Beyond UCB: statistical complexity and optimal algorithm for non-linear ridge bandits

Yanjun Han (MIT IDSS)

Joint work with:

Jiantao Jiao
Nived Rajaraman
Kannan Ramchandran
Berkeley EECS
Berkeley EECS
Berkeley EECS

AMCS Colloquium, UPenn
October 21, 2022

General setting of stochastic bandit

Input parameters:

- parameter set Θ
- action space \mathcal{A}
- reward function class $\mathcal{F}=\left(f_{\theta}\right)_{\theta \in \Theta}$
- time horizon T

General setting of stochastic bandit

Input parameters:

- parameter set Θ
- action space \mathcal{A}
- reward function class $\mathcal{F}=\left(f_{\theta}\right)_{\theta \in \Theta}$
- time horizon T

Stochastic bandit environment:

- nature chooses $\theta^{\star} \in \Theta$, fixed across time and unknown to the learner
- at time $t=1, \cdots, T$, learner chooses action $a_{t} \in \mathcal{A}$ and observes a random reward r_{t} with $\mathbb{E}\left[r_{t} \mid a_{t}=a\right]=f_{\theta^{\star}}(a)$
- learner aims to minimize the worst-case (pseudo) regret

$$
\operatorname{MinmaxReg}(\Theta, \mathcal{A}, \mathcal{F}, T)=\inf _{a^{T}} \sup _{\theta^{\star} \in \Theta} \mathbb{E}_{\theta^{\star}}\left[T \cdot \max _{a \in \mathcal{A}} f_{\theta^{\star}}(a)-\sum_{t=1}^{T} f_{\theta^{\star}}\left(a_{t}\right)\right]
$$

General setting of stochastic bandit

Input parameters:

- parameter set Θ
- action space \mathcal{A}
- reward function class $\mathcal{F}=\left(f_{\theta}\right)_{\theta \in \Theta}$
- time horizon T

Stochastic bandit environment:

- nature chooses $\theta^{\star} \in \Theta$, fixed across time and unknown to the learner
- at time $t=1, \cdots, T$, learner chooses action $a_{t} \in \mathcal{A}$ and observes a random reward r_{t} with $\mathbb{E}\left[r_{t} \mid a_{t}=a\right]=f_{\theta^{\star}}(a)$
- learner aims to minimize the worst-case (pseudo) regret

$$
\operatorname{MinmaxReg}(\Theta, \mathcal{A}, \mathcal{F}, T)=\inf _{a^{T}} \sup _{\theta^{\star} \in \Theta} \mathbb{E}_{\theta^{\star}}\left[T \cdot \max _{a \in \mathcal{A}} f_{\theta^{\star}}(a)-\sum_{t=1}^{T} f_{\theta^{\star}}\left(a_{t}\right)\right]
$$

Linear bandit

$$
f_{\theta}(a)=\langle\theta, \phi(a)\rangle \text { with a known feature map } \phi: \mathcal{A} \rightarrow \mathbb{R}^{d}
$$

Non-linear bandit: a motivating example

A non-linear bandit example

$$
f_{\theta}(a)=\langle\theta, a\rangle^{3}: \quad \theta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^{d} .
$$

Non-linear bandit: a motivating example

A non-linear bandit example

$$
f_{\theta}(a)=\langle\theta, a\rangle^{3}: \quad \theta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^{d} .
$$

Non-linear bandit: a motivating example

A non-linear bandit example

$$
f_{\theta}(a)=\langle\theta, a\rangle^{3}: \quad \theta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^{d}
$$

Non-linear bandit: a motivating example

A non-linear bandit example

$$
f_{\theta}(a)=\langle\theta, a\rangle^{3}: \quad \theta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^{d} .
$$

minimax regret

Non-linear bandit: a motivating example

A non-linear bandit example

$$
f_{\theta}(a)=\langle\theta, a\rangle^{3}: \quad \theta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^{d} .
$$

minimax regret

Non-linear bandit: a motivating example

A non-linear bandit example

$$
f_{\theta}(a)=\langle\theta, a\rangle^{3}: \quad \theta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^{d} .
$$

minimax regret

Non-linear bandit: a motivating example

A non-linear bandit example

$$
f_{\theta}(a)=\langle\theta, a\rangle^{3}: \quad \theta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^{d} .
$$

minimax regret

$\operatorname{MinmaxReg}(T, d) \asymp \min \left\{T, d^{3}+d \sqrt{T}\right\}$.

Non-linear bandit: a motivating example

A non-linear bandit example

$$
f_{\theta}(a)=\langle\theta, a\rangle^{3}: \quad \theta \in \mathbb{S}^{d-1}, \quad a \in \mathbb{B}^{d} .
$$

minimax regret

$\operatorname{MinmaxReg}(T, d) \asymp \min \left\{T, d^{3}+d \sqrt{T}\right\}$.

Curious phenomena

Curious phenomena in non-linear bandits:

- phase transition in the regret
- initialization phase: regret grows linearly and results in a fixed cost
\rightarrow find a good "initial action" to start learning
- learning phase: regret grows sublinearly and looks like a linear bandit
\rightarrow bandit learning starts from the good initial action

Curious phenomena

Curious phenomena in non-linear bandits:

- phase transition in the regret
- initialization phase: regret grows linearly and results in a fixed cost
\rightarrow find a good "initial action" to start learning
- learning phase: regret grows sublinearly and looks like a linear bandit
\rightarrow bandit learning starts from the good initial action

Aim of this talk:

Questions

Curious phenomena

Curious phenomena in non-linear bandits:

- phase transition in the regret
- initialization phase: regret grows linearly and results in a fixed cost
\rightarrow find a good "initial action" to start learning
- learning phase: regret grows sublinearly and looks like a linear bandit
\rightarrow bandit learning starts from the good initial action

Aim of this talk:

Questions

- what is the optimal fixed cost in the initialization phase?

Curious phenomena

Curious phenomena in non-linear bandits:

- phase transition in the regret
- initialization phase: regret grows linearly and results in a fixed cost
\rightarrow find a good "initial action" to start learning
- learning phase: regret grows sublinearly and looks like a linear bandit
\rightarrow bandit learning starts from the good initial action

Aim of this talk:

Questions

- what is the optimal fixed cost in the initialization phase?
- what algorithms should we use in different phases?

Curious phenomena

Curious phenomena in non-linear bandits:

- phase transition in the regret
- initialization phase: regret grows linearly and results in a fixed cost
\rightarrow find a good "initial action" to start learning
- learning phase: regret grows sublinearly and looks like a linear bandit
\rightarrow bandit learning starts from the good initial action

Aim of this talk:

Questions

- what is the optimal fixed cost in the initialization phase?
- what algorithms should we use in different phases?
- how to explore when learner has not started learning?

Plan of this talk

- setting and main results
- proof of upper bound
- proof of lower bound
- discussions and extensions

Setting: non-linear ridge bandits

- parameter space $\Theta=\mathbb{S}^{d-1}=\left\{\theta \in \mathbb{R}^{d}:\|\theta\|_{2}=1\right\}$
- action space $\mathcal{A}=\mathbb{B}^{d}=\left\{a \in \mathbb{R}^{d}:\|a\|_{2} \leq 1\right\}$
- reward function $f_{\theta}(a)=f(\langle\theta, a\rangle)$ with a known link function f

Setting: non-linear ridge bandits

- parameter space $\Theta=\mathbb{S}^{d-1}=\left\{\theta \in \mathbb{R}^{d}:\|\theta\|_{2}=1\right\}$
- action space $\mathcal{A}=\mathbb{B}^{d}=\left\{a \in \mathbb{R}^{d}:\|a\|_{2} \leq 1\right\}$
- reward function $f_{\theta}(a)=f(\langle\theta, a\rangle)$ with a known link function f

Assumptions

Setting: non-linear ridge bandits

- parameter space $\Theta=\mathbb{S}^{d-1}=\left\{\theta \in \mathbb{R}^{d}:\|\theta\|_{2}=1\right\}$
- action space $\mathcal{A}=\mathbb{B}^{d}=\left\{a \in \mathbb{R}^{d}:\|a\|_{2} \leq 1\right\}$
- reward function $f_{\theta}(a)=f(\langle\theta, a\rangle)$ with a known link function f

Assumptions

- monotonicity: $f:[-1,1] \rightarrow[-1,1]$ is increasing (or $f(-x)=f(x)$ and f is increasing on $[0,1])$ with $f(0)=0, f(1) \asymp 1$
\rightarrow best action is $a=\theta^{\star}$

Setting: non-linear ridge bandits

- parameter space $\Theta=\mathbb{S}^{d-1}=\left\{\theta \in \mathbb{R}^{d}:\|\theta\|_{2}=1\right\}$
- action space $\mathcal{A}=\mathbb{B}^{d}=\left\{a \in \mathbb{R}^{d}:\|a\|_{2} \leq 1\right\}$
- reward function $f_{\theta}(a)=f(\langle\theta, a\rangle)$ with a known link function f

Assumptions

- monotonicity: $f:[-1,1] \rightarrow[-1,1]$ is increasing (or $f(-x)=f(x)$ and f is increasing on $[0,1])$ with $f(0)=0, f(1) \asymp 1$
\rightarrow best action is $a=\theta^{\star}$
- local linearity near 1: $\max _{x \in[0.1,1]} f^{\prime}(x) / \min _{x \in[0.1,1]} f^{\prime}(x) \leq c<\infty$
\rightarrow essentially linear reward when $\left\langle\theta^{\star}, a\right\rangle$ becomes large

Literature review

Literature review

Ridge bandit $f_{\theta}(a)=f(\langle\theta, a\rangle)$:

- linear bandit $f(x)=x$: optimal regret $\widetilde{\Theta}(d \sqrt{T})$ [Dani et al. 2008, Chu et al. 2011, Abbasi-Yadkori et al. 2011]
- generalized linear bandit with $c_{1} \leq\left|f^{\prime}(x)\right| \leq c_{2}$: same as linear bandit [Filippi et al. 2010, Russo and Van Roy 2014]
- concave bandit (f is concave): same as linear bandit [Lattimore, 2021]
- bandit phase retrieval $\left(f(x)=x^{2}\right)$: same as linear bandit [Lattimore and Hao, 2021]
- polynomial bandit $\left(f(x)=x^{p}, p \geq 2\right)$: optimal regret achieved by noisy gradient method [Huang et al. 2021]

Literature review

Ridge bandit $f_{\theta}(a)=f(\langle\theta, a\rangle)$:

- linear bandit $f(x)=x$: optimal regret $\widetilde{\Theta}(d \sqrt{T})$ [Dani et al. 2008, Chu et al. 2011, Abbasi-Yadkori et al. 2011]
- generalized linear bandit with $c_{1} \leq\left|f^{\prime}(x)\right| \leq c_{2}$: same as linear bandit [Filippi et al. 2010, Russo and Van Roy 2014]
- concave bandit (f is concave): same as linear bandit [Lattimore, 2021]
- bandit phase retrieval $\left(f(x)=x^{2}\right)$: same as linear bandit [Lattimore and Hao, 2021]
- polynomial bandit $\left(f(x)=x^{p}, p \geq 2\right)$: optimal regret achieved by noisy gradient method [Huang et al. 2021]

General complexity measures for bandits:

- decision-estimation coefficient (DEC) [Foster et al. 2021, 2022]
- information ratio [Lattimore, 2022]
- often do not lead to tight regret dependence on d

Main Results

Main results: minimax regret

Main results: minimax regret

Theorem (main upper bound, informal)

Under monotonicity and local linearity of f :
$\operatorname{MinmaxReg}(T, d, f) \lesssim \min \left\{d^{2} \cdot \int_{1 / \sqrt{d}}^{1 / 2} \frac{d\left(x^{2}\right)}{\max _{1 / \sqrt{d} \leq y \leq x} f^{\prime}(y)^{2}}+d \sqrt{T}, T\right\}$.

Main results: minimax regret

Theorem (main upper bound, informal)

Under monotonicity and local linearity of f :
$\operatorname{MinmaxReg}(T, d, f) \lesssim \min \left\{d^{2} \cdot \int_{1 / \sqrt{d}}^{1 / 2} \frac{d\left(x^{2}\right)}{\max _{1 / \sqrt{d} \leq y \leq x} f^{\prime}(y)^{2}}+d \sqrt{T}, T\right\}$.

- a useful corollary:

$$
\operatorname{MinmaxReg}(T, d, f) \lesssim \min \left\{d^{2} \cdot \int_{1 / \sqrt{d}}^{1 / 2} \frac{d\left(x^{2}\right)}{f^{\prime}(x)^{2}}+d \sqrt{T}, T\right\} .
$$

Main results: minimax regret

Theorem (main upper bound, informal)

Under monotonicity and local linearity of f :
$\operatorname{MinmaxReg}(T, d, f) \lesssim \min \left\{d^{2} . \int_{1 / \sqrt{d}}^{1 / 2} \frac{d\left(x^{2}\right)}{\max _{1 / \sqrt{d} \leq y \leq x} f^{\prime}(y)^{2}}+d \sqrt{T}, T\right\}$.

- a useful corollary:

$$
\operatorname{MinmaxReg}(T, d, f) \lesssim \min \left\{d^{2} \cdot \int_{1 / \sqrt{d}}^{1 / 2} \frac{d\left(x^{2}\right)}{f^{\prime}(x)^{2}}+d \sqrt{T}, T\right\}
$$

- the formal version:

$$
\operatorname{MinmaxReg}(T, d, f) \lesssim \sum_{m=1}^{d / 4} \frac{1}{\max _{0 \leq y \leq \sqrt{m / d}} \min _{z \in[y, 2 y]}(f(z+1 / \sqrt{d})-f(z))^{2}}+d \sqrt{T}
$$

Main results: minimax regret

Theorem (main upper bound, informal)

Under monotonicity and local linearity of f :

$$
\operatorname{MinmaxReg}(T, d, f) \lesssim \min \left\{d^{2} \cdot \int_{1 / \sqrt{d}}^{1 / 2} \frac{d\left(x^{2}\right)}{\max _{1 / \sqrt{d} \leq y \leq x} f^{\prime}(y)^{2}}+d \sqrt{T}, T\right\}
$$

Theorem (main lower bound)

Under monotonicity and local linearity of f :

$$
\operatorname{MinmaxReg}(T, d, f) \gtrsim \min \left\{d \cdot \int_{1 / \sqrt{d}}^{1 / 2} \frac{\mathrm{~d}\left(x^{2}\right)}{f(x)^{2}}+d \sqrt{T}, T\right\}
$$

Main results: minimax regret

Theorem (main upper bound, informal)

Under monotonicity and local linearity of f :
$\operatorname{MinmaxReg}(T, d, f) \lesssim \min \left\{d^{2} \cdot \int_{1 / \sqrt{d}}^{1 / 2} \frac{\mathrm{~d}\left(x^{2}\right)}{\max _{1 / \sqrt{d} \leq y \leq x} f^{\prime}(y)^{2}}+d \sqrt{T}, T\right\}$.

Theorem (main lower bound)

Under monotonicity and local linearity of f :

$$
\operatorname{MinmaxReg}(T, d, f) \gtrsim \min \left\{d \cdot \int_{1 / \sqrt{d}}^{1 / 2} \frac{\mathrm{~d}\left(x^{2}\right)}{f(x)^{2}}+d \sqrt{T}, T\right\}
$$

- both results within poly-logarithmic factors
- pointwise upper and lower bounds
- fixed cost depends on the entire function f

Main results: learning trajectory in the initialization phase

$$
\begin{aligned}
& x_{t}=\left\langle\theta^{\star}, a_{t}\right\rangle \\
& \uparrow \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Theorem (learning trajectory)

Main results: learning trajectory in the initialization phase

Theorem (learning trajectory)

Main results: learning trajectory in the initialization phase

Theorem (learning trajectory)

- there is an algorithm attaining the UB learning curve

Main results: learning trajectory in the initialization phase

Theorem (learning trajectory)

- there is an algorithm attaining the UB learning curve

Main results: learning trajectory in the initialization phase

Theorem (learning trajectory)

- there is an algorithm attaining the UB learning curve
- for any algorithm, its learning trajectory lies below the LB learning curve with probability at least $1-T \delta$ under $\theta^{\star} \sim \operatorname{Unif}\left(\mathbb{S}^{d-1}\right)$

Main results: learning trajectory in the initialization phase

Theorem (learning trajectory)

- there is an algorithm attaining the UB learning curve
- for any algorithm, its learning trajectory lies below the LB learning curve with probability at least $1-T \delta$ under $\theta^{\star} \sim \operatorname{Unif}\left(\mathbb{S}^{d-1}\right)$
- UCB algorithm makes no progress whenever $t<d / f(1 / \sqrt{d})^{2}$!

Examples

- polynomial bandit $f(x)=x^{p}$:

$$
\text { MinmaxReg } \asymp \begin{cases}\min \{d \sqrt{T}, T\} & \text { if } 0<p \leq 2 \\ \min \left\{d \sqrt{T}+d^{p}, T\right\} & \text { if } p>2 .\end{cases}
$$

\rightarrow both Eluder-UCB and information-directed sampling give an additional $O\left(d^{p+1}\right)$ term when $p>1$

Examples

- polynomial bandit $f(x)=x^{p}$:

$$
\text { MinmaxReg } \asymp \begin{cases}\min \{d \sqrt{T}, T\} & \text { if } 0<p \leq 2 \\ \min \left\{d \sqrt{T}+d^{p}, T\right\} & \text { if } p>2 .\end{cases}
$$

\rightarrow both Eluder-UCB and information-directed sampling give an additional $O\left(d^{p+1}\right)$ term when $p>1$

- ReLU bandit $f(x)=(x-0.1)_{+}: T=e^{\Omega(d)}$ is necessary for sublinear regret

Examples

- polynomial bandit $f(x)=x^{p}$:

$$
\text { MinmaxReg } \asymp \begin{cases}\min \{d \sqrt{T}, T\} & \text { if } 0<p \leq 2 \\ \min \left\{d \sqrt{T}+d^{p}, T\right\} & \text { if } p>2 .\end{cases}
$$

\rightarrow both Eluder-UCB and information-directed sampling give an additional $O\left(d^{p+1}\right)$ term when $p>1$

- ReLU bandit $f(x)=(x-0.1)_{+}: T=e^{\Omega(d)}$ is necessary for sublinear regret
- importance of f at every point:

fixed cost $\asymp d^{2}$

fixed $\operatorname{cost} \asymp d^{3}$

Upper Bounds

Upper bound: learning phase

Key feature in the learning phase

The learner has found a good "initial action" a_{0} such that $\left\langle a_{0}, \theta^{\star}\right\rangle \geq$ const.

Upper bound: learning phase

Key feature in the learning phase

The learner has found a good "initial action" a_{0} such that $\left\langle a_{0}, \theta^{\star}\right\rangle \geq$ const.
A simple explore-then-commit (ETC) algorithm:

Upper bound: learning phase

Key feature in the learning phase

The learner has found a good "initial action" a_{0} such that $\left\langle a_{0}, \theta^{\star}\right\rangle \geq$ const.
A simple explore-then-commit (ETC) algorithm:

- for the first m rounds, uniformly explore the following $2 d$ directions:

$$
\left\{\lambda a_{0} \pm \sqrt{1-\lambda^{2}} e_{1}, \cdots, \lambda a_{0} \pm \sqrt{1-\lambda^{2}} e_{d}\right\}, \quad \lambda=\lambda(\text { const }) ;
$$

Upper bound: learning phase

Key feature in the learning phase

The learner has found a good "initial action" a_{0} such that $\left\langle a_{0}, \theta^{\star}\right\rangle \geq$ const.
A simple explore-then-commit (ETC) algorithm:

- for the first m rounds, uniformly explore the following $2 d$ directions:

$$
\left\{\lambda a_{0} \pm \sqrt{1-\lambda^{2}} e_{1}, \cdots, \lambda a_{0} \pm \sqrt{1-\lambda^{2}} e_{d}\right\}, \quad \lambda=\lambda(\text { const }) ;
$$

- find the least squares estimate of θ^{\star} :

$$
\widehat{\theta}=\arg \min _{\theta:\left\langle\theta, a_{0}\right\rangle \geq \text { const }} \frac{1}{2} \sum_{t=1}^{m}\left(r_{m}-f\left(\left\langle\theta, a_{t}\right\rangle\right)\right)^{2} ;
$$

Upper bound: learning phase

Key feature in the learning phase

The learner has found a good "initial action" a_{0} such that $\left\langle a_{0}, \theta^{\star}\right\rangle \geq$ const.
A simple explore-then-commit (ETC) algorithm:

- for the first m rounds, uniformly explore the following $2 d$ directions:

$$
\left\{\lambda a_{0} \pm \sqrt{1-\lambda^{2}} e_{1}, \cdots, \lambda a_{0} \pm \sqrt{1-\lambda^{2}} e_{d}\right\}, \quad \lambda=\lambda(\text { const }) ;
$$

- find the least squares estimate of θ^{\star} :

$$
\widehat{\theta}=\arg \min _{\theta:\left\langle\theta, a_{0}\right\rangle \geq \text { const }} \frac{1}{2} \sum_{t=1}^{m}\left(r_{m}-f\left(\left\langle\theta, a_{t}\right\rangle\right)\right)^{2} ;
$$

- for the remaining rounds, greedily play $a_{t}=\widehat{\theta}$.

Analysis of learning phase

- standard least squares analysis gives w.h.p.

$$
\sum_{t=1}^{m}\left(f\left(\left\langle\widehat{\theta}, a_{t}\right\rangle\right)-f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right)\right)^{2}=\widetilde{O}(d) ;
$$

Analysis of learning phase

- standard least squares analysis gives w.h.p.

$$
\sum_{t=1}^{m}\left(f\left(\left\langle\widehat{\theta}, a_{t}\right\rangle\right)-f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right)\right)^{2}=\widetilde{O}(d) ;
$$

- local linearity of f near 1 implies that

$$
\left\|\widehat{\theta}-\theta^{\star}\right\|_{2}^{2}=\widetilde{O}\left(\frac{d^{2}}{m \cdot f^{\prime}(1)^{2}}\right)
$$

Analysis of learning phase

- standard least squares analysis gives w.h.p.

$$
\sum_{t=1}^{m}\left(f\left(\left\langle\widehat{\theta}, a_{t}\right\rangle\right)-f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right)\right)^{2}=\widetilde{O}(d) ;
$$

- local linearity of f near 1 implies that

$$
\left\|\widehat{\theta}-\theta^{\star}\right\|_{2}^{2}=\widetilde{O}\left(\frac{d^{2}}{m \cdot f^{\prime}(1)^{2}}\right)
$$

- instantaneous regret when greedily plays $\widehat{\theta}$:

$$
f(1)-f\left(\left\langle\theta^{\star}, \widehat{\theta}\right\rangle\right) \lesssim f^{\prime}(1)\left(1-\left\langle\theta^{\star}, \widehat{\theta}\right\rangle\right) \lesssim \frac{d^{2}}{m \cdot f^{\prime}(1)}
$$

Analysis of learning phase

- standard least squares analysis gives w.h.p.

$$
\sum_{t=1}^{m}\left(f\left(\left\langle\widehat{\theta}, a_{t}\right\rangle\right)-f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right)\right)^{2}=\widetilde{O}(d) ;
$$

- local linearity of f near 1 implies that

$$
\left\|\widehat{\theta}-\theta^{\star}\right\|_{2}^{2}=\widetilde{O}\left(\frac{d^{2}}{m \cdot f^{\prime}(1)^{2}}\right)
$$

- instantaneous regret when greedily plays $\widehat{\theta}$:

$$
f(1)-f\left(\left\langle\theta^{\star}, \widehat{\theta}\right\rangle\right) \lesssim f^{\prime}(1)\left(1-\left\langle\theta^{\star}, \widehat{\theta}\right\rangle\right) \lesssim \frac{d^{2}}{m \cdot f^{\prime}(1)}
$$

- total regret in the learning phase:

$$
m \cdot f^{\prime}(1)+(T-m) \cdot \frac{d^{2}}{m \cdot f^{\prime}(1)} \stackrel{m \asymp d \sqrt{T} / f^{\prime}(1)}{\asymp} d \sqrt{T}
$$

Upper bound: initialization phase

Target in the initialization phase

Find a good "initial action" a_{0} with a large inner product $\left\langle a_{0}, \theta^{\star}\right\rangle \geq$ const.

Upper bound: initialization phase

Target in the initialization phase

Find a good "initial action" a_{0} with a large inner product $\left\langle a_{0}, \theta^{\star}\right\rangle \geq$ const.

Upper bound: initialization phase

Target in the initialization phase

Find a good "initial action" a_{0} with a large inner product $\left\langle a_{0}, \theta^{\star}\right\rangle \geq$ const.

Upper bound: initialization phase

Target in the initialization phase

Find a good "initial action" a_{0} with a large inner product $\left\langle a_{0}, \theta^{\star}\right\rangle \geq$ const.

Upper bound: initialization phase

Target in the initialization phase

Find a good "initial action" a_{0} with a large inner product $\left\langle a_{0}, \theta^{\star}\right\rangle \geq$ const.

Upper bound: initialization phase

Target in the initialization phase

Find a good "initial action" a_{0} with a large inner product $\left\langle a_{0}, \theta^{\star}\right\rangle \geq$ const.

Certify that $\left\langle\theta^{\star}, a\right\rangle \in[r-\delta, r+\delta]$ can be done with $\widetilde{O}\left(1 /\left[\delta f^{\prime}(r)\right]^{2}\right)$ samples

Exploration and certification

Recursive step

Given an action $a_{\text {pre }}$ with $\left\langle\theta^{\star}, a_{\text {pre }}\right\rangle \in\left[x_{\text {pre }}, 2 x_{\text {pre }}\right]$, where $x_{\text {pre }}$ is known, how to find $a_{\text {now }}$ and certify that $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}>x_{\text {pre }}$?

Exploration and certification

Recursive step

Given an action $a_{\text {pre }}$ with $\left\langle\theta^{\star}, a_{\text {pre }}\right\rangle \in\left[x_{\text {pre }}, 2 x_{\text {pre }}\right]$, where $x_{\text {pre }}$ is known, how to find $a_{\text {now }}$ and certify that $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}>x_{\text {pre }}$?

- idea: find $a \perp a_{\text {pre }}$ with $\left\langle\theta^{\star}, a\right\rangle \asymp 1 / \sqrt{d}$ and play $a_{\text {now }}=\lambda a_{\text {pre }}+\sqrt{1-\lambda^{2}} a$

Exploration and certification

Recursive step

Given an action $a_{\text {pre }}$ with $\left\langle\theta^{\star}, a_{\text {pre }}\right\rangle \in\left[x_{\text {pre }}, 2 x_{\text {pre }}\right]$, where $x_{\text {pre }}$ is known, how to find $a_{\text {now }}$ and certify that $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}>x_{\text {pre }}$?

- idea: find $a \perp a_{\text {pre }}$ with $\left\langle\theta^{\star}, a\right\rangle \asymp 1 / \sqrt{d}$ and play $a_{\text {now }}=\lambda a_{\text {pre }}+\sqrt{1-\lambda^{2}} a$
- for proper λ, if $\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]$, then $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with

$$
x_{\text {now }}=\sqrt{x_{\text {pre }}^{2}+1 / d}
$$

Exploration and certification

Recursive step

Given an action $a_{\text {pre }}$ with $\left\langle\theta^{\star}, a_{\text {pre }}\right\rangle \in\left[x_{\text {pre }}, 2 x_{\text {pre }}\right]$, where $x_{\text {pre }}$ is known, how to find $a_{\text {now }}$ and certify that $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}>x_{\text {pre }}$?

- idea: find $a \perp a_{\text {pre }}$ with $\left\langle\theta^{\star}, a\right\rangle \asymp 1 / \sqrt{d}$ and play $a_{\text {now }}=\lambda a_{\text {pre }}+\sqrt{1-\lambda^{2}} a$
- for proper λ, if $\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]$, then $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}=\sqrt{x_{\text {pre }}^{2}+1 / d}$
- exploration: easy, as $\mathbb{P}\left(\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]\right)=\Omega(1)$ for uniform a

Exploration and certification

Recursive step

Given an action $a_{\text {pre }}$ with $\left\langle\theta^{\star}, a_{\text {pre }}\right\rangle \in\left[x_{\text {pre }}, 2 x_{\text {pre }}\right]$, where $x_{\text {pre }}$ is known, how to find $a_{\text {now }}$ and certify that $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}>x_{\text {pre }}$?

- idea: find $a \perp a_{\text {pre }}$ with $\left\langle\theta^{\star}, a\right\rangle \asymp 1 / \sqrt{d}$ and play $a_{\text {now }}=\lambda a_{\text {pre }}+\sqrt{1-\lambda^{2}} a$
- for proper λ, if $\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]$, then $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}=\sqrt{x_{\text {pre }}^{2}+1 / d}$
- exploration: easy, as $\mathbb{P}\left(\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]\right)=\Omega(1)$ for uniform a
- certification: should make use of $a_{\text {pre }}$!

Exploration and certification

Recursive step

Given an action $a_{\text {pre }}$ with $\left\langle\theta^{\star}, a_{\text {pre }}\right\rangle \in\left[x_{\text {pre }}, 2 x_{\text {pre }}\right]$, where $x_{\text {pre }}$ is known, how to find $a_{\text {now }}$ and certify that $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}>x_{\text {pre }}$?

- idea: find $a \perp a_{\text {pre }}$ with $\left\langle\theta^{\star}, a\right\rangle \asymp 1 / \sqrt{d}$ and play $a_{\text {now }}=\lambda a_{\text {pre }}+\sqrt{1-\lambda^{2}} a$
- for proper λ, if $\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]$, then $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}=\sqrt{x_{\text {pre }}^{2}+1 / d}$
- exploration: easy, as $\mathbb{P}\left(\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]\right)=\Omega(1)$ for uniform a
- certification: should make use of $a_{\text {pre }}$!

$$
\frac{\left\langle\theta^{\star}, a\right\rangle}{\sqrt{2}}=\left\langle\theta^{\star}, \frac{a+a_{\mathrm{pre}}}{\sqrt{2}}\right\rangle-\left\langle\theta^{\star}, \frac{a_{\mathrm{pre}}}{\sqrt{2}}\right\rangle
$$

Exploration and certification

Recursive step

Given an action $a_{\text {pre }}$ with $\left\langle\theta^{\star}, a_{\text {pre }}\right\rangle \in\left[x_{\text {pre }}, 2 x_{\text {pre }}\right]$, where $x_{\text {pre }}$ is known, how to find $a_{\text {now }}$ and certify that $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}>x_{\text {pre }}$?

- idea: find $a \perp a_{\text {pre }}$ with $\left\langle\theta^{\star}, a\right\rangle \asymp 1 / \sqrt{d}$ and play $a_{\text {now }}=\lambda a_{\text {pre }}+\sqrt{1-\lambda^{2}} a$
- for proper λ, if $\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]$, then $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}=\sqrt{x_{\text {pre }}^{2}+1 / d}$
- exploration: easy, as $\mathbb{P}\left(\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]\right)=\Omega(1)$ for uniform a
- certification: should make use of $a_{\text {pre }}$!

$$
\frac{\left\langle\theta^{\star}, a\right\rangle}{\sqrt{2}}=\left\langle\theta^{\star}, \frac{a+a_{\mathrm{pre}}}{\sqrt{2}}\right\rangle-\left\langle\theta^{\star}, \frac{a_{\mathrm{pre}}}{\sqrt{2}}\right\rangle
$$

\rightarrow each terms uses $\widetilde{O}\left(d / f^{\prime}\left(x_{\text {pre }}\right)^{2}\right)$ samples for certification

Exploration and certification

Recursive step

Given an action $a_{\text {pre }}$ with $\left\langle\theta^{\star}, a_{\text {pre }}\right\rangle \in\left[x_{\text {pre }}, 2 x_{\text {pre }}\right]$, where $x_{\text {pre }}$ is known, how to find $a_{\text {now }}$ and certify that $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}>x_{\text {pre }}$?

- idea: find $a \perp a_{\text {pre }}$ with $\left\langle\theta^{\star}, a\right\rangle \asymp 1 / \sqrt{d}$ and play $a_{\text {now }}=\lambda a_{\text {pre }}+\sqrt{1-\lambda^{2}} a$
- for proper λ, if $\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]$, then $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}=\sqrt{x_{\text {pre }}^{2}+1 / d}$
- exploration: easy, as $\mathbb{P}\left(\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]\right)=\Omega(1)$ for uniform a
- certification: should make use of $a_{\text {pre }}$!

$$
\frac{\left\langle\theta^{\star}, a\right\rangle}{\sqrt{2}}=\left\langle\theta^{\star}, \frac{a+a_{\mathrm{pre}}}{\sqrt{2}}\right\rangle-\left\langle\theta^{\star}, \frac{a_{\mathrm{pre}}}{\sqrt{2}}\right\rangle
$$

\rightarrow each terms uses $\widetilde{O}\left(d / f^{\prime}\left(x_{\text {pre }}\right)^{2}\right)$ samples for certification
\rightarrow total sample complexity is roughly $d^{2} \int_{1 / \sqrt{d}}^{1 / 2} \frac{d x^{2}}{f^{\prime}(x)^{2}}$

Exploration and certification

Recursive step

Given an action $a_{\text {pre }}$ with $\left\langle\theta^{\star}, a_{\text {pre }}\right\rangle \in\left[x_{\text {pre }}, 2 x_{\text {pre }}\right]$, where $x_{\text {pre }}$ is known, how to find $a_{\text {now }}$ and certify that $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}>x_{\text {pre }}$?

- idea: find $a \perp a_{\text {pre }}$ with $\left\langle\theta^{\star}, a\right\rangle \asymp 1 / \sqrt{d}$ and play $a_{\text {now }}=\lambda a_{\text {pre }}+\sqrt{1-\lambda^{2}} a$
- for proper λ, if $\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]$, then $\left\langle\theta^{\star}, a_{\text {now }}\right\rangle \in\left[x_{\text {now }}, 2 x_{\text {now }}\right]$ with $x_{\text {now }}=\sqrt{x_{\text {pre }}^{2}+1 / d}$
- exploration: easy, as $\mathbb{P}\left(\left\langle\theta^{\star}, a\right\rangle \in[1 / \sqrt{d}, 2 / \sqrt{d}]\right)=\Omega(1)$ for uniform a
- certification: should make use of $a_{\text {pre }}$!

$$
\frac{\left\langle\theta^{\star}, a\right\rangle}{\sqrt{2}}=\left\langle\theta^{\star}, \frac{a+\mu a_{\mathrm{pre}}}{\sqrt{2}}\right\rangle-\left\langle\theta^{\star}, \frac{\mu \mathrm{a}_{\mathrm{pre}}}{\sqrt{2}}\right\rangle
$$

\rightarrow each terms uses $\widetilde{O}\left(d / \max _{y \leq x} f^{\prime}(y)^{2}\right)$ samples for certification;
\rightarrow total sample complexity is roughly $d^{2} \int_{1 / \sqrt{d}}^{1 / 2} \frac{d x^{2}}{\max y x^{\prime}(y)^{2}}$.

Certification details

Target of certification

Given actions a and $a+b$ with $\left\langle\theta^{\star}, a\right\rangle \in[x, 2 x]$, find a test which

- outputs "failure" w.h.p. if $\left\langle\theta^{\star}, b\right\rangle \notin[z, 2 z]$;
- outputs "success" w.h.p. if $\left\langle\theta^{\star}, b\right\rangle \in[1.2 z, 1.8 z]$.

Certification details

Target of certification

Given actions a and $a+b$ with $\left\langle\theta^{\star}, a\right\rangle \in[x, 2 x]$, find a test which

- outputs "failure" w.h.p. if $\left\langle\theta^{\star}, b\right\rangle \notin[z, 2 z]$;
- outputs "success" w.h.p. if $\left\langle\theta^{\star}, b\right\rangle \in[1.2 z, 1.8 z]$.
- pull both actions $\widetilde{O}\left(1 / \delta^{2}\right)$ times to obtain

$$
\left|\widehat{f}_{1}-f\left(\left\langle\theta^{\star}, a\right\rangle\right)\right| \leq \delta, \quad\left|\widehat{f}_{2}-f\left(\left\langle\theta^{\star}, a+b\right\rangle\right)\right| \leq \delta ;
$$

Certification details

Target of certification

Given actions a and $a+b$ with $\left\langle\theta^{\star}, a\right\rangle \in[x, 2 x]$, find a test which

- outputs "failure" w.h.p. if $\left\langle\theta^{\star}, b\right\rangle \notin[z, 2 z]$;
- outputs "success" w.h.p. if $\left\langle\theta^{\star}, b\right\rangle \in[1.2 z, 1.8 z]$.
- pull both actions $\widetilde{O}\left(1 / \delta^{2}\right)$ times to obtain

$$
\left|\widehat{f}_{1}-f\left(\left\langle\theta^{\star}, a\right\rangle\right)\right| \leq \delta, \quad\left|\widehat{f}_{2}-f\left(\left\langle\theta^{\star}, a+b\right\rangle\right)\right| \leq \delta ;
$$

- test returns "success" iff $\exists u \in[x, 2 x], v \in[1.2 z, 1.8 z]$ such that $\left|\widehat{f}_{1}-f(u)\right| \leq \delta$ and $\left|\widehat{f}_{2}-f(u+v)\right| \leq \delta:$

Certification details

Target of certification

Given actions a and $a+b$ with $\left\langle\theta^{\star}, a\right\rangle \in[x, 2 x]$, find a test which

- outputs "failure" w.h.p. if $\left\langle\theta^{\star}, b\right\rangle \notin[z, 2 z]$;
- outputs "success" w.h.p. if $\left\langle\theta^{\star}, b\right\rangle \in[1.2 z, 1.8 z]$.
- pull both actions $\widetilde{O}\left(1 / \delta^{2}\right)$ times to obtain

$$
\left|\widehat{f}_{1}-f\left(\left\langle\theta^{\star}, a\right\rangle\right)\right| \leq \delta, \quad\left|\widehat{f}_{2}-f\left(\left\langle\theta^{\star}, a+b\right\rangle\right)\right| \leq \delta ;
$$

- test returns "success" iff $\exists u \in[x, 2 x], v \in[1.2 z, 1.8 z]$ such that $\left|\widehat{f}_{1}-f(u)\right| \leq \delta$ and $\left|\widehat{f}_{2}-f(u+v)\right| \leq \delta$:
\rightarrow if $\left\langle\theta^{\star}, b\right\rangle \in[1.2 z, 1.8 z]$, then $(u, v)=\left(\left\langle\theta^{\star}, a\right\rangle,\left\langle\theta^{\star}, b\right\rangle\right)$ passes the test;

Certification details

Target of certification

Given actions a and $a+b$ with $\left\langle\theta^{\star}, a\right\rangle \in[x, 2 x]$, find a test which

- outputs "failure" w.h.p. if $\left\langle\theta^{\star}, b\right\rangle \notin[z, 2 z]$;
- outputs "success" w.h.p. if $\left\langle\theta^{\star}, b\right\rangle \in[1.2 z, 1.8 z]$.
- pull both actions $\widetilde{O}\left(1 / \delta^{2}\right)$ times to obtain

$$
\left|\widehat{f_{1}}-f\left(\left\langle\theta^{\star}, a\right\rangle\right)\right| \leq \delta, \quad\left|\widehat{f}_{2}-f\left(\left\langle\theta^{\star}, a+b\right\rangle\right)\right| \leq \delta ;
$$

- test returns "success" iff $\exists u \in[x, 2 x], v \in[1.2 z, 1.8 z]$ such that $\left|\widehat{f}_{1}-f(u)\right| \leq \delta$ and $\left|\widehat{f}_{2}-f(u+v)\right| \leq \delta$:
\rightarrow if $\left\langle\theta^{\star}, b\right\rangle \in[1.2 z, 1.8 z]$, then $(u, v)=\left(\left\langle\theta^{\star}, a\right\rangle,\left\langle\theta^{\star}, b\right\rangle\right)$ passes the test;
\rightarrow if $\left\langle\theta^{\star}, b\right\rangle \notin[z, 2 z]$, then existence of (u, v) implies

$$
\left|u-\left\langle\theta^{\star}, a\right\rangle\right| \geq 0.2 z, \quad \text { or } \quad\left|u+v-\left\langle\theta^{\star}, a+b\right\rangle\right| \geq 0.2 z
$$

Certification details

Target of certification

Given actions a and $a+b$ with $\left\langle\theta^{\star}, a\right\rangle \in[x, 2 x]$, find a test which

- outputs "failure" w.h.p. if $\left\langle\theta^{\star}, b\right\rangle \notin[z, 2 z]$;
- outputs "success" w.h.p. if $\left\langle\theta^{\star}, b\right\rangle \in[1.2 z, 1.8 z]$.
- pull both actions $\widetilde{O}\left(1 / \delta^{2}\right)$ times to obtain

$$
\left|\widehat{f}_{1}-f\left(\left\langle\theta^{\star}, a\right\rangle\right)\right| \leq \delta, \quad\left|\widehat{f}_{2}-f\left(\left\langle\theta^{\star}, a+b\right\rangle\right)\right| \leq \delta ;
$$

- test returns "success" iff $\exists u \in[x, 2 x], v \in[1.2 z, 1.8 z]$ such that $\left|\widehat{f}_{1}-f(u)\right| \leq \delta$ and $\left|\widehat{f}_{2}-f(u+v)\right| \leq \delta$:
\rightarrow if $\left\langle\theta^{\star}, b\right\rangle \in[1.2 z, 1.8 z]$, then $(u, v)=\left(\left\langle\theta^{\star}, a\right\rangle,\left\langle\theta^{\star}, b\right\rangle\right)$ passes the test;
\rightarrow if $\left\langle\theta^{\star}, b\right\rangle \notin[z, 2 z]$, then existence of (u, v) implies

$$
\left|u-\left\langle\theta^{\star}, a\right\rangle\right| \geq 0.2 z, \quad \text { or } \quad\left|u+v-\left\langle\theta^{\star}, a+b\right\rangle\right| \geq 0.2 z
$$

\rightarrow test works if $\delta<\min _{y \in[x, 2 x+2 z]}[f(y+0.2 z)-f(y)] / 2$.

Lower Bounds

Formal statement

Theorem (formal lower bound)

Let $\delta>0$ be any parameter, and $c>0$ be a large absolute constant. Define a sequence $\left\{\varepsilon_{t}\right\}_{t \geq 1}$ with

$$
\varepsilon_{1}=\sqrt{\frac{c \log (1 / \delta)}{d}}, \quad \varepsilon_{t+1}^{2}=\varepsilon_{t}^{2}+\frac{c}{d} f\left(\varepsilon_{t}\right)^{2}, \quad t \geq 1
$$

Formal statement

Theorem (formal lower bound)

Let $\delta>0$ be any parameter, and $c>0$ be a large absolute constant. Define a sequence $\left\{\varepsilon_{t}\right\}_{t \geq 1}$ with

$$
\varepsilon_{1}=\sqrt{\frac{c \log (1 / \delta)}{d}}, \quad \varepsilon_{t+1}^{2}=\varepsilon_{t}^{2}+\frac{c}{d} f\left(\varepsilon_{t}\right)^{2}, \quad t \geq 1
$$

Then if $\theta^{\star} \sim \operatorname{Unif}\left(\mathbb{S}^{d-1}\right)$, any learner $\left\{a_{t}\right\}_{t \geq 1}$ satisfies that

$$
\mathbb{P}\left(\bigcap_{1 \leq t \leq T}\left\{\left\langle\theta^{\star}, a_{t}\right\rangle \leq \varepsilon_{t}\right\}\right) \geq 1-T \delta .
$$

Formal statement

Theorem (formal lower bound)

Let $\delta>0$ be any parameter, and $c>0$ be a large absolute constant. Define a sequence $\left\{\varepsilon_{t}\right\}_{t \geq 1}$ with

$$
\varepsilon_{1}=\sqrt{\frac{c \log (1 / \delta)}{d}}, \quad \varepsilon_{t+1}^{2}=\varepsilon_{t}^{2}+\frac{c}{d} f\left(\varepsilon_{t}\right)^{2}, \quad t \geq 1
$$

Then if $\theta^{\star} \sim \operatorname{Unif}\left(\mathbb{S}^{d-1}\right)$, any learner $\left\{a_{t}\right\}_{t \geq 1}$ satisfies that

$$
\mathbb{P}\left(\bigcap_{1 \leq t \leq T}\left\{\left\langle\theta^{\star}, a_{t}\right\rangle \leq \varepsilon_{t}\right\}\right) \geq 1-T \delta .
$$

- the continuous-time version of $\left\{\varepsilon_{t}\right\}$ gives the differential equation

Formal statement

Theorem (formal lower bound)

Let $\delta>0$ be any parameter, and $c>0$ be a large absolute constant. Define a sequence $\left\{\varepsilon_{t}\right\}_{t \geq 1}$ with

$$
\varepsilon_{1}=\sqrt{\frac{c \log (1 / \delta)}{d}}, \quad \varepsilon_{t+1}^{2}=\varepsilon_{t}^{2}+\frac{c}{d} f\left(\varepsilon_{t}\right)^{2}, \quad t \geq 1
$$

Then if $\theta^{\star} \sim \operatorname{Unif}\left(\mathbb{S}^{d-1}\right)$, any learner $\left\{a_{t}\right\}_{t \geq 1}$ satisfies that

$$
\mathbb{P}\left(\bigcap_{1 \leq t \leq T}\left\{\left\langle\theta^{\star}, a_{t}\right\rangle \leq \varepsilon_{t}\right\}\right) \geq 1-T \delta .
$$

- the continuous-time version of $\left\{\varepsilon_{t}\right\}$ gives the differential equation
- hard(?) to prove via usual arguments of hypothesis testing

Information-theoretic insights

Let $I_{t}=I\left(\theta^{\star} ; \mathcal{H}_{t}\right)$ be the mutual information between the true parameter θ^{\star} and the history \mathcal{H}_{t} up to time t, then

$$
\begin{aligned}
I_{t+1}-I_{t} & =I\left(\theta^{\star} ; r_{t+1} \mid a_{t+1}, \mathcal{H}_{t}\right) \\
& \leq \mathbb{E}\left[\frac{1}{2} \log \left(1+\mathbb{E}\left[f\left(\left\langle\theta^{\star}, a_{t+1}\right\rangle\right)^{2}\right]\right)\right] \\
& \leq \frac{1}{2} \mathbb{E}\left[f\left(\left\langle\theta^{\star}, a_{t+1}\right\rangle\right)^{2}\right] .
\end{aligned}
$$

Information-theoretic insights

Let $I_{t}=I\left(\theta^{\star} ; \mathcal{H}_{t}\right)$ be the mutual information between the true parameter θ^{\star} and the history \mathcal{H}_{t} up to time t, then

$$
\begin{aligned}
I_{t+1}-I_{t} & =I\left(\theta^{\star} ; r_{t+1} \mid a_{t+1}, \mathcal{H}_{t}\right) \\
& \leq \mathbb{E}\left[\frac{1}{2} \log \left(1+\mathbb{E}\left[f\left(\left\langle\theta^{\star}, a_{t+1}\right\rangle\right)^{2}\right]\right)\right] \\
& \leq \frac{1}{2} \mathbb{E}\left[f\left(\left\langle\theta^{\star}, a_{t+1}\right\rangle\right)^{2}\right] .
\end{aligned}
$$

To argue that $\left\langle\theta^{\star}, a_{t+1}\right\rangle$ should not be large, note that

$$
I\left(\theta^{\star} ; a_{t+1}\right) \leq I\left(\theta^{\star} ; \mathcal{H}_{t}\right)=I_{t} .
$$

Information-theoretic insights

Let $I_{t}=I\left(\theta^{\star} ; \mathcal{H}_{t}\right)$ be the mutual information between the true parameter θ^{\star} and the history \mathcal{H}_{t} up to time t, then

$$
\begin{aligned}
I_{t+1}-I_{t} & =I\left(\theta^{\star} ; r_{t+1} \mid a_{t+1}, \mathcal{H}_{t}\right) \\
& \leq \mathbb{E}\left[\frac{1}{2} \log \left(1+\mathbb{E}\left[f\left(\left\langle\theta^{\star}, a_{t+1}\right\rangle\right)^{2}\right]\right)\right] \\
& \leq \frac{1}{2} \mathbb{E}\left[f\left(\left\langle\theta^{\star}, a_{t+1}\right\rangle\right)^{2}\right] .
\end{aligned}
$$

To argue that $\left\langle\theta^{\star}, a_{t+1}\right\rangle$ should not be large, note that

$$
I\left(\theta^{\star} ; a_{t+1}\right) \leq I\left(\theta^{\star} ; \mathcal{H}_{t}\right)=I_{t} .
$$

Key insight

$$
I\left(\theta^{\star} ; a\right) \leq I \Longrightarrow\left\langle\theta^{\star}, a\right\rangle \lesssim \sqrt{I / d} \text { with high probability. }
$$

Information-theoretic insights

Let $I_{t}=I\left(\theta^{\star} ; \mathcal{H}_{t}\right)$ be the mutual information between the true parameter θ^{\star} and the history \mathcal{H}_{t} up to time t, then

$$
\begin{aligned}
I_{t+1}-I_{t} & =I\left(\theta^{\star} ; r_{t+1} \mid a_{t+1}, \mathcal{H}_{t}\right) \\
& \leq \mathbb{E}\left[\frac{1}{2} \log \left(1+\mathbb{E}\left[f\left(\left\langle\theta^{\star}, a_{t+1}\right\rangle\right)^{2}\right]\right)\right] \\
& \leq \frac{1}{2} \mathbb{E}\left[f\left(\left\langle\theta^{\star}, a_{t+1}\right\rangle\right)^{2}\right] .
\end{aligned}
$$

To argue that $\left\langle\theta^{\star}, a_{t+1}\right\rangle$ should not be large, note that

$$
I\left(\theta^{\star} ; a_{t+1}\right) \leq I\left(\theta^{\star} ; \mathcal{H}_{t}\right)=I_{t} .
$$

Key insight

$$
I\left(\theta^{\star} ; a\right) \leq I \Longrightarrow\left\langle\theta^{\star}, a\right\rangle \lesssim \sqrt{I / d} \text { with high probability. }
$$

Applying the insight gives the desired recursion

$$
d\left(\varepsilon_{t+1}^{2}-\varepsilon_{t}^{2}\right) \lesssim f\left(\varepsilon_{t}\right)^{2}
$$

More on the above insights

More on the above insights

- reasoning behind the insight:

$$
a \mid \theta^{\star} \sim \operatorname{Unif}\left(\left\{a \in \mathbb{S}^{d-1}:\left\langle a, \theta^{\star}\right\rangle \geq \varepsilon\right\}\right) \Longrightarrow I\left(a ; \theta^{\star}\right) \asymp d \varepsilon^{2}
$$

More on the above insights

- reasoning behind the insight:

$$
a \mid \theta^{\star} \sim \operatorname{Unif}\left(\left\{a \in \mathbb{S}^{d-1}:\left\langle a, \theta^{\star}\right\rangle \geq \varepsilon\right\}\right) \Longrightarrow I\left(a ; \theta^{\star}\right) \asymp d \varepsilon^{2}
$$

- however, it does not hold with high probability: Fano's inequality only gives

$$
\mathbb{P}\left(\left\langle\theta^{\star}, a\right\rangle \leq \varepsilon\right) \geq 1-\frac{I\left(\theta^{\star} ; a\right)+\log 2}{\Theta\left(d \varepsilon^{2}\right)}
$$

which is tight for the worst-case distribution of $\left(\theta^{\star}, a\right)$

More on the above insights

- reasoning behind the insight:

$$
a \mid \theta^{\star} \sim \operatorname{Unif}\left(\left\{a \in \mathbb{S}^{d-1}:\left\langle a, \theta^{\star}\right\rangle \geq \varepsilon\right\}\right) \Longrightarrow I\left(a ; \theta^{\star}\right) \asymp d \varepsilon^{2}
$$

- however, it does not hold with high probability: Fano's inequality only gives

$$
\mathbb{P}\left(\left\langle\theta^{\star}, a\right\rangle \leq \varepsilon\right) \geq 1-\frac{I\left(\theta^{\star} ; a\right)+\log 2}{\Theta\left(d \varepsilon^{2}\right)}
$$

which is tight for the worst-case distribution of $\left(\theta^{\star}, a\right)$

- our solution: use χ^{2}-informativity instead

Formal proof via χ^{2}-informativity

- χ^{2}-informativity between X and Y :

$$
I_{X^{2}}(X ; Y)=\inf _{Q_{Y}} \chi^{2}\left(P_{X Y} \| P_{X} \times Q_{Y}\right) .
$$

Formal proof via χ^{2}-informativity

- χ^{2}-informativity between X and Y :

$$
I_{\chi^{2}}(X ; Y)=\inf _{Q_{Y}} \chi^{2}\left(P_{X Y} \| P_{X} \times Q_{Y}\right) .
$$

- error probability lower bound using χ^{2}-informativity:

$$
\mathbb{P}\left(\left\langle\theta^{\star}, a\right\rangle \leq \varepsilon\right) \geq 1-e^{-\Theta\left(d \varepsilon^{2}\right)} \cdot \sqrt{I_{\chi^{2}}\left(\theta^{\star} ; a\right)+1} .
$$

Formal proof via χ^{2}-informativity

- χ^{2}-informativity between X and Y :

$$
I_{X^{2}}(X ; Y)=\inf _{Q_{Y}} \chi^{2}\left(P_{X Y} \| P_{X} \times Q_{Y}\right) .
$$

- error probability lower bound using χ^{2}-informativity:

$$
\mathbb{P}\left(\left\langle\theta^{\star}, a\right\rangle \leq \varepsilon\right) \geq 1-e^{-\Theta\left(d \varepsilon^{2}\right)} \cdot \sqrt{I_{\chi^{2}}\left(\theta^{\star} ; a\right)+1} .
$$

- suffices to upper bound $I_{\chi^{2}}\left(\theta^{\star} ; a_{t+1}\right) \leq I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t}\right)$ for each t

Formal proof via χ^{2}-informativity

- χ^{2}-informativity between X and Y :

$$
I_{X^{2}}(X ; Y)=\inf _{Q_{Y}} \chi^{2}\left(P_{X Y} \| P_{X} \times Q_{Y}\right) .
$$

- error probability lower bound using χ^{2}-informativity:

$$
\mathbb{P}\left(\left\langle\theta^{\star}, a\right\rangle \leq \varepsilon\right) \geq 1-e^{-\Theta\left(d \varepsilon^{2}\right)} \cdot \sqrt{I_{\chi^{2}}\left(\theta^{\star} ; a\right)+1} .
$$

- suffices to upper bound $I_{\chi^{2}}\left(\theta^{\star} ; a_{t+1}\right) \leq I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t}\right)$ for each t
- issue: χ^{2}-informativity does not satisfy the chain rule or subadditivity

Conditioning technique

- let $\mathcal{E}_{t}=\cap_{s \leq t}\left\{\left\langle\theta^{\star}, a_{s}\right\rangle \leq \varepsilon_{s}\right\}$ be the error event

Conditioning technique

- let $\mathcal{E}_{t}=\cap_{s \leq t}\left\{\left\langle\theta^{\star}, a_{s}\right\rangle \leq \varepsilon_{s}\right\}$ be the error event
- upper bound of conditioned χ^{2}-informativity:

$$
\boldsymbol{I}_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1
$$

Conditioning technique

- let $\mathcal{E}_{t}=\cap_{s \leq t}\left\{\left\langle\theta^{\star}, a_{s}\right\rangle \leq \varepsilon_{s}\right\}$ be the error event
- upper bound of conditioned χ^{2}-informativity:

$$
I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \min _{\mathbb{Q}_{t-1}} \int \frac{[\frac{\left[\frac{1\left(\mathcal{E}_{t}\right)}{\mathbb{P}\left(\mathcal{E}_{t}\right)} \pi\left(\theta^{\star}\right) \prod_{s \leq t} \varphi\left(r_{s}-\left\langle\theta^{\star}, a_{s}\right\rangle\right)\right]^{2}}{\underbrace{\pi\left(\theta^{\star}\right) \mathbb{Q}_{t-1}\left(r^{t-1}\right) \cdot \varphi\left(r_{t}\right)}_{\pi\left(\theta^{\star}\right) \mathbb{Q}_{t}\left(\mathcal{H}_{t}\right)}}}{\mathbb{P}\left(\theta^{\star}, \mathcal{H}_{\mathcal{t}} \mid \mathcal{E}_{t}\right)^{2}} \mathrm{~d} \theta^{\star} \mathrm{d} r^{t}
$$

Conditioning technique

- let $\mathcal{E}_{t}=\cap_{s \leq t}\left\{\left\langle\theta^{\star}, a_{s}\right\rangle \leq \varepsilon_{s}\right\}$ be the error event
- upper bound of conditioned χ^{2}-informativity:

$$
\begin{aligned}
& \overbrace{\left[\frac{\mathbb{1}\left(\mathcal{E}_{t}\right)}{\left.\frac{\mathbb{P}\left(\mathcal{E}_{t}\right)}{} \pi\left(\theta^{\star}\right) \prod_{s \leq t} \varphi\left(r_{s}-\left\langle\theta^{\star}, a_{s}\right\rangle\right)\right]^{2}}\right.}^{\mathbb{P}\left(\theta^{\star}, \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)^{2}} \underbrace{}_{\chi^{2}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \min _{\mathbb{Q}_{t-1}} \int \frac{\pi\left(\theta^{\star}\right) \mathbb{Q}_{t-1}\left(r^{t-1}\right) \cdot \varphi\left(r_{t}\right)}{\pi\left(\theta^{\star}\right) \mathbb{Q}_{t}\left(\mathcal{H}_{t}\right)}} \mathrm{d} \theta^{\star} \mathrm{d} r^{t} \\
& =\min _{\mathbb{Q}_{t-1}} \int \frac{\left[\frac{\mathbb{1}\left(\mathcal{E}_{t}\right)}{\mathbb{P}\left(\mathcal{E}_{t}\right)} \pi\left(\theta^{\star}\right) \prod_{s \leq t-1} \varphi\left(r_{s}-\left\langle\theta^{\star}, a_{s}\right\rangle\right)\right]^{2}}{\pi\left(\theta^{\star}\right) \mathbb{Q}_{t-1}\left(r^{t-1}\right)} \cdot \exp \left(\left\langle\theta^{\star}, a_{t}\right\rangle^{2}\right) \mathrm{d} \theta^{\star} \mathrm{d} r^{t-1}
\end{aligned}
$$

Conditioning technique

- let $\mathcal{E}_{t}=\cap_{s \leq t}\left\{\left\langle\theta^{\star}, a_{s}\right\rangle \leq \varepsilon_{s}\right\}$ be the error event
- upper bound of conditioned χ^{2}-informativity:

$$
\begin{aligned}
& I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \min _{\mathbb{Q}_{t-1}} \int \frac{\left[\frac{\mathbb{1}\left(\mathcal{E}_{t}\right)}{\left.\frac{\mathbb{P}\left(\mathcal{E}_{t}\right)}{} \pi\left(\theta^{\star}\right) \prod_{s \leq t} \varphi\left(r_{s}-\left\langle\theta^{\star}, a_{s}\right\rangle\right)\right]^{2}}\right.}{\left.\mathbb{P}^{\star}, \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)^{2}} \\
& \pi\left(\theta^{\star}\right) \mathbb{Q}_{t-1}\left(r^{t-1}\right) \cdot \varphi\left(r_{t}\right) \\
& \pi\left(\theta^{\star}\right) \mathbb{Q}_{t}\left(\mathcal{H}_{t}\right) \\
& \mathrm{C} \theta^{\star} \mathrm{d} r^{t} \\
& \quad=\min _{\mathbb{Q}_{t-1}} \int \frac{\left[\frac{\mathbb{1}\left(\mathcal{E}_{t}\right)}{\mathbb{P}\left(\mathcal{E}_{t}\right)} \pi\left(\theta^{\star}\right) \prod_{s \leq t-1} \varphi\left(r_{s}-\left\langle\theta^{\star}, a_{s}\right\rangle\right)\right]^{2}}{\pi\left(\theta^{\star}\right) \mathbb{Q}_{t-1}\left(r^{t-1}\right)} \cdot \exp \left(\left\langle\theta^{\star}, a_{t}\right\rangle^{2}\right) \mathrm{d} \theta^{\star} \mathrm{d} r^{t-1} \\
& \quad \leq \exp \left(\varepsilon_{t}^{2}\right) \cdot \min _{\mathbb{Q}_{t-1}} \int \frac{\left[\frac{\mathbb{1}\left(\mathcal{E}_{t}\right)}{\mathbb{P}\left(\mathcal{E}_{t}\right)} \pi\left(\theta^{\star}\right) \prod_{s \leq t-1} \varphi\left(r_{s}-\left\langle\theta^{\star}, a_{s}\right\rangle\right)\right]^{2}}{\pi\left(\theta^{\star}\right) \mathbb{Q}_{t-1}\left(r^{t-1}\right)} \mathrm{d} r^{t-1}
\end{aligned}
$$

Conditioning technique

- let $\mathcal{E}_{t}=\cap_{s \leq t}\left\{\left\langle\theta^{\star}, a_{s}\right\rangle \leq \varepsilon_{s}\right\}$ be the error event
- upper bound of conditioned χ^{2}-informativity:

$$
\begin{aligned}
& \boldsymbol{I}_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \min _{\mathbb{Q}_{t-1}} \int \frac{\left[\mathbb{1}\left(\mathcal{E}_{t}\right)\right.}{\frac{\left[\mathbb{P}^{\left(\mathcal{E}_{t}\right)} \pi\left(\theta^{\star}\right) \prod_{s \leq t} \varphi\left(r_{s}-\left\langle\theta^{\star}, a_{s}\right\rangle\right)\right]^{2}}{\mathbb{P}\left(\theta^{\star}, \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)^{2}}} \underbrace{\pi\left(\theta^{\star}\right) \mathbb{Q}_{t-1}\left(r^{t-1}\right) \cdot \varphi\left(r_{t}\right)}_{\pi\left(\theta^{\star}\right) \mathbb{Q}_{t}\left(\mathcal{H}_{t}\right)} \mathrm{d} \theta^{\star} \mathrm{d} r^{t} \\
& =\min _{\mathbb{Q}_{t-1}} \int \frac{\left[\frac{\mathbb{1}\left(\mathcal{E}_{t}\right)}{\mathbb{P}\left(\mathcal{E}_{t}\right)} \pi\left(\theta^{\star}\right) \prod_{s \leq t-1} \varphi\left(r_{s}-\left\langle\theta^{\star}, a_{s}\right\rangle\right)\right]^{2}}{\pi\left(\theta^{\star}\right) \mathbb{Q}_{t-1}\left(r^{t-1}\right)} \cdot \exp \left(\left\langle\theta^{\star}, a_{t}\right\rangle^{2}\right) \mathrm{d} \theta^{\star} \mathrm{d} r^{t-1} \\
& \leq \exp \left(\varepsilon_{t}^{2}\right) \cdot \min _{\mathbb{Q}_{t-1}} \int \frac{\left[\frac{\mathbb{1}\left(\mathcal{E}_{t}\right)}{\mathbb{P}\left(\mathcal{E}_{t}\right)} \pi\left(\theta^{\star}\right) \prod_{s \leq t-1} \varphi\left(r_{s}-\left\langle\theta^{\star}, a_{s}\right\rangle\right)\right]^{2}}{\pi\left(\theta^{\star}\right) \mathbb{Q}_{t-1}\left(r^{t-1}\right)} \mathrm{d} r^{t-1} \\
& \leq \frac{\exp \left(\varepsilon_{t}^{2}\right)}{\mathbb{P}\left(\mathcal{E}_{t} \mid \mathcal{E}_{t-1}\right)^{2}} \cdot \min _{\mathbb{Q}_{t-1}} \int \frac{\left[\frac{\mathbb{1}\left(\mathcal{E}_{t-1}\right)}{\mathbb{P}\left(\mathcal{E}_{t-1}\right)} \pi\left(\theta^{\star}\right) \prod_{s \leq t-1} \varphi\left(r_{s}-\left\langle\theta^{\star}, a_{s}\right\rangle\right)\right]^{2}}{\pi\left(\theta^{\star}\right) \mathbb{Q}_{t-1}\left(r^{t-1}\right)} \mathrm{d} r^{t-1}
\end{aligned}
$$

Conditioning technique

- let $\mathcal{E}_{t}=\cap_{s \leq t}\left\{\left\langle\theta^{\star}, a_{s}\right\rangle \leq \varepsilon_{s}\right\}$ be the error event
- upper bound of conditioned χ^{2}-informativity:

$$
I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \frac{\exp \left(\varepsilon_{t}^{2}\right)}{\mathbb{P}\left(\mathcal{E}_{t} \mid \mathcal{E}_{t-1}\right)^{2}}\left(I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t-1} \mid \mathcal{E}_{t-1}\right)+1\right)
$$

Conditioning technique

- let $\mathcal{E}_{t}=\cap_{s \leq t}\left\{\left\langle\theta^{\star}, a_{s}\right\rangle \leq \varepsilon_{s}\right\}$ be the error event
- upper bound of conditioned χ^{2}-informativity:

$$
I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \frac{\exp \left(\varepsilon_{t}^{2}\right)}{\mathbb{P}\left(\mathcal{E}_{t} \mid \mathcal{E}_{t-1}\right)^{2}}\left(I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t-1} \mid \mathcal{E}_{t-1}\right)+1\right)
$$

- continuing this process gives

$$
I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \frac{\exp \left(\sum_{s \leq t} \varepsilon_{s}^{2}\right)}{\mathbb{P}\left(\mathcal{E}_{t}\right)^{2}}
$$

Conditioning technique

- let $\mathcal{E}_{t}=\cap_{s \leq t}\left\{\left\langle\theta^{\star}, a_{s}\right\rangle \leq \varepsilon_{s}\right\}$ be the error event
- upper bound of conditioned χ^{2}-informativity:

$$
I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \frac{\exp \left(\varepsilon_{t}^{2}\right)}{\mathbb{P}\left(\mathcal{E}_{t} \mid \mathcal{E}_{t-1}\right)^{2}}\left(I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t-1} \mid \mathcal{E}_{t-1}\right)+1\right)
$$

- continuing this process gives

$$
I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \frac{\exp \left(\sum_{s \leq t} \varepsilon_{s}^{2}\right)}{\mathbb{P}\left(\mathcal{E}_{t}\right)^{2}}
$$

- recursion of error probability:

$$
\mathbb{P}\left(\mathcal{E}_{t+1}\right)=\mathbb{P}\left(\mathcal{E}_{t}\right) \cdot \mathbb{P}\left(\left\langle\theta^{\star}, a_{t+1}\right\rangle \leq \varepsilon_{t+1} \mid \mathcal{E}_{t}\right)
$$

Conditioning technique

- let $\mathcal{E}_{t}=\cap_{s \leq t}\left\{\left\langle\theta^{\star}, a_{s}\right\rangle \leq \varepsilon_{s}\right\}$ be the error event
- upper bound of conditioned χ^{2}-informativity:

$$
I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \frac{\exp \left(\varepsilon_{t}^{2}\right)}{\mathbb{P}\left(\mathcal{E}_{t} \mid \mathcal{E}_{t-1}\right)^{2}}\left(I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t-1} \mid \mathcal{E}_{t-1}\right)+1\right)
$$

- continuing this process gives

$$
I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \frac{\exp \left(\sum_{s \leq t} \varepsilon_{s}^{2}\right)}{\mathbb{P}\left(\mathcal{E}_{t}\right)^{2}}
$$

- recursion of error probability:

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{E}_{t+1}\right) & =\mathbb{P}\left(\mathcal{E}_{t}\right) \cdot \mathbb{P}\left(\left\langle\theta^{\star}, a_{t+1}\right\rangle \leq \varepsilon_{t+1} \mid \mathcal{E}_{t}\right) \\
& \geq \mathbb{P}\left(\mathcal{E}_{t}\right)\left(1-e^{-\Theta\left(d \varepsilon_{t+1}^{2}\right)} \sqrt{I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1}\right)
\end{aligned}
$$

Conditioning technique

- let $\mathcal{E}_{t}=\cap_{s \leq t}\left\{\left\langle\theta^{\star}, a_{s}\right\rangle \leq \varepsilon_{s}\right\}$ be the error event
- upper bound of conditioned χ^{2}-informativity:

$$
I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \frac{\exp \left(\varepsilon_{t}^{2}\right)}{\mathbb{P}\left(\mathcal{E}_{t} \mid \mathcal{E}_{t-1}\right)^{2}}\left(I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t-1} \mid \mathcal{E}_{t-1}\right)+1\right)
$$

- continuing this process gives

$$
I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1 \leq \frac{\exp \left(\sum_{s \leq t} \varepsilon_{s}^{2}\right)}{\mathbb{P}\left(\mathcal{E}_{t}\right)^{2}}
$$

- recursion of error probability:

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{E}_{t+1}\right) & =\mathbb{P}\left(\mathcal{E}_{t}\right) \cdot \mathbb{P}\left(\left\langle\theta^{\star}, a_{t+1}\right\rangle \leq \varepsilon_{t+1} \mid \mathcal{E}_{t}\right) \\
& \geq \mathbb{P}\left(\mathcal{E}_{t}\right)\left(1-e^{-\Theta\left(d \varepsilon_{t+1}^{2}\right)} \sqrt{I_{\chi^{2}}\left(\theta^{\star} ; \mathcal{H}_{t} \mid \mathcal{E}_{t}\right)+1}\right) \\
& \geq \mathbb{P}\left(\mathcal{E}_{t}\right)-\underbrace{e^{-\Theta\left(d \varepsilon_{t+1}^{2}\right)+\frac{1}{2} \sum_{s \leq t} \varepsilon_{s}^{2}}}_{=\delta} .
\end{aligned}
$$

Discussions and Further Questions

Suboptimality of UCB

Suboptimality of UCB

- Eluder-UCB algorithm [Russo and Van Roy 2014]:

Suboptimality of UCB

- Eluder-UCB algorithm [Russo and Van Roy 2014]: at each time t,
\rightarrow form the least squares estimator $\widehat{\theta}_{t}=\arg \min _{\theta} \sum_{s<t}\left(r_{s}-f\left(\left\langle\theta, a_{s}\right\rangle\right)\right)^{2}$;

Suboptimality of UCB

- Eluder-UCB algorithm [Russo and Van Roy 2014]: at each time t,
\rightarrow form the least squares estimator $\widehat{\theta}_{t}=\arg \min _{\theta} \sum_{s<t}\left(r_{s}-f\left(\left\langle\theta, a_{s}\right\rangle\right)\right)^{2}$;
\rightarrow construct the confidence set of θ^{\star} :

$$
\mathcal{C}_{t}=\left\{\theta \in \mathbb{S}^{d-1}: \sum_{s<t}\left(f\left(\left\langle\theta, a_{s}\right\rangle\right)-f\left(\left\langle\widehat{\theta}_{t}, a_{s}\right\rangle\right)\right)^{2}=\widetilde{O}(d)\right\}
$$

Suboptimality of UCB

- Eluder-UCB algorithm [Russo and Van Roy 2014]: at each time t,
\rightarrow form the least squares estimator $\widehat{\theta}_{t}=\arg \min _{\theta} \sum_{s<t}\left(r_{s}-f\left(\left\langle\theta, a_{s}\right\rangle\right)\right)^{2}$;
\rightarrow construct the confidence set of θ^{\star} :

$$
\mathcal{C}_{t}=\left\{\theta \in \mathbb{S}^{d-1}: \sum_{s<t}\left(f\left(\left\langle\theta, a_{s}\right\rangle\right)-f\left(\left\langle\widehat{\theta}_{t}, a_{s}\right\rangle\right)\right)^{2}=\widetilde{O}(d)\right\}
$$

\rightarrow play action $a_{t}=\arg \max _{a} \max _{\theta \in \mathcal{C}_{t}} f(\langle\theta, a\rangle)$.

Suboptimality of UCB

- Eluder-UCB algorithm [Russo and Van Roy 2014]: at each time t,
\rightarrow form the least squares estimator $\widehat{\theta}_{t}=\arg \min _{\theta} \sum_{s<t}\left(r_{s}-f\left(\left\langle\theta, a_{s}\right\rangle\right)\right)^{2}$;
\rightarrow construct the confidence set of θ^{\star} :

$$
\mathcal{C}_{t}=\left\{\theta \in \mathbb{S}^{d-1}: \sum_{s<t}\left(f\left(\left\langle\theta, a_{s}\right\rangle\right)-f\left(\left\langle\widehat{\theta}_{t}, a_{s}\right\rangle\right)\right)^{2}=\widetilde{O}(d)\right\}
$$

\rightarrow play action $a_{t}=\arg \max _{a} \max _{\theta \in \mathcal{C}_{t}} f(\langle\theta, a\rangle)$.

Theorem (lower bound for Eluder-UCB)

For every f, there exist a bandit instance such that for (a certain tie-breaking rule of) Eluder-UCB, achieving a sublinear regret requires

$$
T \gtrsim \max _{K} \min \left\{K, \frac{d}{f(\sqrt{(\log K) / d})^{2}}\right\} .
$$

Suboptimality of UCB

- Eluder-UCB algorithm [Russo and Van Roy 2014]: at each time t,
\rightarrow form the least squares estimator $\widehat{\theta}_{t}=\arg \min _{\theta} \sum_{s<t}\left(r_{s}-f\left(\left\langle\theta, a_{s}\right\rangle\right)\right)^{2}$;
\rightarrow construct the confidence set of θ^{\star} :

$$
\mathcal{C}_{t}=\left\{\theta \in \mathbb{S}^{d-1}: \sum_{s<t}\left(f\left(\left\langle\theta, a_{s}\right\rangle\right)-f\left(\left\langle\widehat{\theta}_{t}, a_{s}\right\rangle\right)\right)^{2}=\widetilde{O}(d)\right\}
$$

\rightarrow play action $a_{t}=\arg \max _{a} \max _{\theta \in \mathcal{C}_{t}} f(\langle\theta, a\rangle)$.

Theorem (lower bound for Eluder-UCB)

For every f, there exist a bandit instance such that for (a certain tie-breaking rule of) Eluder-UCB, achieving a sublinear regret requires

$$
T \gtrsim \max _{K} \min \left\{K, \frac{d}{f(\sqrt{(\log K) / d})^{2}}\right\} .
$$

- for $f(x)=x^{3}$, Eluder-UCB requires $T \gtrsim d^{4}$, but optimal is $T \gtrsim d^{3}$

Suboptimality of online regression oracle

Suboptimality of online regression oracle

- Online regression oracle model [Foster et al. 2020]: for any adversarial sequence $\left\{a_{t}\right\}$, oracle outputs $\left\{\hat{\theta}_{t}\right\}$ such that

$$
\sum_{t=1}^{T}\left(f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right)-f\left(\left\langle\widehat{\theta}_{t}, a_{t}\right\rangle\right)\right)^{2} \leq \operatorname{Reg}_{S_{q}}(T)
$$

Suboptimality of online regression oracle

- Online regression oracle model [Foster et al. 2020]: for any adversarial sequence $\left\{a_{t}\right\}$, oracle outputs $\left\{\widehat{\theta}_{t}\right\}$ such that

$$
\sum_{t=1}^{T}\left(f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right)-f\left(\left\langle\widehat{\theta}_{t}, a_{t}\right\rangle\right)\right)^{2} \leq \operatorname{Reg}_{\mathrm{S}_{\mathrm{q}}}(T)
$$

\rightarrow learner only observes $\widehat{\theta}_{t}$ in the oracle model, but not r_{t};

Suboptimality of online regression oracle

- Online regression oracle model [Foster et al. 2020]: for any adversarial sequence $\left\{a_{t}\right\}$, oracle outputs $\left\{\widehat{\theta}_{t}\right\}$ such that

$$
\sum_{t=1}^{T}\left(f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right)-f\left(\left\langle\widehat{\theta}_{t}, a_{t}\right\rangle\right)\right)^{2} \leq \operatorname{Reg}_{S_{q}}(T)
$$

\rightarrow learner only observes $\widehat{\theta}_{t}$ in the oracle model, but not r_{t};
\rightarrow a natural choice of $\operatorname{Reg}_{S_{q}}(T)$ is $\widetilde{O}(d)$.

Suboptimality of online regression oracle

- Online regression oracle model [Foster et al. 2020]: for any adversarial sequence $\left\{a_{t}\right\}$, oracle outputs $\left\{\widehat{\theta}_{t}\right\}$ such that

$$
\sum_{t=1}^{T}\left(f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right)-f\left(\left\langle\widehat{\theta}_{t}, a_{t}\right\rangle\right)\right)^{2} \leq \operatorname{Reg}_{\mathrm{Sq}}(T)
$$

\rightarrow learner only observes $\widehat{\theta}_{t}$ in the oracle model, but not r_{t};
\rightarrow a natural choice of $\operatorname{Reg}_{S_{q}}(T)$ is $\widetilde{O}(d)$.

Theorem (lower bound for the oracle model)

For every f, there exist a bandit instance under the oracle model such that for every algorithm, achieving a sublinear regret requires

$$
T \gtrsim \max _{K} \min \left\{K, \frac{d}{f(\sqrt{(\log K) / d})^{2}}\right\} .
$$

Suboptimality of online regression oracle

- Online regression oracle model [Foster et al. 2020]: for any adversarial sequence $\left\{a_{t}\right\}$, oracle outputs $\left\{\widehat{\theta}_{t}\right\}$ such that

$$
\sum_{t=1}^{T}\left(f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right)-f\left(\left\langle\hat{\theta}_{t}, a_{t}\right\rangle\right)\right)^{2} \leq \operatorname{Reg}_{\mathrm{Sq}}(T)
$$

\rightarrow learner only observes $\widehat{\theta}_{t}$ in the oracle model, but not r_{t};
\rightarrow a natural choice of $\operatorname{Reg}_{\mathrm{sq}}(T)$ is $\widetilde{O}(d)$.

Theorem (lower bound for the oracle model)

For every f, there exist a bandit instance under the oracle model such that for every algorithm, achieving a sublinear regret requires

$$
T \gtrsim \max _{K} \min \left\{K, \frac{d}{f(\sqrt{(\log K) / d})^{2}}\right\} .
$$

- Key modeling difference: in oracle model, choosing repeated action may not reduce the estimation error

Infinite vs finite actions

- in linear bandit, fewer actions lead to smaller regret

Infinite vs finite actions

- in linear bandit, fewer actions lead to smaller regret
\rightarrow minimax regret decreases from $\Theta(d \sqrt{T})$ to $\Theta(\sqrt{d T} \log K)$ with K actions

Infinite vs finite actions

- in linear bandit, fewer actions lead to smaller regret
\rightarrow minimax regret decreases from $\Theta(d \sqrt{T})$ to $\Theta(\sqrt{d T} \log K)$ with K actions
\rightarrow intuition: UCB needs to construct fewer confidence intervals

Infinite vs finite actions

- in linear bandit, fewer actions lead to smaller regret
\rightarrow minimax regret decreases from $\Theta(d \sqrt{T})$ to $\Theta(\sqrt{d T} \log K)$ with K actions
\rightarrow intuition: UCB needs to construct fewer confidence intervals
- does similar phenomenon hold for non-linear bandits?

Infinite vs finite actions

- in linear bandit, fewer actions lead to smaller regret
\rightarrow minimax regret decreases from $\Theta(d \sqrt{T})$ to $\Theta(\sqrt{d T} \log K)$ with K actions
\rightarrow intuition: UCB needs to construct fewer confidence intervals
- does similar phenomenon hold for non-linear bandits?

Theorem (lower bound for finite actions)

For every link function f and $K=\operatorname{poly}(d)$, there exist an K-armed ridge bandit instance such that achieving a sublinear regret requires

$$
T \gtrsim \min \left\{K, \frac{1}{f(1 / \sqrt{d})^{2}}\right\}
$$

Infinite vs finite actions

- in linear bandit, fewer actions lead to smaller regret
\rightarrow minimax regret decreases from $\Theta(d \sqrt{T})$ to $\Theta(\sqrt{d T} \log K)$ with K actions
\rightarrow intuition: UCB needs to construct fewer confidence intervals
- does similar phenomenon hold for non-linear bandits?

Theorem (lower bound for finite actions)

For every link function f and $K=\operatorname{poly}(d)$, there exist an K-armed ridge bandit instance such that achieving a sublinear regret requires

$$
T \gtrsim \min \left\{K, \frac{1}{f(1 / \sqrt{d})^{2}}\right\}
$$

- implication: for $f(x)=x^{3}$, the fixed cost for the finite-action problem is already d^{3}, same as the infinite-action problem

Infinite vs finite actions

- in linear bandit, fewer actions lead to smaller regret
\rightarrow minimax regret decreases from $\Theta(d \sqrt{T})$ to $\Theta(\sqrt{d T} \log K)$ with K actions
\rightarrow intuition: UCB needs to construct fewer confidence intervals
- does similar phenomenon hold for non-linear bandits?

Theorem (lower bound for finite actions)

For every link function f and $K=\operatorname{poly}(d)$, there exist an K-armed ridge bandit instance such that achieving a sublinear regret requires

$$
T \gtrsim \min \left\{K, \frac{1}{f(1 / \sqrt{d})^{2}}\right\}
$$

- implication: for $f(x)=x^{3}$, the fixed cost for the finite-action problem is already d^{3}, same as the infinite-action problem
- reason: the learner cannot explore every direction in the initialization phase

Unit sphere vs unit ball

What happens if we assume that $\theta^{\star} \in \mathbb{B}^{d}$ instead of $\theta^{\star} \in \mathbb{S}^{d-1}$?

Unit sphere vs unit ball

What happens if we assume that $\theta^{\star} \in \mathbb{B}^{d}$ instead of $\theta^{\star} \in \mathbb{S}^{d-1}$?

Theorem (modified upper bound)

Under monotonicity and local linearity of f :
$\operatorname{MinmaxReg}(T, d, f) \lesssim \max _{r \in[0,1]} \min \left\{d^{2} \frac{f(r)}{r^{4}} \int_{r / \sqrt{d}}^{r / 2} \frac{d\left(x^{2}\right)}{\max _{r / \sqrt{d} \leq y \leq x} f^{\prime}(y)^{2}}+d \sqrt{T}, T f(r)\right\}$

Theorem (modified lower bound)

Under monotonicity and local linearity of f :

$$
\operatorname{MinmaxReg}(T, d, f) \gtrsim \max _{r \in[0,1]} \min \left\{d \frac{f(r)}{r^{2}} \int_{r / \sqrt{d}}^{r / 2} \frac{\mathrm{~d}\left(x^{2}\right)}{f(x)^{2}}+d \sqrt{T}, T f(r)\right\} .
$$

Unit sphere vs unit ball

What happens if we assume that $\theta^{\star} \in \mathbb{B}^{d}$ instead of $\theta^{\star} \in \mathbb{S}^{d-1}$?

Theorem (modified upper bound)

Under monotonicity and local linearity of f :
$\operatorname{MinmaxReg}(T, d, f) \lesssim \max _{r \in[0,1]} \min \left\{d^{2} \frac{f(r)}{r^{4}} \int_{r / \sqrt{d}}^{r / 2} \frac{d\left(x^{2}\right)}{\max _{r / \sqrt{d} \leq y \leq x} f^{\prime}(y)^{2}}+d \sqrt{T}, T f(r)\right\}$

Theorem (modified lower bound)

Under monotonicity and local linearity of f :

$$
\operatorname{MinmaxReg}(T, d, f) \gtrsim \max _{r \in[0,1]} \min \left\{d \frac{f(r)}{r^{2}} \int_{r / \sqrt{d}}^{r / 2} \frac{\mathrm{~d}\left(x^{2}\right)}{f(x)^{2}}+d \sqrt{T}, T f(r)\right\} .
$$

- minimax regret often exhibits only one elbow instead of two

Further questions

Further questions

- fill in the gap between upper and lower bounds

$$
I_{t}-I_{t-1} \leq \operatorname{Var}\left(f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right) \mid a_{t}, \mathcal{H}_{t-1}\right) \stackrel{?}{\lesssim} \max _{y \leq \varepsilon_{t}} \frac{f^{\prime}(y)^{2}}{d}
$$

Further questions

- fill in the gap between upper and lower bounds

$$
I_{t}-I_{t-1} \leq \operatorname{Var}\left(f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right) \mid a_{t}, \mathcal{H}_{t-1}\right) \stackrel{?}{\lesssim} \max _{y \leq \varepsilon_{t}} \frac{f^{\prime}(y)^{2}}{d}
$$

- analyze the learning trajectory of information-directed sampling $a_{t}=\arg \max _{a} I\left(\theta^{\star} ; r_{t} \mid \mathcal{H}_{t-1}, a_{t}=a\right)$

Further questions

- fill in the gap between upper and lower bounds

$$
I_{t}-I_{t-1} \leq \operatorname{Var}\left(f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right) \mid a_{t}, \mathcal{H}_{t-1}\right) \stackrel{?}{\lesssim} \max _{y \leq \varepsilon_{t}} \frac{f^{\prime}(y)^{2}}{d}
$$

- analyze the learning trajectory of information-directed sampling $a_{t}=\arg \max _{a} I\left(\theta^{\star} ; r_{t} \mid \mathcal{H}_{t-1}, a_{t}=a\right)$
- more general reward functions such as $f_{\theta}(a)=\sum_{i=1}^{m} f_{i}\left(\left\langle\theta_{i}, a\right\rangle\right)$

Further questions

- fill in the gap between upper and lower bounds

$$
I_{t}-I_{t-1} \leq \operatorname{Var}\left(f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right) \mid a_{t}, \mathcal{H}_{t-1}\right) \stackrel{?}{\lesssim} \max _{y \leq \varepsilon_{t}} \frac{f^{\prime}(y)^{2}}{d}
$$

- analyze the learning trajectory of information-directed sampling $a_{t}=\arg \max _{a} I\left(\theta^{\star} ; r_{t} \mid \mathcal{H}_{t-1}, a_{t}=a\right)$
- more general reward functions such as $f_{\theta}(a)=\sum_{i=1}^{m} f_{i}\left(\left\langle\theta_{i}, a\right\rangle\right)$
- more systematic methods for exploration in the initialization phase

Further questions

- fill in the gap between upper and lower bounds

$$
I_{t}-I_{t-1} \leq \operatorname{Var}\left(f\left(\left\langle\theta^{\star}, a_{t}\right\rangle\right) \mid a_{t}, \mathcal{H}_{t-1}\right) \stackrel{?}{\lesssim} \max _{y \leq \varepsilon_{t}} \frac{f^{\prime}(y)^{2}}{d}
$$

- analyze the learning trajectory of information-directed sampling $a_{t}=\arg \max _{a} I\left(\theta^{\star} ; r_{t} \mid \mathcal{H}_{t-1}, a_{t}=a\right)$
- more general reward functions such as $f_{\theta}(a)=\sum_{i=1}^{m} f_{i}\left(\left\langle\theta_{i}, a\right\rangle\right)$
- more systematic methods for exploration in the initialization phase
- more complicated settings such as contextual bandits and RL

Concluding remarks

Take-home message:

Concluding remarks

Take-home message:

- there could be a phase transition in the regret of non-linear bandits

Concluding remarks

Take-home message:

- there could be a phase transition in the regret of non-linear bandits
- in the initialization phase, the learner needs algorithms beyond UCB to explore a good initial action, which incurs a fixed cost

Concluding remarks

Take-home message:

- there could be a phase transition in the regret of non-linear bandits
- in the initialization phase, the learner needs algorithms beyond UCB to explore a good initial action, which incurs a fixed cost
- in the learning phase, the learner can employ UCB-type algorithm around the good initial action

Concluding remarks

Take-home message:

- there could be a phase transition in the regret of non-linear bandits
- in the initialization phase, the learner needs algorithms beyond UCB to explore a good initial action, which incurs a fixed cost
- in the learning phase, the learner can employ UCB-type algorithm around the good initial action
- learning trajectory of the initialization phase could be characterized by proper differential equations

Concluding remarks

Take-home message:

- there could be a phase transition in the regret of non-linear bandits
- in the initialization phase, the learner needs algorithms beyond UCB to explore a good initial action, which incurs a fixed cost
- in the learning phase, the learner can employ UCB-type algorithm around the good initial action
- learning trajectory of the initialization phase could be characterized by proper differential equations
- traditional learning algorithms may fail to obtain the optimal initialization cost

Concluding remarks

Take-home message:

- there could be a phase transition in the regret of non-linear bandits
- in the initialization phase, the learner needs algorithms beyond UCB to explore a good initial action, which incurs a fixed cost
- in the learning phase, the learner can employ UCB-type algorithm around the good initial action
- learning trajectory of the initialization phase could be characterized by proper differential equations
- traditional learning algorithms may fail to obtain the optimal initialization cost

Thank You!

