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A “ChatGPT-style” problem

@ Given data X" = (Xi,..., X,), predict the next Xnj1.
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A “ChatGPT-style” problem

@ Given data X" = (Xi,..., X,), predict the next Xnj1.
@ Allowing soft decisions, by prediction we meant estimating Px,,|x»

@ Applications in NLP: autocomplete, text generation, LLM
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Modern LLM

@) OpenAl Platform

Q Search m oK

Authentication
Making requests.
Streaming
Debugging requests
ENDPOINTS
Audio
Chat

Create chat completion

‘The chat completion
object

‘The chat completion
chunk object

Embeddings
Fine-tuning
Batch

Files

> Cookbook
282 Forum

@ Help

logit_bias map Optional Defauits tonull

Modify specified in
Accepts a JSON object that maps Din an
4100 to 100. the bias is added by

the model prior to sampling. The exact effect will vary per model, but values between -1and 1 should
decrease or increase likelihood of selection; values like 100 or 100 should result in a ban or exclusive

selection of the relevant token.

logprobs booleanornull Optional Defaultsto false
Whether to return log probabilities of the output tokens or not. If rue, returns the log probabilities of

each output token returned inthe content of message

top_ logprobs ntegerornul Opions!
Aninteg specifying
postion, each vith an associated log probabilty. logprobs mustbesetto true. ifthis

number of most s to return at each token

parameter is used.

max_tokens Deprecated integerornull Optional
The maximurm number of tokens that can be generated in the chat completion. This value can be
used to control costs for text generated via APL

This value is now deprecated in favor of max_completion_tokens ,andis not compatible with of

series models.

max_completion_tokens integerornul Optional

An upper bound for the number s that can completion, g visi
output tokens and reasoning tokens.
N integerornull Optional Defauitstot

for each Note that you will be

How many chat

Docs  APIreferenct

Default Imageinput ~ Streaming  Functions  Logprobs
Example request gpt-dov  pythonv (@
from openai import OpenAT

client = OpenAI()

completion = client.chat.completions.create(

-40",

© "user", "content": "Hello!"}

Logprobs=Truc,
top_logprob:

print(completion.choices[0].message)
print(completion. choices[0].logprobs)

Response

1.
“top_logprobs”: [

“token 5
"logprob": -0.02380986,
"bytes": [33]

D

9
“token": " theze”,

"logprob": -3.767621,
[32, 116, 104, 101, 114, 1C

"bytes

https://platform.openai.com/docs/api-reference/chat/create
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Modeling dependent data

For these applications, iid model is clearly insufficient — Markov model [Shannon '48, '51]

IL. THE SERIES OF APPROXIMATIONS TO ENGLISH

“To give a visual idea of how this series of processes approaches a language, typical sequences in the approxima-
tions to English have been constructed and are given below. In all cases we have assumed a 27-symbol “alphabet,”
the 26 letters and a space.
1. Zero-order approximation (symbols independent and equiprobable)
XFOML RXKHRIFFJUJ ZLPWCFWKCYJ FFIEY VKCQSGHYD QPAAMKBZAACIBZLHIQD.

2. First-order approximation (symbols independent but with frequencies of English tex).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH
BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE
AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

s

. Third-order approximation (trigram structure as in English).

INNO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES
OF THE REPTAGIN IS REGOACTIONA OF CRE.

5. First-order word approximation. Rather than continue with tetragram, ..., n-gram structure it is easier and
better to jump at this point to word units. Here words are chosen independently but with their appropriate
frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL
HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE
MESSAGE HAD BE THESE.

3 d-order word i The word transition ities are correct but no further structure is
included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER
OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME
OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

‘The resemblance to ordinary English text increases quite noticeably at each of the above steps. Note that
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Modeling dependent data

For these applications, iid model is clearly insufficient — Markov model [Shannon

IL. THE SERIES OF APPROXIMATIONS TO ENGLISH

“To give a visual idea of how this series of processes approaches a language, typical sequences in the approxima-
tions to English have been constructed and are given below. In all cases we have assumed a 27-symbol “alphabet,”
the 26 letters and a space.
1. Zero-order approximation (symbols independent and equiprobable)
XFOML RXKHRIFFJUJ ZLPWCFWKCYJ FFIEY VKCQSGHYD QPAAMKBZAACIBZLHIQD.

2. First-order approximation (symbols independent but with frequencies of English tex).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH
BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE
AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

s

. Third-order approximation (trigram structure as in English).

INNO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES
OF THE REPTAGIN IS REGOACTIONA OF CRE.

5. First-order word approximation. Rather than continue with tetragram, ..., n-gram structure it is easier and
better to jump at this point to word units. Here words are chosen independently but with their appropriate
frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL
HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE
MESSAGE HAD BE THESE.

3 d-order word i The word transition ities are correct but no further structure is
included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER
OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME
OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

‘The resemblance to ordinary English text increases quite noticeably at each of the above steps. Note that

Challenges: (a) dependent data (b) large state space
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Part I: Markov chains
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Statistical inference for Markov chains

Parameter estimation:

] Transition matrix [Bartlett '51, Whittle '55, Anderson-Goodman '57, Billingsley '61, Wolfer-Kontorovich '19 ]
@ Properties

o Order [Csiszar-Shields '00, van Handel '11]

o Mixing time and spectral gap [Hsu et al '15, Levin-Peres '16]

o Entropy rate [Kamath-Verdd '16, Han et al '18]

o Property testing [Daskalakis et al '18, Cherapanamjeri-Bartlett '19 ...]

o Hidden Markov: [Douc-Moulines-Olsson-van Handel '11, Abraham-Naulet-Gassiat '21]
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Statistical inference for Markov chains

Parameter estimation:

] Transition matrix [Bartlett '51, Whittle '55, Anderson-Goodman '57, Billingsley '61, Wolfer-Kontorovich '19 ]
@ Properties

o Order [Csiszar-Shields '00, van Handel '11]

o Mixing time and spectral gap [Hsu et al '15, Levin-Peres '16]

o Entropy rate [Kamath-Verdd '16, Han et al '18]

o Property testing [Daskalakis et al '18, Cherapanamjeri-Bartlett '19 ...]

o Hidden Markov: [Douc-Moulines-Olsson-van Handel '11, Abraham-Naulet-Gassiat '21]

Prediction problem: a paradigm shift

o The quantity to be estimated (conditional distribution of the next state Px,,|xn)
depends on the sample path itself; this is precisely why it is relevant for applications
such as language models
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Statistical inference for Markov chains

Parameter estimation:

] Transition matrix [Bartlett '51, Whittle '55, Anderson-Goodman '57, Billingsley '61, Wolfer-Kontorovich '19 ]
@ Properties

o Order [Csiszar-Shields '00, van Handel '11]

o Mixing time and spectral gap [Hsu et al '15, Levin-Peres '16]

o Entropy rate [Kamath-Verdd '16, Han et al '18]

o Property testing [Daskalakis et al '18, Cherapanamjeri-Bartlett '19 ...]

o Hidden Markov: [Douc-Moulines-Olsson-van Handel '11, Abraham-Naulet-Gassiat '21]

Prediction problem: a paradigm shift

o The quantity to be estimated (conditional distribution of the next state Px,,|xn)

depends on the sample path itself; this is precisely why it is relevant for applications
such as language models

o Estimation requires (strong) assumptions, prediction requires none
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Prevailing assumptions

The chain mixes rapidly (large spectral gap) and stationary probabilities are not too small
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Prevailing assumptions

The chain mixes rapidly (large spectral gap) and stationary probabilities are not too small

Both are necessary for estimation, but neither is needed for prediction
@ If the chain moves at glacial speed, it is actually easy to predict
o Observing aaaaaaaaaaaaaa, predict a
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Prevailing assumptions

The chain mixes rapidly (large spectral gap) and stationary probabilities are not too small

Both are necessary for estimation, but neither is needed for prediction
@ If the chain moves at glacial speed, it is actually easy to predict
o Observing aaaaaaaaaaaaaa, predict a

o If a symbol is very rare, it is unlikely to appear next
Goal: understand optimal prediction of Markov chains in an assumption-free framework

@ Challenge: lack of concentration results

@ New idea: information-theoretic techniques
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Example

Data: abaaabbccaabcaba
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Example

Data: abaaabbccaabcaba?

@ Last symbol Xi6 = a
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Example

Data: abaaabbccaabcaba?

@ Last symbol Xi6 = a

@ Learn from historical examples: In the first 15 symbols,
o a appeared 7 times

@ aa: 3 times
@ ab: 4 times
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Example

Data: abaaabbccaabcaba?

@ Last symbol Xi6 = a
@ Learn from historical examples: In the first 15 symbols,
o a appeared 7 times

@ aa: 3 times
@ ab: 4 times
@ ac: 0 times
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Example

Data: abaaabbccaabcaba?

@ Last symbol Xi6 = a
@ Learn from historical examples: In the first 15 symbols,
o a appeared 7 times

@ aa: 3 times
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Example

Data: abaaabbccaabcaba?

@ Last symbol Xi6 = a
@ Learn from historical examples: In the first 15 symbols,
o a appeared 7 times

@ aa: 3 times
@ ab: 4 times
@ ac: 0 times

@ Predictor for Xiz:
o Empirical transition frequencies (%, %, %)
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Example

Data: abaaabbccaabcaba?
@ Last symbol Xi6 = a

@ Learn from historical examples: In the first 15 symbols,
o a appeared 7 times

@ aa: 3 times

@ ab: 4 times

@ ac: 0 times

o Predictor for Xi7:
o Empirical transition frequencies (%, %, %)
o Additively smoothed version:

o Laplace's rule (add-1): (55, 5, %)
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Example

Data: abaaabbccaabcaba?

@ Last symbol Xi6 = a
@ Learn from historical examples: In the first 15 symbols,
o a appeared 7 times
@ aa: 3 times
@ ab: 4 times
@ ac: 0 times
o Predictor for Xi7:
o Empirical transition frequencies (% % %)
o Additively smoothed version:
o Laplace's rule (add-1): (75
o Krichevsky-Trofimov (add-

)
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Smoothing in N-gram language models

SPEECH AND
LANGUAGE PROCESSING

An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition

Second Edition

DANIEL JURAFSKY & JAMES H. MARTIN
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Smoothing in N-gram language models

Raw bigram counts:

i want  to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray. Each cell shows the count of
the column label word following the row label word. Thus the cell in row i and column want
means that want followed i 827 times in the corpus.

Yanjun Han (NYU)
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Smoothing in N-gram language models

Add-1 bigram counts:

i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

AT KA Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.
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Smoothing in N-gram language models

Estimated bigram probabilities:

Clwp—1wy) +1 Clwp—1wy) +1

PLaplace(Wn|Wn71) = S (Cwaw) + 1) = Clvm 1) LV (3.27)

i want to eat chinese food lunch spend
i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084  0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026  0.0013 0.18 0.00078 0.00026  0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046  0.0078 0.0014 0.02 0.00046

chinese  0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062

food 0.0063 0.00039  0.0063 0.00039  0.00079  0.002 0.00039  0.00039

lunch 0.0017 0.00056  0.00056 0.00056 0.00056 0.0011 0.00056  0.00056

spend 0.0012 0.00058 0.0012 0.00058  0.00058 0.00058 0.00058 0.00058
Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.
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How to analyze these estimators without assumptions?

Wishful thinking (ignore smoothing for now):

Suppose the chain is stationary with stationary distribution (7a, 7, 7c) and transition

matrix M.
@ Number of occurrences of a: N, ~ nm,
@ Number of occurrences of ab: Na, = nmaM(b|a)

e So
Nab
N,

~ M(bla)

10
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How to analyze these estimators without assumptions?

Wishful thinking (ignore smoothing for now):

Suppose the chain is stationary with stationary distribution (7a, 7, 7c) and transition
matrix M.
o Number of occurrences of a: N, = nma

@ Number of occurrences of ab: Na, = nmaM(b|a)

e So
Nab

N, ~ M(bla)

o Let's attempt to analyze the denominator

Yanjun Han (NYU) Next-symbol prediction 10



Key difficulty

Suppose the chain is stationary with stationary distribution (7a, b, 7c).

o Empirical frequency is unbiased: E[#.] = E[%] = Ta

Yanjun Han (NYU) Next-symbol prediction
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Key difficulty

Suppose the chain is stationary with stationary distribution (7a, b, 7c).
o Empirical frequency is unbiased: E[#.] = E[%2] = 7,
@ Concentration: [Lezaud '98, Pauline '15]

1

n - spectral gap
2

Var(#a) <

~

P(|fa — ma| > t) < exp (— cnt

a

: - spectral gap)

This is tight in worst case; but spectral gap can be arbitrarily small

@ So we need some new ideas other than applying concentration

Yanjun Han (NYU) Next-symbol prediction
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Mathematical formulation

@ Observe a single trajectory X" = (Xi,...

a finite set [k] = {1,..., k}

Yanjun Han (NYU)

,Xn) of a random process taking values in

Next-symbol prediction
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Mathematical formulation

@ Observe a single trajectory X" = (Xi,...,X,) of a random process taking values in
a finite set [k] = {1,..., k}

@ Consider Kullback-Leibler loss:
P@)
Qy)

KL(P[|Q) = Ex-r [log g(X)} =3 PU)lg
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a finite set [k] = {1,..., k}

@ Consider Kullback-Leibler loss:
P@)
Qy)

KL(P[|Q) = Ex-r [log g(X)} =3 PU)lg

@ An estimate for Px, . |x» <= a conditional distribution Qx,,,x»
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Mathematical formulation

Observe a single trajectory X" = (Xi,...,X,) of a random process taking values in
a finite set [k] = {1,..., k}

Consider Kullback-Leibler loss:

P{)

Q)

KL(PI|Q) = Ex-s [log g(X)} =3 PU)lg

An estimate for Px,.,ix» <= a conditional distribution anﬂ\x"

Average prediction risk:
E[KL(Px, 1 1x7 || @1 1x7)]

Yanjun Han (NYU) Next-symbol prediction
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Optimal (minimax) prediction risk

Model class P = collection of joint distributions of (X1, ..., Xa+1)
o iid data
o Markov model
o Hidden Markov model ...

the optimal prediction risk is:

Risk, = Risk,(P) £ _inf sup  Ep[KL(Px, ., xn || Qx4 1x7)]

QXn+1 IX" Pyni1€P

Yanjun Han (NYU) Next-symbol prediction
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Existing results: iid data

Xi, Xo, ...

~ P on [k]: reduces to density estimation under KL loss

Risk, = inf sup E[KL(P|| Q)]
P

Yanjun Han (NYU) Next-symbol prediction
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Existing results: iid data

X1,X2,...~ P on [K]: reduces to density estimation under KL loss

Risk, = inf sup E[KL(P|| Q)]
P

Minimax rate is parametric:
. k
Risk, < —, k<n
n
achieved by, e.g., add-one estimator (Laplace rule of succession)

VRS
T on+k’

QU)

N; = number of occurrences of j

o Explicit computation with binomial: EKL(P| Q)] < E[x?(P||Q)] < 6;11
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Existing results: iid data

X1,X2,...~ P on [K]: reduces to density estimation under KL loss

Risk, = inf sup E[KL(P|| Q)]
P

Minimax rate is parametric:
. k
Risk, < —, k<n
n
achieved by, e.g., add-one estimator (Laplace rule of succession)

VRS
T on+k’

QU)

N; = number of occurrences of j

o Explicit computation with binomial: EKL(P| Q)] < E[x?(P||Q)] < 6;11

Furthermore

o For fixed k: Risk, = (1 + 0(1))452 [Bracss et al '02]

o For k> n: Risk, = (14 o(1))log £ paninski ‘04)
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Existing results: Markov model

X1, Xz, ...: stationary first-order Markov chain with k states

Optimal prediction risk: | Risk,, := inf sup E[KL(Px,,,|x, | Qx,,11x7)] ‘

Yanjun Han (NYU) Next-symbol prediction
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Existing results: Markov model

X1, Xz, ...: stationary first-order Markov chain with k states

Optimal prediction risk: | Risk,, := inf sup E[KL(Px,,,|x, | Qx,,11x7)] ‘

@ Two states: [Falahatgar-Orlitsky-Pichapati-Suresh '16]

Risks., = 1281081
n

o Slower than parametric (1)
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Existing results: Markov model

X1, Xz, ...: stationary first-order Markov chain with k states

Optimal prediction risk: | Risk,, := inf sup E[KL(Px,,,|x, | Qx,,11x7)] ‘

@ Two states: [Falahatgar-Orlitsky-Pichapati-Suresh '16]

. loglogn
Risks., = 981087
n
o Slower than parametric (!)
@ k states: [Hao-Orlitsky-Pichapati '18]
. kloglogn
Risky , > K1oglogn
n

Yanjun Han (NYU) Next-symbol prediction

15



Existing results: Markov model

X1, Xz, ...: stationary first-order Markov chain with k states

Optimal prediction risk: | Risk,, := inf sup E[KL(Px,,,|x, | Qx,,11x7)] ‘

@ Two states: [Falahatgar-Orlitsky-Pichapati-Suresh "16]

. loglogn
Risks , = 181087
n
o Slower than parametric (!)
@ k states: [Hao-Orlitsky-Pichapati '18]
. kloglogn
Riske , > Kloglogn
n

2
Claimed Riskg,» < %H'Og", but implicitly assumed fast mixing

Yanjun Han (NYU) Next-symbol prediction 15



Main result

Theorem [H.-Jana-Wu '21]

For all 3 < k < v/n,

2
Risky.» =< % log %

Remarks:
@ Lower bound holds even for irreducible reversible chains

@ Sample complexity (minimal sample size to achieve error €) vs model complexity
(number of parameters d)

4 iid
n"(d,e) < ¢ Zloglog? Markov with 2 states
g Iog% Markov with k > 3 states.

o Strict but only logarithmic increase of sample complexity due to memory in the data

Yanjun Han (NYU) Next-symbol prediction 16



Higher-order Markov chains

. m+1
o Optimal rate for mth-order Markov chains: % log mrr for k > 2

@ The rate k’gl% is highly special and only for binary 1st-order Markov chains

Next: only focus on 1lst-order Markov chains.

Yanjun Han (NYU) Next-symbol prediction
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An optimal estimator

Cesaro mean of add-1 estimators averaged over different sample sizes:

@ Given trajectory x" = (xi, ..., Xn), add-1 estimator for transition probability
M(|i) = Px,,11x, (1) N
o j+1
Moo (j]i) & 2
0li) = -

where N; = number of occurrences of i and Njj = number of occurrences of
consecutive ij

Yanjun Han (NYU) Next-symbol prediction 18



An optimal estimator

Cesaro mean of add-1 estimators averaged over different sample sizes:

@ Given trajectory x" = (xi, ..., Xn), add-1 estimator for transition probability
M(|i) = Px,,11x, (1) N
o j+1
Moo (jli) & T2
0li) = -

where N; = number of occurrences of i and Njj = number of occurrences of
consecutive ij

@ Final estimator:

n 1 . v
Q(X"+1|X ) = ; Z ng—t-u (X"+1|X")

t=1
add-1 applied to most recent t observations

Yanjun Han (NYU) Next-symbol prediction 18



An optimal estimator

Cesaro mean of add-1 estimators averaged over different sample sizes:

@ Given trajectory x" = (xi, ..., Xn), add-1 estimator for transition probability
M(|i) = Px,,11x, (1) N
o j+1
Moo (jli) & T2
0li) = -

where N; = number of occurrences of i and Njj = number of occurrences of
consecutive ij
o Final estimator:

n

1 .
ny A
Q(X"+1|X ) = ; § : ng—t-u (X"+1|X")
=1
¢ add-1 applied to most recent t observations

@ Such Cesaro-mean-type strategy appeared before in density estimation literature
[Yang-Barron '99]

Yanjun Han (NYU) Next-symbol prediction 18



Open question

Open question: simple add-1 estimator with full data is optimal?

Yanjun Han (NYU) Next-symbol prediction
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Open question

Open question: simple add-1 estimator with full data is optimal?

Numerical experiments suggest adaptivity to mixing time:

Sample size

Sample size

Large spectral gap v = 0.2. Small spectral gap v = 0.1.

KL prediction loss: 95% confidence intervals over 500 independent trials.

19
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Plan next

o Characterizing risk by redundancy
@ Bounding redundancy

@ Conclusions and discussions

Yanjun Han (NYU)

Next-symbol prediction

20



Redundancy

Let P be a collection of joint distributions:

Red, £ inf sup KL(Pxn||Qxn)
Qxn PyneP

A key quantity in information theory (universal compression and prediction)

Interpretation: best uniform approximation error of a class (not an estimation error!)
@ Rule of thumb:
Red, =< model complexity - log n
@ Redundancy-risk inequality:
n
Red, < " Riskm
m=1

@ We will show for Markov model: Risk, =< Re—:”.
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Risk vs Redundancy: upper bound

Riskk7n71 S

Yanjun Han (NYU)

Redk,,,
n—1
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Risk vs Redundancy: upper bound

< Redk,,,

Riskk,n—
ISK, an—l

Idea: “batch-to-online”

@ Any joint distribution Qx» induces a Cesaro-mean style predictor:

~ _ 1< -
Qx, | xn-1(Xn|x" e n_1 Z Qxf|xf*1(xn|ngt1+1)
=2
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Risk vs Redundancy: upper bound

< Redk,,,

Riskk,n—
ISKk, an—l

Idea: “batch-to-online”

@ Any joint distribution Qx» induces a Cesaro-mean style predictor:

~ _ 1< -
Qx, | xn-1(Xn|x" e n_1 Z Qxf\xffl(xn|ngt1+1)
=2

@ Prediction risk:

E[KL(Px, 1,1 | @y x0-1)]

1 . S
< P— ;—1 E[KL(Px, xt—1 || Qxe|xt-1)] convexity and stationarity
1 .
= mKL(PXﬂHQXn) chain rule
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Risk vs Redundancy: lower bound

~

. 1 sym
Riski,n = ;Redkyfl’n

where

o Red}™, , = redundancy of Markov chain with k — 1 states and symmetric transition

matrix.

o We will show
Red?™, , =< model complexity - log n
’ —_—

=k2

Yanjun Han (NYU) Next-symbol prediction
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Sketch of reduction argument

Embed a (k — 1)-state chain into a state space of size k:

1-1 1 1 1
n n(k—1) n(k—1) n(k—1)
1/n
M=|1/n
. (1-4HT
. n
1/n

Here T is a symmetric transition matrix for k — 1 states to be optimized (randomized)

Yanjun Han (NYU) Next-symbol prediction
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Sketch of reduction argument

Yanjun Han (NYU
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Sketch of reduction argument

Stationary distribution 7 = (3, 2(k1_1)7 e ﬁ)

With constant probability, the chain starts from and stays at state 1 for a period of time,
then enters S; = {2, ..., k} and never returns

Conditioned on this,
o Time t spent in S> ~ Uniform[n]

o (Xo—tt1,...,Xn) is @ Markov chain with k — 1 states and transition matrix T

Yanjun Han (NYU) Next-symbol prediction 25



Sketch of reduction argument

Stationary distribution 7 = (3, 2(k1_1)7 e ﬁ)

With constant probability, the chain starts from and stays at state 1 for a period of time,
then enters S; = {2, ..., k} and never returns

Conditioned on this,
o Time t spent in S; =~ Uniform[n]
o (Xo—tt1,...,Xn) is @ Markov chain with k — 1 states and transition matrix T

n

Overeall risk ~ = E Prediction risk for T-chain with sample size t
n
t=1

~~Redundancy
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Summary

For k > 3,

~ ~

1 1
;Rediy!r: < Riskg,n < ;Redk,,,

o Theoretical consequence: it suffices to show both Red are ©(k? log n)

Yanjun Han (NYU) Next-symbol prediction
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Summary

For k > 3,

k,n ~ ~

1RedSym < Riskg,n < lRedk,n
n n

o Theoretical consequence: it suffices to show both Red are ©(k? log n)

o Algorithmic consequence: if Redy, is attained by a
n

Qxn = H th|xr—1
t=1

whose conditionals are fast to compute (sequential probability assignment), then we
have an equally fast predictor
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Summary

For k > 3,

k,n ~ ~

1RedSym < Riskg,n < lRedk,n
n n

o Theoretical consequence: it suffices to show both Red are ©(k? log n)

o Algorithmic consequence: if Redy, is attained by a
n

Qxn = H th|xr—1
t=1

whose conditionals are fast to compute (sequential probability assignment), then we
have an equally fast predictor

@ Bound redundancy from below: Bayesian argument and mutual information
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Bounding redundancy

Red, = inf sup KL(Pxn|Qxn)

Qxn PyneP

Yanjun Han (NYU)
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Bounding redundancy

Red, = inf sup Ep [Iog Qx: (X")}

XN Pyn€P
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Bounding redundancy

Red, = inf sup Ep [Iog Qx: (X")}

XN Pyn€P
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Bounding redundancy

Red, = inf sup Ep [Iog gx" (X")}

Qxn PyneP

Py
inf sup maxlog —(x
Qxn pynepP X" - Qxn ( )

IA
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Bounding redundancy

Red, = inf sup Ep [Iog gx" (X")}

Qxn PyneP

IA

Pxn
inf sup maxlo —(x
Qxn Pynep X € Qxr (<)

= IOg (Z P;I'}]ae)gj PXn(Xn)>
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Bounding redundancy

Red, = inf sup Ep [Iog CP)xn (X")}

Qxn PyneP

IA

Pxn
inf su maxlo X (x
Qxn Pxng’P 7% Qe (<)

— n
= log (Zﬁ Pglaé) Pxn(x )>
attained by normalized maximum likelihood (NML) distribution [shtarkov '87]

Q(x") o max_Pxn(x") = objective value of MLE
PyneP
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Bounding redundancy

Red, = inf sup Ep [Iog CP)xn (X")}

Qxn PyneP

IA

Pxn
inf su maxlo X (x
Qxn Pxngv 7% Qun (<)

— n
= log (Zﬁ Pglaé) Pxn(x ))
attained by normalized maximum likelihood (NML) distribution [shtarkov '87]

Q(x") o max_Pxn(x") = objective value of MLE
PyneP

@ This quantity (Shtarkov sum) can be bounded by combinatorial methods, leading to
Redg,, < k? log n for k-state Markov chains
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Bounding redundancy

Red, = inf sup Ep [Iog CP)Xn (X")}

Qxn PyneP

IA

Pxn
inf su maxlo X (x
Qxn Pxngv 7% Qun (<)

— n
= log (Zﬁ PTnaéD Pxn(x ))
attained by normalized maximum likelihood (NML) distribution [shtarkov '87]

Q(x") o max_Pxn(x") = objective value of MLE
PyneP

@ This quantity (Shtarkov sum) can be bounded by combinatorial methods, leading to
Redg,, < k? log n for k-state Markov chains

o However, NML distribution is not sequentially defined through its conditionals
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Bounding redundancy

For Markov chains, a simple sequential assignment is optimal up to constant factors
[Davisson '83, Csiszar-Shields '04]

) 1 k HJI'(:INU!

leading to add-1 estimators
Nj+1

N; + k

Qlxalx"") =
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Bounding redundancy

For Markov chains, a simple sequential assignment is optimal up to constant factors
[Davisson '83, Csiszar-Shields '04]

) 1 k HJI'(:INU!
Q(X):ng(k+1) ..... (N,"‘k-l)

leading to add-1 estimators

Qlxalx"") =

Comments:

@ At the heart, replacing [E by max,» is what allows risk bound without mixing
conditions

@ This information-theoretic technique departs from prevailing analysis based on
concentration inequalities
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Part II: Models with infinite memory
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Hidden Markov Model (HMM)

HMM = Markov chain observed in iid noise

Parameters: Transition probabilities M and Emission probabilities T

M . T
o Latent states: Z; — Z;11; Observation: Z; — X;
@ Examples:

o binary state binary observation (Gilbert-Elliot channel)
o Gaussian emission (extension of Gaussian mixtures: iid states)
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Hidden Markov Model (HMM)

HMM = Markov chain observed in iid noise

Parameters: Transition probabilities M and Emission probabilities T

M . T
o Latent states: Z; — Z;11; Observation: Z; — X;
@ Examples:

o binary state binary observation (Gilbert-Elliot channel)
o Gaussian emission (extension of Gaussian mixtures: iid states)

Long-range dependency: X1 A X1, ..., Xe| Xeg1, ..o, X
@ Commonly used for modeling natural language and speech signals

Goal: Px,,i|x,....x,

Yanjun Han (NYU) Next-symbol prediction 30



Main result

Theorem [H.-Jiang-Wu '24]

Consider HMM with |state space| = k and |observation space| = ¢.

. S . k¢ n  k? n
Optimal prediction risk :  Risk, < — I ké + — Iog pE
where

o the lower bound assumes sufficiently large n

o the upper bound is attained by an O+ _time dynamic programming algorithm
v
Remarks:
o Previous SOTA: O(Ioén) based on Markov approximation [Sharan-Kakade-Liang-Valiant '18]

k(k+d)log n
n

@ Gaussian emissions in d dimensions: , provided centers are in [—1,1]9.

@ Main idea: again redundancy
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From finite to infinite memory

Risk, < Re:" no longer holds. Instead,

Risk, < @ + Mem,

where Mem,, is a memory term (worst case over model class)

1 n
= Z /(X17 coey Xn—t; Xnt1 |Xn—t+17 cee aXn)
n =1 N——

past future recent
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From finite to infinite memory

For HMM, one can show:

log k
n

@ Memory is weak: Mem, < [Birch '62]

Approximations for the Entropy for Functions of
Markov Chains

John J. Birch

Ann. Math. Statist. 33(3): 930-938 (September, 1962). DOI: 10.1214/a0ms/1177704462

@ Red, < model complexity - log n still holds [Gassiat '18]: p—————

o model complexity < k? 4 k¢ for discrete
o model complexity < k? + kd for Gaussians

Elisabeth Gassiat

Universal Coding
and Order
[dentification by
Model Selection
Methods

S 4\ Springer
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Algorithm

Joint state-observation likelihood:
,3(Xn+17 Zn+1) — P(Zn+1)P(Xn+1‘Zn+l)

Probability assignment

n n 1 n n
Q"2 = L [ Me(zenalz0) T ] Telxilz0)
t=1 t=1

where M; and T; are add-1 estimators for the transition and emission probabilities
(applied to first t — 1)

t—1
+ i=1 12,+1_z and z;=z

K+,
Marginalize out state sequences:

Q(Xn+1) _ Z Q(Xn+1,Zn+1)

Zzn+1

1+ Zt ! ]-z,—z and x;=x
I+ 1,

Mi(Z'|z) = , Ti(x]z) =

As before averaging its conditionals yields an optimal predictor
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Experiment
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KL loss vs spectral gap for DP and Baum-Welch
(n = 50) KL loss vs n for Baum-Welch.

HMM with binary symmetric Markov chain and emission.
@ Baum-Welch: EM algorithm for HMM

@ Question: Does Baum-Welch work for prediction without conditions assumed for
parameter estimation [Yang-Balakrishnan-Wainwright '17]
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Hardness

For large state space:

@ Learning HMM is harder than certain hard problems such as Learning Parity in Noise

[Mossel-Roch '06] and CSPs [Sharan-Kakade-Liang-Valiant '18]

o Prediction is also hard [H.-Jiang-Wu '24]: k > polylog(n), achieving optimal
prediction is computationally hard based on these assumptions
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Renewal Process: a Puzzle

Yanjun Han (NYU) Next-symbol prediction
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Renewal process

Suppose for a given driver the time (in months) between consecutive traffic accidents are
iid with finite mean. Observe the driving record (0 for safety or 1 for accident) for the
past n months:

X" = 00001000000000000000100010000000001000000001
Goal: Predict next month by estimating P(Xp+1 = 1|X")
This model class is

@ Nonparametric: parametrized by interarrival time distribution

@ Infinite memory: can be recast as an HMM with state space N
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Renewal process

Suppose for a given driver the time (in months) between consecutive traffic accidents are
iid with finite mean. Observe the driving record (0 for safety or 1 for accident) for the
past n months:

X" = 00001000000000000000100010000000001000000001
Goal: Predict next month by estimating P(Xp+1 = 1|X")
This model class is

@ Nonparametric: parametrized by interarrival time distribution

@ Infinite memory: can be recast as an HMM with state space N
Optimal prediction error [H.-Jiang-Wu '24]: @(n_%)

o Based on Red, = ©(+/n) for renewal processes [Csiszar-Shields '96]

@ Open problem: What's a simple algorithm?
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Concluding remarks

Main result: Prediction risk via Redundancy

@ Theoretical consequence: Risk, < Rend" determines optimal prediction rate without

mixing conditions

o Algorithmic consequence: sequential probability assignment —> computationally
efficient prediction algorithm

Yanjun Han (NYU) Next-symbol prediction
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Concluding remarks

Many open problems

@ Stationarity: Needed for reduction to Red, not for bounding Red
@ How fast does the chain need to mix?
S I > (Iogn)2 Risk < K2
o Spectral gap 2 2%~ = Risk $ %

o Practical prediction algorithm (Laplace smoothing or Baum—Welch?)
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