbf{a} \rangle}{\sqrt{2}} = \left\langle \theta^{\star}, \frac{\mathbf{a} + \mathbf{a}_{\mathsf{pre}}}{\sqrt{2}} \right\rangle - \left\langle \theta^{\star}, \frac{\mathbf{a}_{\mathsf{pre}}}{\sqrt{2}} \right\rangle$$

Recursive step

Given an action a_{pre} with $\langle \theta^*, a_{\text{pre}} \rangle \in [x_{\text{pre}}, 2x_{\text{pre}}]$, where x_{pre} is known, how to find a_{now} and certify that $\langle \theta^*, a_{\text{now}} \rangle \in [x_{\text{now}}, 2x_{\text{now}}]$ with $x_{\text{now}} > x_{\text{pre}}$?

- idea: find $a \perp a_{\rm pre}$ with $\langle \theta^{\star}, a \rangle \asymp 1/\sqrt{d}$ and play $a_{\rm now} = \lambda a_{\rm pre} + \sqrt{1 \lambda^2} a$
- for proper λ , if $\langle \theta^{\star}, a \rangle \in [1/\sqrt{d}, 2/\sqrt{d}]$, then $\langle \theta^{\star}, a_{\text{now}} \rangle \in [x_{\text{now}}, 2x_{\text{now}}]$ with $x_{\text{now}} = \sqrt{x_{\text{pre}}^2 + 1/d}$
- exploration: easy, as $\mathbb{P}(\langle heta^{\star}, a
 angle \in [1/\sqrt{d}, 2/\sqrt{d}]) = \Omega(1)$ for uniform a

certification: should make use of apre!

$$\frac{\langle \theta^{\star}, \mathbf{a} \rangle}{\sqrt{2}} = \left\langle \theta^{\star}, \frac{\mathbf{a} + \mathbf{a}_{\mathsf{pre}}}{\sqrt{2}} \right\rangle - \left\langle \theta^{\star}, \frac{\mathbf{a}_{\mathsf{pre}}}{\sqrt{2}} \right\rangle$$

ightarrow each terms uses $\widetilde{O}(d/f'(x_{
m pre})^2)$ samples for certification

Recursive step

Given an action a_{pre} with $\langle \theta^*, a_{\text{pre}} \rangle \in [x_{\text{pre}}, 2x_{\text{pre}}]$, where x_{pre} is known, how to find a_{now} and certify that $\langle \theta^*, a_{\text{now}} \rangle \in [x_{\text{now}}, 2x_{\text{now}}]$ with $x_{\text{now}} > x_{\text{pre}}$?

- idea: find $a \perp a_{\rm pre}$ with $\langle \theta^{\star}, a \rangle \asymp 1/\sqrt{d}$ and play $a_{\rm now} = \lambda a_{\rm pre} + \sqrt{1 \lambda^2} a$
- for proper λ , if $\langle \theta^{\star}, a \rangle \in [1/\sqrt{d}, 2/\sqrt{d}]$, then $\langle \theta^{\star}, a_{\text{now}} \rangle \in [x_{\text{now}}, 2x_{\text{now}}]$ with $x_{\text{now}} = \sqrt{x_{\text{pre}}^2 + 1/d}$
- exploration: easy, as $\mathbb{P}(\langle heta^{\star}, a
 angle \in [1/\sqrt{d}, 2/\sqrt{d}]) = \Omega(1)$ for uniform a

certification: should make use of apre!

$$\frac{\langle \theta^{\star}, \mathbf{a} \rangle}{\sqrt{2}} = \left\langle \theta^{\star}, \frac{\mathbf{a} + \mathbf{a}_{\mathsf{pre}}}{\sqrt{2}} \right\rangle - \left\langle \theta^{\star}, \frac{\mathbf{a}_{\mathsf{pre}}}{\sqrt{2}} \right\rangle$$

ightarrow each terms uses $\widetilde{O}(d/f'(x_{
m pre})^2)$ samples for certification

 \rightarrow total sample complexity is roughly $d^2 \int_{1/\sqrt{d}}^{1/2} \frac{\mathrm{d}x^2}{f'(x)^2}$

Recursive step

Given an action a_{pre} with $\langle \theta^{\star}, a_{\text{pre}} \rangle \in [x_{\text{pre}}, 2x_{\text{pre}}]$, where x_{pre} is known, how to find a_{now} and certify that $\langle \theta^{\star}, a_{\text{now}} \rangle \in [x_{\text{now}}, 2x_{\text{now}}]$ with $x_{\text{now}} > x_{\text{pre}}$?

- idea: find $a \perp a_{\rm pre}$ with $\langle \theta^{\star}, a \rangle \asymp 1/\sqrt{d}$ and play $a_{\rm now} = \lambda a_{\rm pre} + \sqrt{1 \lambda^2} a$
- for proper λ , if $\langle \theta^{\star}, a \rangle \in [1/\sqrt{d}, 2/\sqrt{d}]$, then $\langle \theta^{\star}, a_{\text{now}} \rangle \in [x_{\text{now}}, 2x_{\text{now}}]$ with $x_{\text{now}} = \sqrt{x_{\text{pre}}^2 + 1/d}$
- exploration: easy, as $\mathbb{P}(\langle heta^\star, a
 angle \in [1/\sqrt{d}, 2/\sqrt{d}]) = \Omega(1)$ for uniform a

• certification: should make use of apre!

$$\frac{\langle \theta^{\star}, \mathbf{a} \rangle}{\sqrt{2}} = \left\langle \theta^{\star}, \frac{\mathbf{a} + \mu \mathbf{a}_{\mathsf{pre}}}{\sqrt{2}} \right\rangle - \left\langle \theta^{\star}, \frac{\mu \mathbf{a}_{\mathsf{pre}}}{\sqrt{2}} \right\rangle$$

 \rightarrow each terms uses $\widetilde{O}(d/\max_{y \leq x} f'(y)^2)$ samples for certification;

 \rightarrow total sample complexity is roughly $d^2 \int_{1/\sqrt{d}}^{1/2} \frac{dx^2}{\max_{y < x} f'(y)^2}$.

Target of certification

Given actions a and a + b with $\langle \theta^{\star}, a \rangle \in [x, 2x]$, find a test which

- outputs "failure" w.h.p. if $\langle \theta^{\star}, b \rangle \notin [z, 2z];$
- outputs "success" w.h.p. if $\langle \theta^{\star}, b \rangle \in [1.2z, 1.8z]$.

Target of certification

Given actions a and a + b with $\langle \theta^{\star}, a \rangle \in [x, 2x]$, find a test which

- outputs "failure" w.h.p. if $\langle \theta^{\star}, b \rangle \notin [z, 2z]$;
- outputs "success" w.h.p. if $\langle \theta^{\star}, b \rangle \in [1.2z, 1.8z]$.

• pull both actions $\widetilde{O}(1/\delta^2)$ times to obtain

$$|\widehat{f_1} - f(\langle heta^\star, a \rangle)| \leq \delta, \qquad |\widehat{f_2} - f(\langle heta^\star, a + b
angle)| \leq \delta;$$

Target of certification

Given actions a and a + b with $\langle \theta^*, a \rangle \in [x, 2x]$, find a test which

- outputs "failure" w.h.p. if $\langle \theta^{\star}, b \rangle \notin [z, 2z];$
- outputs "success" w.h.p. if $\langle \theta^{\star}, b \rangle \in [1.2z, 1.8z]$.

• pull both actions $\widetilde{O}(1/\delta^2)$ times to obtain

$$|\widehat{f_1} - f(\langle heta^\star, a \rangle)| \leq \delta, \qquad |\widehat{f_2} - f(\langle heta^\star, a + b
angle)| \leq \delta;$$

• test returns "success" iff $\exists u \in [x, 2x], v \in [1.2z, 1.8z]$ such that $|\widehat{f_1} - f(u)| \leq \delta$ and $|\widehat{f_2} - f(u+v)| \leq \delta$:

Target of certification

Given actions a and a + b with $\langle \theta^*, a \rangle \in [x, 2x]$, find a test which

- outputs "failure" w.h.p. if $\langle \theta^{\star}, b \rangle \notin [z, 2z]$;
- outputs "success" w.h.p. if $\langle \theta^{\star}, b \rangle \in [1.2z, 1.8z]$.

• pull both actions $\widetilde{O}(1/\delta^2)$ times to obtain

$$|\widehat{f_1} - f(\langle heta^\star, a \rangle)| \leq \delta, \qquad |\widehat{f_2} - f(\langle heta^\star, a + b
angle)| \leq \delta;$$

• test returns "success" iff $\exists u \in [x, 2x], v \in [1.2z, 1.8z]$ such that $|\widehat{f_1} - f(u)| \leq \delta$ and $|\widehat{f_2} - f(u+v)| \leq \delta$: \rightarrow if $\langle \theta^*, b \rangle \in [1.2z, 1.8z]$, then $(u, v) = (\langle \theta^*, a \rangle, \langle \theta^*, b \rangle)$ passes the test;

Target of certification

Given actions a and a + b with $\langle \theta^*, a \rangle \in [x, 2x]$, find a test which

- outputs "failure" w.h.p. if $\langle \theta^{\star}, b \rangle \notin [z, 2z]$;
- outputs "success" w.h.p. if $\langle \theta^{\star}, b \rangle \in [1.2z, 1.8z]$.

• pull both actions $\widetilde{O}(1/\delta^2)$ times to obtain

$$|\widehat{f_1} - f(\langle heta^\star, a \rangle)| \leq \delta, \qquad |\widehat{f_2} - f(\langle heta^\star, a + b
angle)| \leq \delta;$$

• test returns "success" iff $\exists u \in [x, 2x], v \in [1.2z, 1.8z]$ such that $|\widehat{f_1} - f(u)| \leq \delta$ and $|\widehat{f_2} - f(u+v)| \leq \delta$: \rightarrow if $\langle \theta^*, b \rangle \in [1.2z, 1.8z]$, then $(u, v) = (\langle \theta^*, a \rangle, \langle \theta^*, b \rangle)$ passes the test; \rightarrow if $\langle \theta^*, b \rangle \notin [z, 2z]$, then existence of (u, v) implies

$$|u - \langle \theta^{\star}, a \rangle| \ge 0.2z, \quad \text{ or } \quad |u + v - \langle \theta^{\star}, a + b \rangle| \ge 0.2z;$$

Target of certification

Given actions a and a + b with $\langle \theta^*, a \rangle \in [x, 2x]$, find a test which

- outputs "failure" w.h.p. if $\langle \theta^{\star}, b \rangle \notin [z, 2z]$;
- outputs "success" w.h.p. if $\langle \theta^{\star}, b \rangle \in [1.2z, 1.8z]$.

• pull both actions $\widetilde{O}(1/\delta^2)$ times to obtain

$$|\widehat{f_1} - f(\langle heta^\star, a \rangle)| \leq \delta, \qquad |\widehat{f_2} - f(\langle heta^\star, a + b
angle)| \leq \delta;$$

• test returns "success" iff $\exists u \in [x, 2x], v \in [1.2z, 1.8z]$ such that $|\widehat{f_1} - f(u)| \leq \delta$ and $|\widehat{f_2} - f(u+v)| \leq \delta$: \rightarrow if $\langle \theta^*, b \rangle \in [1.2z, 1.8z]$, then $(u, v) = (\langle \theta^*, a \rangle, \langle \theta^*, b \rangle)$ passes the test; \rightarrow if $\langle \theta^*, b \rangle \notin [z, 2z]$, then existence of (u, v) implies

$$|u - \langle \theta^{\star}, a \rangle| \geq 0.2z, \quad \text{ or } \quad |u + v - \langle \theta^{\star}, a + b \rangle| \geq 0.2z;$$

 \rightarrow test works if $\delta < \min_{y \in [x, 2x+2z]} [f(y+0.2z) - f(y)]/2.$
Lower Bounds

Theorem (formal lower bound)

Let $\delta>0$ be any parameter, and c>0 be a large absolute constant. Define a sequence $\{\varepsilon_t\}_{t\geq 1}$ with

$$arepsilon_1 = \sqrt{rac{c\log(1/\delta)}{d}}, \quad arepsilon_{t+1}^2 = arepsilon_t^2 + rac{c}{d}f(arepsilon_t)^2, \quad t \geq 1$$

Theorem (formal lower bound)

Let $\delta>0$ be any parameter, and c>0 be a large absolute constant. Define a sequence $\{\varepsilon_t\}_{t\geq 1}$ with

$$arepsilon_1 = \sqrt{rac{c\log(1/\delta)}{d}}, \quad arepsilon_{t+1}^2 = arepsilon_t^2 + rac{c}{d}f(arepsilon_t)^2, \quad t \geq 1$$

Then if $\theta^{\star} \sim \mathsf{Unif}(\mathbb{S}^{d-1})$, any learner $\{a_t\}_{t\geq 1}$ satisfies that

$$\mathbb{P}\left(\bigcap_{1\leq t\leq T}\left\{\langle \theta^{\star}, a_t\rangle \leq \varepsilon_t\right\}\right) \geq 1 - T\delta$$

Theorem (formal lower bound)

Let $\delta>0$ be any parameter, and c>0 be a large absolute constant. Define a sequence $\{\varepsilon_t\}_{t\geq 1}$ with

$$arepsilon_1 = \sqrt{rac{c\log(1/\delta)}{d}}, \quad arepsilon_{t+1}^2 = arepsilon_t^2 + rac{c}{d}f(arepsilon_t)^2, \quad t \geq 1$$

Then if $\theta^{\star} \sim \mathsf{Unif}(\mathbb{S}^{d-1})$, any learner $\{a_t\}_{t\geq 1}$ satisfies that

$$\mathbb{P}\left(igcap_{1\leq t\leq \mathcal{T}}\left\{\langle heta^{\star}, oldsymbol{a}_t
angle\leqarepsilon_t
ight\}
ight)\geq 1-\mathcal{T}\delta.$$

• the continuous-time version of $\{\varepsilon_t\}$ gives the differential equation

Theorem (formal lower bound)

Let $\delta>0$ be any parameter, and c>0 be a large absolute constant. Define a sequence $\{\varepsilon_t\}_{t\geq 1}$ with

$$arepsilon_1 = \sqrt{rac{c\log(1/\delta)}{d}}, \quad arepsilon_{t+1}^2 = arepsilon_t^2 + rac{c}{d}f(arepsilon_t)^2, \quad t \geq 1$$

Then if $\theta^{\star} \sim \text{Unif}(\mathbb{S}^{d-1})$, any learner $\{a_t\}_{t \geq 1}$ satisfies that

$$\mathbb{P}\left(igcap_{1\leq t\leq \mathcal{T}}\left\{\langle heta^{\star}, oldsymbol{a}_t
angle\leqarepsilon_t
ight\}
ight)\geq 1-\mathcal{T}\delta.$$

- the continuous-time version of $\{\varepsilon_t\}$ gives the differential equation
- hard(?) to prove via usual arguments of hypothesis testing

Let $I_t = I(\theta^*; \mathcal{H}_t)$ be the mutual information between the true parameter θ^* and the history \mathcal{H}_t up to time t, then

$$egin{aligned} & I_{t+1} - I_t = I(heta^\star; r_{t+1} \mid a_{t+1}, \mathcal{H}_t) \ & \leq \mathbb{E}\left[rac{1}{2}\log\left(1 + \mathbb{E}[f(\langle heta^\star, a_{t+1}
angle))^2]
ight)
ight] \ & \leq rac{1}{2}\mathbb{E}[f(\langle heta^\star, a_{t+1}
angle)^2]. \end{aligned}$$

Let $I_t = I(\theta^*; \mathcal{H}_t)$ be the mutual information between the true parameter θ^* and the history \mathcal{H}_t up to time t, then

$$egin{aligned} &I_{t+1}-I_t=I(heta^\star;r_{t+1}\mid a_{t+1},\mathcal{H}_t)\ &\leq \mathbb{E}\left[rac{1}{2}\log\left(1+\mathbb{E}[f(\langle heta^\star,a_{t+1}
angle))^2]
ight)
ight]\ &\leq rac{1}{2}\mathbb{E}[f(\langle heta^\star,a_{t+1}
angle)^2]. \end{aligned}$$

To argue that $\langle heta^{\star}, a_{t+1}
angle$ should not be large, note that

$$I(\theta^*; a_{t+1}) \leq I(\theta^*; \mathcal{H}_t) = I_t.$$

Let $I_t = I(\theta^*; \mathcal{H}_t)$ be the mutual information between the true parameter θ^* and the history \mathcal{H}_t up to time t, then

$$egin{aligned} &I_{t+1}-I_t=I(heta^\star;r_{t+1}\mid a_{t+1},\mathcal{H}_t)\ &\leq \mathbb{E}\left[rac{1}{2}\log\left(1+\mathbb{E}[f(\langle heta^\star,a_{t+1}
angle))^2]
ight)
ight]\ &\leq rac{1}{2}\mathbb{E}[f(\langle heta^\star,a_{t+1}
angle)^2]. \end{aligned}$$

To argue that $\langle heta^{\star}, a_{t+1}
angle$ should not be large, note that

$$I(\theta^{\star}; a_{t+1}) \leq I(\theta^{\star}; \mathcal{H}_t) = I_t.$$

Key insight

$$I(\theta^{\star}; a) \leq I \Longrightarrow \langle \theta^{\star}, a \rangle \lesssim \sqrt{I/d}$$
 with high probability.

Let $I_t = I(\theta^*; \mathcal{H}_t)$ be the mutual information between the true parameter θ^* and the history \mathcal{H}_t up to time t, then

$$egin{aligned} &I_{t+1}-I_t=I(heta^\star;r_{t+1}\mid a_{t+1},\mathcal{H}_t)\ &\leq \mathbb{E}\left[rac{1}{2}\log\left(1+\mathbb{E}[f(\langle heta^\star,a_{t+1}
angle))^2]
ight)
ight]\ &\leq rac{1}{2}\mathbb{E}[f(\langle heta^\star,a_{t+1}
angle)^2]. \end{aligned}$$

To argue that $\langle heta^{\star}, a_{t+1}
angle$ should not be large, note that

$$I(\theta^{\star}; a_{t+1}) \leq I(\theta^{\star}; \mathcal{H}_t) = I_t.$$

Key insight

$$I(heta^{\star}; a) \leq I \Longrightarrow \langle heta^{\star}, a \rangle \lesssim \sqrt{I/d}$$
 with high probability.

Applying the insight gives the desired recursion

$$d(\varepsilon_{t+1}^2 - \varepsilon_t^2) \lesssim f(\varepsilon_t)^2$$

More on the above insights

• reasoning behind the insight:

$$\mathsf{a} \mid \theta^{\star} \sim \mathsf{Unif}(\{\mathsf{a} \in \mathbb{S}^{d-1} : \langle \mathsf{a}, \theta^{\star} \rangle \geq \varepsilon\}) \Longrightarrow \mathsf{I}(\mathsf{a}; \theta^{\star}) \asymp \mathsf{d}\varepsilon^{2}$$

• reasoning behind the insight:

$$\mathsf{a} \mid \theta^{\star} \sim \mathsf{Unif}(\{\mathsf{a} \in \mathbb{S}^{d-1} : \langle \mathsf{a}, \theta^{\star} \rangle \geq \varepsilon\}) \Longrightarrow \mathsf{I}(\mathsf{a}; \theta^{\star}) \asymp \mathsf{d}\varepsilon^2$$

• however, it does not hold with high probability: Fano's inequality only gives

$$\mathbb{P}(\langle heta^{\star}, extbf{a}
angle \leq arepsilon) \geq 1 - rac{I(heta^{\star}; extbf{a}) + \log 2}{\Theta(darepsilon^2)},$$

which is tight for the worst-case distribution of (θ^{\star}, a)

• reasoning behind the insight:

$$\mathsf{a} \mid \theta^{\star} \sim \mathsf{Unif}(\{\mathsf{a} \in \mathbb{S}^{d-1} : \langle \mathsf{a}, \theta^{\star} \rangle \geq \varepsilon\}) \Longrightarrow \mathsf{I}(\mathsf{a}; \theta^{\star}) \asymp \mathsf{d}\varepsilon^{2}$$

• however, it does not hold with high probability: Fano's inequality only gives

$$\mathbb{P}(\langle heta^{\star}, extbf{a}
angle \leq arepsilon) \geq 1 - rac{I(heta^{\star}; extbf{a}) + \log 2}{\Theta(darepsilon^2)},$$

which is tight for the worst-case distribution of (θ^*, a) • our solution: use χ^2 -informativity instead

• χ^2 -informativity between X and Y:

$$I_{\chi^2}(X; Y) = \inf_{Q_Y} \chi^2(P_{XY} || P_X \times Q_Y).$$

• χ^2 -informativity between X and Y:

$$I_{\chi^2}(X;Y) = \inf_{Q_Y} \chi^2(P_{XY} || P_X \times Q_Y).$$

• error probability lower bound using χ^2 -informativity:

$$\mathbb{P}(\langle heta^\star, extbf{a}
angle \leq arepsilon) \geq 1 - e^{-\Theta(darepsilon^2)} \cdot \sqrt{I_{\chi^2}(heta^\star; extbf{a}) + 1}$$

• χ^2 -informativity between X and Y:

$$I_{\chi^2}(X;Y) = \inf_{Q_Y} \chi^2(P_{XY} || P_X \times Q_Y).$$

• error probability lower bound using χ^2 -informativity:

$$\mathbb{P}(\langle heta^\star, extbf{a}
angle \leq arepsilon) \geq 1 - e^{-\Theta(darepsilon^2)} \cdot \sqrt{I_{\chi^2}(heta^\star; extbf{a}) + 1}.$$

• suffices to upper bound $I_{\chi^2}(heta^\star;a_{t+1}) \leq I_{\chi^2}(heta^\star;\mathcal{H}_t)$ for each t

• χ^2 -informativity between X and Y:

$$I_{\chi^2}(X;Y) = \inf_{Q_Y} \chi^2(P_{XY} || P_X \times Q_Y).$$

• error probability lower bound using χ^2 -informativity:

$$\mathbb{P}(\langle heta^\star, extbf{a}
angle \leq arepsilon) \geq 1 - e^{-\Theta(darepsilon^2)} \cdot \sqrt{I_{\chi^2}(heta^\star; extbf{a}) + 1}.$$

• suffices to upper bound $I_{\chi^2}(\theta^*; a_{t+1}) \leq I_{\chi^2}(\theta^*; \mathcal{H}_t)$ for each t

 ${\, \bullet \,}$ issue: $\chi^2 {\rm -informativity}$ does not satisfy the chain rule or subadditivity

• let $\mathcal{E}_t = \cap_{s \leq t} \{ \langle \theta^\star, a_s \rangle \leq \varepsilon_s \}$ be the error event

- let $\mathcal{E}_t = \cap_{s \leq t} \{ \langle \theta^\star, a_s \rangle \leq \varepsilon_s \}$ be the error event
- upper bound of conditioned χ^2 -informativity:

$$I_{\chi^2}(\theta^\star; \mathcal{H}_t \mid \mathcal{E}_t) + 1$$

• let $\mathcal{E}_t = \cap_{s \leq t} \{ \langle \theta^\star, a_s \rangle \leq \varepsilon_s \}$ be the error event

$$I_{\chi^{2}}(\theta^{\star};\mathcal{H}_{t} \mid \mathcal{E}_{t}) + 1 \leq \min_{\mathbb{Q}_{t-1}} \int \underbrace{\frac{\left[\frac{\mathbb{I}(\mathcal{E}_{t})}{\mathbb{P}(\mathcal{E}_{t})}\pi(\theta^{\star})\prod_{s\leq t}\varphi(r_{s}-\langle\theta^{\star},a_{s}\rangle)\right]^{2}}{\pi(\theta^{\star})\mathbb{Q}_{t-1}(r^{t-1})\cdot\varphi(r_{t})}}_{\pi(\theta^{\star})\mathbb{Q}_{t}(\mathcal{H}_{t})} d\theta^{\star} dr^{t}$$

• let $\mathcal{E}_t=\cap_{s\leq t}\{\langle heta^\star,a_s
angle\leq arepsilon_s\}$ be the error event

$$I_{\chi^{2}}(\theta^{*};\mathcal{H}_{t} \mid \mathcal{E}_{t}) + 1 \leq \min_{\mathbb{Q}_{t-1}} \int \underbrace{\frac{\left[\frac{\mathbb{I}(\mathcal{E}_{t})}{\mathbb{P}(\mathcal{E}_{t})}\pi(\theta^{*})\prod_{s\leq t}\varphi(r_{s}-\langle\theta^{*},a_{s}\rangle)\right]^{2}}{\pi(\theta^{*})\mathbb{Q}_{t-1}(r^{t-1})\cdot\varphi(r_{t})}}_{\pi(\theta^{*})\mathbb{Q}_{t}(\mathcal{H}_{t})} d\theta^{*}dr^{t}$$
$$= \min_{\mathbb{Q}_{t-1}} \int \frac{\left[\frac{\mathbb{I}(\mathcal{E}_{t})}{\mathbb{P}(\mathcal{E}_{t})}\pi(\theta^{*})\prod_{s\leq t-1}\varphi(r_{s}-\langle\theta^{*},a_{s}\rangle)\right]^{2}}{\pi(\theta^{*})\mathbb{Q}_{t-1}(r^{t-1})} \cdot \exp(\langle\theta^{*},a_{t}\rangle^{2})d\theta^{*}dr^{t-1}$$

• let $\mathcal{E}_t = \cap_{s \leq t} \{ \langle \theta^\star, a_s \rangle \leq \varepsilon_s \}$ be the error event

$$I_{\chi^{2}}(\theta^{\star};\mathcal{H}_{t} \mid \mathcal{E}_{t}) + 1 \leq \min_{\mathbb{Q}_{t-1}} \int \underbrace{\frac{\left[\frac{\mathbb{I}(\mathcal{E}_{t})}{\mathbb{P}(\mathcal{E}_{t})}\pi(\theta^{\star})\prod_{s\leq t}\varphi(r_{s}-\langle\theta^{\star},a_{s}\rangle)\right]^{2}}{\pi(\theta^{\star})\mathbb{Q}_{t}-1(r^{t-1})\cdot\varphi(r_{t})}}_{\pi(\theta^{\star})\mathbb{Q}_{t}(\mathcal{H}_{t})} d\theta^{\star}dr^{t}$$

$$= \min_{\mathbb{Q}_{t-1}} \int \frac{\left[\frac{\mathbb{I}(\mathcal{E}_{t})}{\mathbb{P}(\mathcal{E}_{t})}\pi(\theta^{\star})\prod_{s\leq t-1}\varphi(r_{s}-\langle\theta^{\star},a_{s}\rangle)\right]^{2}}{\pi(\theta^{\star})\mathbb{Q}_{t-1}(r^{t-1})} \cdot \exp(\langle\theta^{\star},a_{t}\rangle^{2})d\theta^{\star}dr^{t-1}$$

$$\leq \exp(\varepsilon_{t}^{2})\cdot\min_{\mathbb{Q}_{t-1}} \int \frac{\left[\frac{\mathbb{I}(\mathcal{E}_{t})}{\mathbb{P}(\mathcal{E}_{t})}\pi(\theta^{\star})\prod_{s\leq t-1}\varphi(r_{s}-\langle\theta^{\star},a_{s}\rangle)\right]^{2}}{\pi(\theta^{\star})\mathbb{Q}_{t-1}(r^{t-1})} dr^{t-1}$$

• let $\mathcal{E}_t = \cap_{s \leq t} \{ \langle \theta^\star, a_s \rangle \leq \varepsilon_s \}$ be the error event

$$\begin{split} & \frac{\mathbb{P}(\theta^{\star},\mathcal{H}_{t}|\mathcal{E}_{t})^{2}}{I_{\chi^{2}}(\theta^{\star};\mathcal{H}_{t}\mid\mathcal{E}_{t})+1\leq\min_{\mathbb{Q}_{t-1}}\int\frac{\left[\frac{\mathbb{I}(\mathcal{E}_{t})}{\mathbb{P}(\mathcal{E}_{t})}\pi(\theta^{\star})\prod_{s\leq t}\varphi(r_{s}-\langle\theta^{\star},a_{s}\rangle)\right]^{2}}{\pi(\theta^{\star})\mathbb{Q}_{t-1}(r^{t-1})\cdot\varphi(r_{t})}d\theta^{\star}dr^{t}\\ &=\min_{\mathbb{Q}_{t-1}}\int\frac{\left[\frac{\mathbb{I}(\mathcal{E}_{t})}{\mathbb{P}(\mathcal{E}_{t})}\pi(\theta^{\star})\prod_{s\leq t-1}\varphi(r_{s}-\langle\theta^{\star},a_{s}\rangle)\right]^{2}}{\pi(\theta^{\star})\mathbb{Q}_{t-1}(r^{t-1})}\cdot\exp(\langle\theta^{\star},a_{t}\rangle^{2})d\theta^{\star}dr^{t-1}\\ &\leq\exp(\varepsilon_{t}^{2})\cdot\min_{\mathbb{Q}_{t-1}}\int\frac{\left[\frac{\mathbb{I}(\mathcal{E}_{t})}{\mathbb{P}(\mathcal{E}_{t})}\pi(\theta^{\star})\prod_{s\leq t-1}\varphi(r_{s}-\langle\theta^{\star},a_{s}\rangle)\right]^{2}}{\pi(\theta^{\star})\mathbb{Q}_{t-1}(r^{t-1})}dr^{t-1}\\ &\leq\frac{\exp(\varepsilon_{t}^{2})}{\mathbb{P}(\mathcal{E}_{t}\mid\mathcal{E}_{t-1})^{2}}\cdot\min_{\mathbb{Q}_{t-1}}\int\frac{\left[\frac{\mathbb{I}(\mathcal{E}_{t-1})}{\mathbb{P}(\mathcal{E}_{t-1})}\pi(\theta^{\star})\prod_{s\leq t-1}\varphi(r_{s}-\langle\theta^{\star},a_{s}\rangle)\right]^{2}}{\pi(\theta^{\star})\mathbb{Q}_{t-1}(r^{t-1})}dr^{t-1} \end{split}$$

• let $\mathcal{E}_t=\cap_{s\leq t}\{\langle heta^\star,a_s
angle\leq arepsilon_s\}$ be the error event

$$I_{\chi^2}(\theta^\star;\mathcal{H}_t\mid \mathcal{E}_t)+1 \leq \frac{\exp(\varepsilon_t^2)}{\mathbb{P}(\mathcal{E}_t\mid \mathcal{E}_{t-1})^2}\left(I_{\chi^2}(\theta^\star;\mathcal{H}_{t-1}\mid \mathcal{E}_{t-1})+1\right).$$

• let $\mathcal{E}_t=\cap_{s\leq t}\{\langle heta^\star,a_s
angle\leq arepsilon_s\}$ be the error event

• upper bound of conditioned $\chi^2\text{-informativity:}$

$$I_{\chi^2}(\theta^\star;\mathcal{H}_t\mid \mathcal{E}_t)+1 \leq \frac{\exp(\varepsilon_t^2)}{\mathbb{P}(\mathcal{E}_t\mid \mathcal{E}_{t-1})^2}\left(I_{\chi^2}(\theta^\star;\mathcal{H}_{t-1}\mid \mathcal{E}_{t-1})+1\right).$$

• continuing this process gives

$$I_{\chi^2}(\theta^{\star}; \mathcal{H}_t \mid \mathcal{E}_t) + 1 \leq \frac{\exp(\sum_{s \leq t} \varepsilon_s^2)}{\mathbb{P}(\mathcal{E}_t)^2}.$$

• let $\mathcal{E}_t=\cap_{s\leq t}\{\langle\theta^\star,a_s\rangle\leq\varepsilon_s\}$ be the error event

• upper bound of conditioned χ^2 -informativity:

$$I_{\chi^2}(\theta^\star;\mathcal{H}_t\mid \mathcal{E}_t)+1 \leq \frac{\exp(\varepsilon_t^2)}{\mathbb{P}(\mathcal{E}_t\mid \mathcal{E}_{t-1})^2}\left(I_{\chi^2}(\theta^\star;\mathcal{H}_{t-1}\mid \mathcal{E}_{t-1})+1\right).$$

• continuing this process gives

$$I_{\chi^2}(\theta^{\star}; \mathcal{H}_t \mid \mathcal{E}_t) + 1 \leq \frac{\exp(\sum_{s \leq t} \varepsilon_s^2)}{\mathbb{P}(\mathcal{E}_t)^2}.$$

.

• recursion of error probability:

$$\mathbb{P}(\mathcal{E}_{t+1}) = \mathbb{P}(\mathcal{E}_t) \cdot \mathbb{P}(\langle \theta^{\star}, \boldsymbol{a}_{t+1} \rangle \leq \varepsilon_{t+1} \mid \mathcal{E}_t)$$

• let $\mathcal{E}_t=\cap_{s\leq t}\{\langle heta^\star,a_s
angle\leq arepsilon_s\}$ be the error event

• upper bound of conditioned χ^2 -informativity:

$$I_{\chi^2}(\theta^\star;\mathcal{H}_t\mid \mathcal{E}_t)+1 \leq \frac{\exp(\varepsilon_t^2)}{\mathbb{P}(\mathcal{E}_t\mid \mathcal{E}_{t-1})^2}\left(I_{\chi^2}(\theta^\star;\mathcal{H}_{t-1}\mid \mathcal{E}_{t-1})+1\right).$$

• continuing this process gives

$$I_{\chi^2}(\theta^{\star}; \mathcal{H}_t \mid \mathcal{E}_t) + 1 \leq \frac{\exp(\sum_{s \leq t} \varepsilon_s^2)}{\mathbb{P}(\mathcal{E}_t)^2}.$$

• recursion of error probability:

$$\mathbb{P}(\mathcal{E}_{t+1}) = \mathbb{P}(\mathcal{E}_t) \cdot \mathbb{P}(\langle \theta^{\star}, a_{t+1} \rangle \leq \varepsilon_{t+1} \mid \mathcal{E}_t)$$

 $\geq \mathbb{P}(\mathcal{E}_t) \left(1 - e^{-\Theta(d\varepsilon_{t+1}^2)} \sqrt{I_{\chi^2}(\theta^{\star}; \mathcal{H}_t \mid \mathcal{E}_t) + 1} \right)$

٠

• let $\mathcal{E}_t=\cap_{s\leq t}\{\langle heta^\star,a_s
angle\leq arepsilon_s\}$ be the error event

• upper bound of conditioned χ^2 -informativity:

$$I_{\chi^2}(\theta^\star;\mathcal{H}_t\mid \mathcal{E}_t)+1 \leq \frac{\exp(\varepsilon_t^2)}{\mathbb{P}(\mathcal{E}_t\mid \mathcal{E}_{t-1})^2}\left(I_{\chi^2}(\theta^\star;\mathcal{H}_{t-1}\mid \mathcal{E}_{t-1})+1\right).$$

• continuing this process gives

$$I_{\chi^2}(\theta^{\star}; \mathcal{H}_t \mid \mathcal{E}_t) + 1 \leq \frac{\exp(\sum_{s \leq t} \varepsilon_s^2)}{\mathbb{P}(\mathcal{E}_t)^2}.$$

• recursion of error probability:

$$egin{aligned} \mathbb{P}(\mathcal{E}_{t+1}) &= \mathbb{P}(\mathcal{E}_t) \cdot \mathbb{P}(\langle heta^\star, oldsymbol{a}_{t+1}
angle \leq arepsilon_{t+1} \mid \mathcal{E}_t) \ &\geq \mathbb{P}(\mathcal{E}_t) \left(1 - e^{-\Theta(darepsilon_{t+1}^2)} \sqrt{I_{\chi^2}(heta^\star; \mathcal{H}_t \mid \mathcal{E}_t) + 1}
ight) \ &\geq \mathbb{P}(\mathcal{E}_t) - \underbrace{e^{-\Theta(darepsilon_{t+1}^2) + rac{1}{2}\sum_{s \leq t}arepsilon_s^2}_{=\delta}}_{=\delta}. \end{aligned}$$

Discussions and Further Questions

• Eluder-UCB algorithm [Russo and Van Roy 2014]:

• Eluder-UCB algorithm [Russo and Van Roy 2014]: at each time t,

 \rightarrow form the least squares estimator $\hat{\theta}_t = \arg \min_{\theta} \sum_{s < t} (r_s - f(\langle \theta, a_s \rangle))^2$;

• Eluder-UCB algorithm [Russo and Van Roy 2014]: at each time t,

 \rightarrow form the least squares estimator $\hat{\theta}_t = \arg \min_{\theta} \sum_{s < t} (r_s - f(\langle \theta, a_s \rangle))^2$;

 $\rightarrow\,$ construct the confidence set of $\theta^{\star}:$

$${\mathcal C}_t = \left\{ heta \in \mathbb{S}^{d-1} : \sum_{s < t} (f(\langle heta, {\sf a}_s \rangle) - f(\langle \widehat{ heta}_t, {\sf a}_s \rangle))^2 = \widetilde{O}(d)
ight\};$$

- Eluder-UCB algorithm [Russo and Van Roy 2014]: at each time t,
 - \rightarrow form the least squares estimator $\hat{\theta}_t = \arg \min_{\theta} \sum_{s < t} (r_s f(\langle \theta, a_s \rangle))^2$;
 - $\rightarrow\,$ construct the confidence set of $\theta^{\star}:$

$$\mathcal{C}_t = \left\{ heta \in \mathbb{S}^{d-1} : \sum_{s < t} (f(\langle heta, \mathbf{a}_s \rangle) - f(\langle \widehat{ heta}_t, \mathbf{a}_s \rangle))^2 = \widetilde{O}(d)
ight\};$$

 \rightarrow play action $a_t = \arg \max_a \max_{\theta \in C_t} f(\langle \theta, a \rangle).$

- Eluder-UCB algorithm [Russo and Van Roy 2014]: at each time t,
 - \rightarrow form the least squares estimator $\widehat{\theta}_t = \arg \min_{\theta} \sum_{s < t} (r_s f(\langle \theta, a_s \rangle))^2$;
 - $\rightarrow\,$ construct the confidence set of $\theta^{\star}:$

$$\mathcal{C}_t = \left\{ \theta \in \mathbb{S}^{d-1} : \sum_{s < t} (f(\langle \theta, \mathbf{a}_s \rangle) - f(\langle \widehat{\theta}_t, \mathbf{a}_s \rangle))^2 = \widetilde{O}(d) \right\};$$

 \rightarrow play action $a_t = \arg \max_a \max_{\theta \in C_t} f(\langle \theta, a \rangle).$

Theorem (lower bound for Eluder-UCB)

For every f, there exist a bandit instance such that for (a certain tie-breaking rule of) Eluder-UCB, achieving a sublinear regret requires

$$T \gtrsim \max_{K} \min\left\{K, \frac{d}{f(\sqrt{(\log K)/d})^2}\right\}$$

• Eluder-UCB algorithm [Russo and Van Roy 2014]: at each time t,

 \rightarrow form the least squares estimator $\hat{\theta}_t = \arg \min_{\theta} \sum_{s < t} (r_s - f(\langle \theta, a_s \rangle))^2$;

 $\rightarrow\,$ construct the confidence set of $\theta^{\star}:$

$$\mathcal{C}_t = \left\{ \theta \in \mathbb{S}^{d-1} : \sum_{s < t} (f(\langle \theta, \mathbf{a}_s \rangle) - f(\langle \widehat{\theta}_t, \mathbf{a}_s \rangle))^2 = \widetilde{O}(d) \right\};$$

 \rightarrow play action $a_t = \arg \max_a \max_{\theta \in C_t} f(\langle \theta, a \rangle).$

Theorem (lower bound for Eluder-UCB)

For every f, there exist a bandit instance such that for (a certain tie-breaking rule of) Eluder-UCB, achieving a sublinear regret requires

$$T \gtrsim \max_{K} \min\left\{K, \frac{d}{f(\sqrt{(\log K)/d})^2}\right\}$$

• for $f(x) = x^3$, Eluder-UCB requires $T \gtrsim d^4$, but optimal is $T \gtrsim d^3$
Online regression oracle model [Foster et al. 2020]: for any adversarial sequence {a_t}, oracle outputs {θ
_t} such that

$$\sum_{t=1}^{T} (f(\langle \theta^{\star}, a_t \rangle) - f(\langle \widehat{\theta}_t, a_t \rangle))^2 \leq \operatorname{Reg}_{\mathsf{Sq}}(T)$$

Online regression oracle model [Foster et al. 2020]: for any adversarial sequence {a_t}, oracle outputs {θ
_t} such that

$$\sum_{t=1}^{T} (f(\langle \theta^{\star}, a_t \rangle) - f(\langle \widehat{\theta}_t, a_t \rangle))^2 \leq \mathsf{Reg}_{\mathsf{Sq}}(T)$$

 \rightarrow learner only observes $\widehat{ heta}_t$ in the oracle model, but not r_t ;

Online regression oracle model [Foster et al. 2020]: for any adversarial sequence {a_t}, oracle outputs {θ
_t} such that

$$\sum_{t=1}^{T} (f(\langle \theta^{\star}, a_t \rangle) - f(\langle \widehat{\theta}_t, a_t \rangle))^2 \leq \mathsf{Reg}_{\mathsf{Sq}}(T)$$

- ightarrow learner only observes $\widehat{ heta}_t$ in the oracle model, but not $r_t;$
- \rightarrow a natural choice of $\operatorname{Reg}_{\operatorname{Sq}}(T)$ is $\widetilde{O}(d)$.

Online regression oracle model [Foster et al. 2020]: for any adversarial sequence {a_t}, oracle outputs {θ
_t} such that

$$\sum_{t=1}^{T} (f(\langle \theta^{\star}, \boldsymbol{a}_t \rangle) - f(\langle \widehat{\theta}_t, \boldsymbol{a}_t \rangle))^2 \leq \mathsf{Reg}_{\mathsf{Sq}}(T)$$

→ learner only observes $\hat{\theta}_t$ in the oracle model, but not r_t ; → a natural choice of $\operatorname{Reg}_{S_q}(T)$ is $\widetilde{O}(d)$.

Theorem (lower bound for the oracle model)

For every f, there exist a bandit instance under the oracle model such that for every algorithm, achieving a sublinear regret requires

$$T \gtrsim \max_{K} \min\left\{K, \frac{d}{f(\sqrt{(\log K)/d})^2}\right\}$$

Online regression oracle model [Foster et al. 2020]: for any adversarial sequence {a_t}, oracle outputs {θ_t} such that

$$\sum_{t=1}^{T} (f(\langle \theta^{\star}, \boldsymbol{a}_t \rangle) - f(\langle \widehat{\theta}_t, \boldsymbol{a}_t \rangle))^2 \leq \mathsf{Reg}_{\mathsf{Sq}}(T)$$

→ learner only observes $\hat{\theta}_t$ in the oracle model, but not r_t ; → a natural choice of $\operatorname{Reg}_{S_q}(T)$ is $\widetilde{O}(d)$.

Theorem (lower bound for the oracle model)

For every f, there exist a bandit instance under the oracle model such that for every algorithm, achieving a sublinear regret requires

$$T \gtrsim \max_{K} \min \left\{ K, \frac{d}{f(\sqrt{(\log K)/d})^2} \right\}$$

• Key modeling difference: in oracle model, choosing repeated action may not reduce the estimation error

• in linear bandit, fewer actions lead to smaller regret

- in linear bandit, fewer actions lead to smaller regret
 - \rightarrow minimax regret decreases from $\Theta(d\sqrt{T})$ to $\Theta(\sqrt{dT\log K})$ with K actions

- in linear bandit, fewer actions lead to smaller regret
 - \rightarrow minimax regret decreases from $\Theta(d\sqrt{T})$ to $\Theta(\sqrt{dT \log K})$ with K actions
 - $\rightarrow\,$ intuition: UCB needs to construct fewer confidence intervals

- in linear bandit, fewer actions lead to smaller regret
 - \rightarrow minimax regret decreases from $\Theta(d\sqrt{T})$ to $\Theta(\sqrt{dT \log K})$ with K actions
 - $\rightarrow\,$ intuition: UCB needs to construct fewer confidence intervals
- does similar phenomenon hold for non-linear bandits?

- in linear bandit, fewer actions lead to smaller regret
 - \rightarrow minimax regret decreases from $\Theta(d\sqrt{T})$ to $\Theta(\sqrt{dT \log K})$ with K actions
 - $\rightarrow\,$ intuition: UCB needs to construct fewer confidence intervals
- does similar phenomenon hold for non-linear bandits?

Theorem (lower bound for finite actions)

For every link function f and K = poly(d), there exist an K-armed ridge bandit instance such that achieving a sublinear regret requires

$$T\gtrsim \min\left\{K,rac{1}{f(1/\sqrt{d})^2}
ight\}.$$

- in linear bandit, fewer actions lead to smaller regret
 - \rightarrow minimax regret decreases from $\Theta(d\sqrt{T})$ to $\Theta(\sqrt{dT \log K})$ with K actions
 - $\rightarrow\,$ intuition: UCB needs to construct fewer confidence intervals
- does similar phenomenon hold for non-linear bandits?

Theorem (lower bound for finite actions)

For every link function f and K = poly(d), there exist an K-armed ridge bandit instance such that achieving a sublinear regret requires

$$T\gtrsim \min\left\{K,rac{1}{f(1/\sqrt{d})^2}
ight\}.$$

• implication: for $f(x) = x^3$, the fixed cost for the finite-action problem is already d^3 , same as the infinite-action problem

- in linear bandit, fewer actions lead to smaller regret
 - \rightarrow minimax regret decreases from $\Theta(d\sqrt{T})$ to $\Theta(\sqrt{dT \log K})$ with K actions
 - $\rightarrow\,$ intuition: UCB needs to construct fewer confidence intervals
- does similar phenomenon hold for non-linear bandits?

Theorem (lower bound for finite actions)

For every link function f and K = poly(d), there exist an K-armed ridge bandit instance such that achieving a sublinear regret requires

$$T\gtrsim \min\left\{K,rac{1}{f(1/\sqrt{d})^2}
ight\}.$$

- implication: for $f(x) = x^3$, the fixed cost for the finite-action problem is already d^3 , same as the infinite-action problem
- reason: the learner cannot explore every direction in the initialization phase

Unit sphere vs unit ball

What happens if we assume that $\theta^* \in \mathbb{B}^d$ instead of $\theta^* \in \mathbb{S}^{d-1}$?

Unit sphere vs unit ball

What happens if we assume that $\theta^{\star} \in \mathbb{B}^d$ instead of $\theta^{\star} \in \mathbb{S}^{d-1}$?

Theorem (modified upper bound)

Under monotonicity and local linearity of f:

$$\operatorname{MinmaxReg}(T, d, f) \lesssim \max_{r \in [0,1]} \min \left\{ d^2 \frac{f(r)}{r^4} \int_{r/\sqrt{d}}^{r/2} \frac{d(x^2)}{\max_{r/\sqrt{d} \leq y \leq x} f'(y)^2} + d\sqrt{T}, Tf(r) \right\}$$

Theorem (modified lower bound)

Under monotonicity and local linearity of f:

$$\mathsf{MinmaxReg}(T, d, f) \gtrsim \max_{r \in [0,1]} \min \left\{ d \frac{f(r)}{r^2} \int_{r/\sqrt{d}}^{r/2} \frac{\mathsf{d}(x^2)}{f(x)^2} + d\sqrt{T}, Tf(r) \right\}.$$

Unit sphere vs unit ball

What happens if we assume that $\theta^* \in \mathbb{B}^d$ instead of $\theta^* \in \mathbb{S}^{d-1}$?

Theorem (modified upper bound)

Under monotonicity and local linearity of f:

$$\operatorname{MinmaxReg}(T, d, f) \lesssim \max_{r \in [0,1]} \min \left\{ d^2 \frac{f(r)}{r^4} \int_{r/\sqrt{d}}^{r/2} \frac{d(x^2)}{\max_{r/\sqrt{d} \le y \le x} f'(y)^2} + d\sqrt{T}, Tf(r) \right\}$$

Theorem (modified lower bound)

Under monotonicity and local linearity of f:

$$\operatorname{MinmaxReg}(T, d, f) \gtrsim \max_{r \in [0,1]} \min \left\{ d \frac{f(r)}{r^2} \int_{r/\sqrt{d}}^{r/2} \frac{d(x^2)}{f(x)^2} + d\sqrt{T}, Tf(r) \right\}.$$

minimax regret often exhibits only one elbow instead of two

Further questions

$$I_t - I_{t-1} \leq \mathsf{Var}(f(\langle \theta^{\star}, a_t \rangle) \mid a_t, \mathcal{H}_{t-1}) \stackrel{?}{\lesssim} \max_{y \leq \varepsilon_t} \frac{f'(y)^2}{d}$$

$$I_t - I_{t-1} \leq \mathsf{Var}(f(\langle \theta^{\star}, a_t \rangle) \mid a_t, \mathcal{H}_{t-1}) \stackrel{?}{\lesssim} \max_{y \leq \varepsilon_t} \frac{f'(y)^2}{d}$$

• analyze the learning trajectory of information-directed sampling $a_t = \arg \max_a I(\theta^*; r_t \mid \mathcal{H}_{t-1}, a_t = a)$

$$I_t - I_{t-1} \leq \mathsf{Var}(f(\langle \theta^{\star}, a_t \rangle) \mid a_t, \mathcal{H}_{t-1}) \stackrel{?}{\lesssim} \max_{y \leq \varepsilon_t} \frac{f'(y)^2}{d}$$

- analyze the learning trajectory of information-directed sampling $a_t = \arg \max_a I(\theta^*; r_t \mid \mathcal{H}_{t-1}, a_t = a)$
- more general reward functions such as $f_{\theta}(a) = \sum_{i=1}^{m} f_i(\langle \theta_i, a \rangle)$

$$I_t - I_{t-1} \leq \mathsf{Var}(f(\langle \theta^{\star}, a_t \rangle) \mid a_t, \mathcal{H}_{t-1}) \stackrel{?}{\lesssim} \max_{y \leq \varepsilon_t} \frac{f'(y)^2}{d}$$

- analyze the learning trajectory of information-directed sampling $a_t = \arg \max_a I(\theta^*; r_t \mid \mathcal{H}_{t-1}, a_t = a)$
- more general reward functions such as $f_{\theta}(a) = \sum_{i=1}^{m} f_i(\langle \theta_i, a \rangle)$
- more systematic methods for exploration in the initialization phase

$$I_t - I_{t-1} \leq \mathsf{Var}(f(\langle \theta^{\star}, a_t \rangle) \mid a_t, \mathcal{H}_{t-1}) \stackrel{?}{\lesssim} \max_{y \leq \varepsilon_t} \frac{f'(y)^2}{d}$$

- analyze the learning trajectory of information-directed sampling $a_t = \arg \max_a I(\theta^*; r_t \mid \mathcal{H}_{t-1}, a_t = a)$
- more general reward functions such as $f_{\theta}(a) = \sum_{i=1}^{m} f_i(\langle \theta_i, a \rangle)$
- more systematic methods for exploration in the initialization phase
- more complicated settings such as contextual bandits and RL

Take-home message:

• there could be a phase transition in the regret of non-linear bandits

- there could be a phase transition in the regret of non-linear bandits
- in the initialization phase, the learner needs algorithms beyond UCB to explore a good initial action, which incurs a fixed cost

- there could be a phase transition in the regret of non-linear bandits
- in the initialization phase, the learner needs algorithms beyond UCB to explore a good initial action, which incurs a fixed cost
- in the learning phase, the learner can employ UCB-type algorithm around the good initial action

- there could be a phase transition in the regret of non-linear bandits
- in the initialization phase, the learner needs algorithms beyond UCB to explore a good initial action, which incurs a fixed cost
- in the learning phase, the learner can employ UCB-type algorithm around the good initial action
- learning trajectory of the initialization phase could be characterized by proper differential equations

- there could be a phase transition in the regret of non-linear bandits
- in the initialization phase, the learner needs algorithms beyond UCB to explore a good initial action, which incurs a fixed cost
- in the learning phase, the learner can employ UCB-type algorithm around the good initial action
- learning trajectory of the initialization phase could be characterized by proper differential equations
- traditional learning algorithms may fail to obtain the optimal initialization cost

Take-home message:

- there could be a phase transition in the regret of non-linear bandits
- in the initialization phase, the learner needs algorithms beyond UCB to explore a good initial action, which incurs a fixed cost
- in the learning phase, the learner can employ UCB-type algorithm around the good initial action
- learning trajectory of the initialization phase could be characterized by proper differential equations
- traditional learning algorithms may fail to obtain the optimal initialization cost

Thank You!