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A “ChatGPT-style” problem

Given data X n ≡ (X1, . . . ,Xn), predict the next Xn+1.

Allowing soft decisions, by prediction we meant estimating PXn+1|Xn

Applications in NLP: autocomplete, text generation, LLM
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Modern LLM

https://platform.openai.com/docs/api-reference/chat/create
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Modeling dependent data

For these applications, iid model is clearly insufficient → Markov model [Shannon ’48, ’51]

(D) 
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The next increase in complexity would involve trigram frequencies but no more. The choice of 
a letter would depend on the preceding two letters but not on the message before that point. A 
set of trigram frequencies p(i, j ,k)  or equivalently a set of transition probabilities pij(k) would be 
required. Continuing in this way one obtains successively more complicated stochastic processes. 
In the general n-gram case a set of n-gram probabilities p(il, i2,. . . ,  in) or of transition probabilities 
Pil,i2,...,in_l (in) is required to specify the statistical structure. 

Stochastic processes can also be defined which produce a text consisting of a sequence of "words." 
Suppose there are five letters A, B, C, D, E and 16 "words" in the language with associated probabil- 
ities: 

.10A .16BEBE . l l C A B E D  .04DEB 

.04 ADEB .04 BED .05 CEED . 15 DEED 

.05 ADEE .02 BEED .08 DAB .01 EAB 

.01 BADD .05 CA .04 DAD .05 EE 

Suppose successive "words" are chosen independently and are separated by a space. A typical mes- 
sage might be: 

DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE BEBE BEBE ADEE BED DEED 
DEED CEED ADEE A DEED DEED BEBE CABED BEBE BED DAB DEED ADEB. 

If all the words are of finite length this process is equivalent to one of the preceding type, but the 
description may be simpler in terms of the word structure and probabilities. We may also generalize 
here and introduce transition probabilities between words, etc. 

These artificial languages are useful in constructing simple problems and examples to illustrate various pos- 
sibilities. We can also approximate to a natural language by means of a series of simple artificial languages. 
The zero-order approximation is obtained by choosing all letters with the same probability and independently. 
The first-order approximation is obtained by choosing successive letters independently but each letter having the 
same probability that it has in the natural language. 5 Thus, in the first-order approximation to English, E is cho- 
sen with probability. 12 (its frequency in normal English) and W with probability .02, but there is no influence 
between adjacent letters and no tendency to form the preferred digrams such as TH, ED, etc. In the second-order 
approximation, digram structure is introduced. After a letter is chosen, the next one is chosen in accordance with 
the frequencies with which the various letters follow the first one. This requires a table of digram frequencies 
Pi (j) .  In the third-order approximation, trigram structure is introduced. Each letter is chosen with probabilities 
which depend on the preceding two letters. 

I I I .  THE SERIES OF APPROXIMATIONS TO ENGLISH 

To give a visual idea of how this series of processes approaches a language, typical sequences in the approxima- 
tions to English have been constructed and are given below. In all cases we have assumed a 27-symbol "alphabet," 
the 26 letters and a space. 

1. Zero-order approximation (symbols independent and equiprobable). 

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZLHJQD. 

2. First-order approximation (symbols independent but with frequencies of English text). 

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH 
BRL. 

3. Second-order approximation (digram structure as in English). 

5Letter, digram and trigram frequencies are given in Secret and Urgent by Fletcher Pratt, Blue Ribbon Books, 1939. Word frequencies 
are tabulated in Relative Frequency of English Speech Sounds, G. Dewey, Harvard University Press, 1923. 
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ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE 
AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE. 

4. Third-order approximation (trigram structure as in English). 

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES 
OF THE REPTAGIN IS REGOACTIONA OF CRE. 

. First-order word approximation. Rather than continue with tetragram . . . . .  n-gram structure it is easier and 
better to jump at this point to word units. Here words are chosen independently but with their appropriate 
frequencies. 

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL 
HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE 
MESSAGE HAD BE THESE. 

6. Second-order word approximation. The word transition probabilities are correct but no further structure is 
included. 

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER 
OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME 
OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED. 

The resemblance to ordinary English text increases quite noticeably at each of the above steps. Note that 
these samples have reasonably good structure out to about twice the range that is taken into account in their 
construction. Thus in (3) the statistical process insures reasonable text for two-letter sequences, but four-letter 
sequences from the sample can usually be fitted into good sentences. In (6) sequences of four or more words can 
easily be placed in sentences without unusual or strained constructions. The particular sequence of ten words 
"attack on an English writer that the character of this" is not at all unreasonable. It appears then that a sufficiently 
complex stochastic process will give a satisfactory representation of a discrete source. 

The first two samples were constructed by the use of a book of random numbers in conjunction with (for 
example 2) a table of letter frequencies. This method might have been continued for (3), (4) and (5), since 
digram, trigram and word frequency tables are available, but a simpler equivalent method was used. To construct 
(3) for example, one opens a book at random and selects a letter at random on the page. This letter is recorded. 
The book is then opened to another page and one reads until this letter is encountered. The succeeding letter 
is then recorded. Turning to another page this second letter is searched for and the succeeding letter recorded, 
etc. A similar process was used for (4), (5) and (6). It would be interesting if further approximations could be 
constructed, but the labor involved becomes enormous at the next stage. 

IV. GRAPHICAL REPRESENTATION OF A MARKOFF PROCESS 

Stochastic processes of the type described above are known mathematically as discrete Markoff processes and 
have been extensively studied in the literature. 6 The general case can be described as follows: There exist a finite 

number of possible "states" of a system; $1, $2, . . . ,  Sn. In addition there is a set of transition probabilities; Pi(j) 
the probability that if the system is in state Si it will next go to state Sj .  To make this Markoff process into an 
information source we need only assume that a letter is produced for each transition from one state to another. 
The states will correspond to the "residue of influence" from preceding letters. 

The situation can be represented graphically as shown in Figs. 3, 4 and 5. The "states" are the junction points 
in the graph and the probabilities and letters produced for a transition are given beside the corresponding line. 
Figure 3 is for the example B in Section 2, while Fig. 4 corresponds to the example C. In Fig. 3 there is only one 
state since successive letters are independent. In Fig. 4 there are as many states as letters. If a trigram example 
were constructed there would be at m o s t  n 2 states corresponding to the possible pairs of letters preceding the one 
being chosen. Figure 5 is a graph for the case of word structure in example D. Here S corresponds to the "space" 
symbol. 

6For a detailed treatment see M. FrEchet, Mdthode des fonctions arbitraires. Thdorie des dvdnements en chafne dans le cas d'un 
nombre fini d'dtats possibles. Paris, Gauthier-Villars, 1938. 
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Part I: Markov chains
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Statistical inference for Markov chains

Parameter estimation:

Transition matrix [Bartlett ’51, Whittle ’55, Anderson-Goodman ’57, Billingsley ’61, Wolfer-Kontorovich ’19 ...]

Properties
Order [Csiszár-Shields ’00, van Handel ’11]

Mixing time and spectral gap [Hsu et al ’15, Levin-Peres ’16]

Entropy rate [Kamath-Verdú ’16, Han et al ’18]

Property testing [Daskalakis et al ’18, Cherapanamjeri-Bartlett ’19 ...]

Hidden Markov: [Douc-Moulines-Olsson-van Handel ’11, Abraham-Naulet-Gassiat ’21]

Prediction problem: a paradigm shift

The quantity to be estimated (conditional distribution of the next state PXn+1|Xn )
depends on the sample path itself; this is precisely why it is relevant for applications
such as language models

Estimation requires (strong) assumptions, prediction requires none
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Property testing [Daskalakis et al ’18, Cherapanamjeri-Bartlett ’19 ...]

Hidden Markov: [Douc-Moulines-Olsson-van Handel ’11, Abraham-Naulet-Gassiat ’21]

Prediction problem: a paradigm shift

The quantity to be estimated (conditional distribution of the next state PXn+1|Xn )
depends on the sample path itself; this is precisely why it is relevant for applications
such as language models

Estimation requires (strong) assumptions, prediction requires none

Yanjun Han (NYU) Next-symbol prediction 6



Prevailing assumptions

The chain mixes rapidly (large spectral gap) and stationary probabilities are not too small

Both are necessary for estimation, but neither is needed for prediction

If the chain moves at glacial speed, it is actually easy to predict
Observing aaaaaaaaaaaaaa, predict a

If a symbol is very rare, it is unlikely to appear next

Goal: understand optimal prediction of Markov chains in an assumption-free framework

Challenge: lack of concentration results

New idea: information-theoretic techniques
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Example

Data: abaaabbccaabcaba

?

Last symbol X16 = a

Learn from historical examples: In the first 15 symbols,
a appeared 7 times

aa: 3 times
ab: 4 times
ac: 0 times

Predictor for X17:

Empirical transition frequencies ( 3
7
, 4
7
, 0
7
)

Additively smoothed version:

Laplace’s rule (add-1): ( 4
10 ,

5
10 ,

1
10 )

Krichevsky-Trofimov (add- 12 ): ( 7
17 ,

9
17 ,

1
17 )
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Smoothing in N-gram language models
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Smoothing in N-gram language models

Raw bigram counts:

36 CHAPTER 3 • N-GRAM LANGUAGE MODELS

might turn out that in some other corpus or context Chinese is a very unlikely word.
But it is the probability that makes it most likely that Chinese will occur 400 times
in a million-word corpus. We present ways to modify the MLE estimates slightly to
get better probability estimates in Section 3.6.

Let’s move on to some examples from a real but tiny corpus, drawn from the
now-defunct Berkeley Restaurant Project, a dialogue system from the last century
that answered questions about a database of restaurants in Berkeley, California (Ju-
rafsky et al., 1994). Here are some sample user queries (text-normalized, by lower
casing and with punctuation striped) (a sample of 9332 sentences is on the website):

can you tell me about any good cantonese restaurants close by
tell me about chez panisse
i’m looking for a good place to eat breakfast
when is caffe venezia open during the day

Figure 3.1 shows the bigram counts from part of a bigram grammar from text-
normalized Berkeley Restaurant Project sentences. Note that the majority of the
values are zero. In fact, we have chosen the sample words to cohere with each other;
a matrix selected from a random set of eight words would be even more sparse.

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 3.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray. Each cell shows the count of
the column label word following the row label word. Thus the cell in row i and column want
means that want followed i 827 times in the corpus.

Figure 3.2 shows the bigram probabilities after normalization (dividing each cell
in Fig. 3.1 by the appropriate unigram for its row, taken from the following set of
unigram counts):

i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278

Here are a few other useful probabilities:

P(i|<s>) = 0.25 P(english|want) = 0.0011
P(food|english) = 0.5 P(</s>|food) = 0.68

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:

P(<s> i want english food </s>)

= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)

= 0.25×0.33×0.0011×0.5×0.68
= 0.000031
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Smoothing in N-gram language models

Add-1 bigram counts:

46 CHAPTER 3 • N-GRAM LANGUAGE MODELS

Instead of changing both the numerator and denominator, it is convenient to describe
how a smoothing algorithm affects the numerator, by defining an adjusted count c∗.
This adjusted count is easier to compare directly with the MLE counts and can be
turned into a probability like an MLE count by normalizing by N. To define this
count, since we are only changing the numerator in addition to adding 1 we’ll also
need to multiply by a normalization factor N

N+V :

c∗i = (ci +1)
N

N +V
(3.25)

We can now turn c∗i into a probability P∗i by normalizing by N.
A related way to view smoothing is as discounting (lowering) some non-zerodiscounting

counts in order to get the probability mass that will be assigned to the zero counts.
Thus, instead of referring to the discounted counts c∗, we might describe a smooth-
ing algorithm in terms of a relative discount di, the ratio of the discounted counts todiscount

the original counts:

di =
c∗i
ci

Now that we have the intuition for the unigram case, let’s smooth our Berkeley
Restaurant Project bigrams. Figure 3.6 shows the add-one smoothed counts for the
bigrams in Fig. 3.1.

i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 3.6 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Figure 3.7 shows the add-one smoothed probabilities for the bigrams in Fig. 3.2.
Recall that normal bigram probabilities are computed by normalizing each row of
counts by the unigram count:

PMLE(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(3.26)

For add-one smoothed bigram counts, we need to augment the unigram count by the
number of total word types in the vocabulary V :

PLaplace(wn|wn−1) =
C(wn−1wn)+1∑
w (C(wn−1w)+1)

=
C(wn−1wn)+1
C(wn−1)+V

(3.27)

Thus, each of the unigram counts given in the previous section will need to be aug-
mented by V = 1446. The result is the smoothed bigram probabilities in Fig. 3.7.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
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Smoothing in N-gram language models

Estimated bigram probabilities:

46 CHAPTER 3 • N-GRAM LANGUAGE MODELS

Instead of changing both the numerator and denominator, it is convenient to describe
how a smoothing algorithm affects the numerator, by defining an adjusted count c∗.
This adjusted count is easier to compare directly with the MLE counts and can be
turned into a probability like an MLE count by normalizing by N. To define this
count, since we are only changing the numerator in addition to adding 1 we’ll also
need to multiply by a normalization factor N

N+V :

c∗i = (ci +1)
N

N +V
(3.25)

We can now turn c∗i into a probability P∗i by normalizing by N.
A related way to view smoothing is as discounting (lowering) some non-zerodiscounting

counts in order to get the probability mass that will be assigned to the zero counts.
Thus, instead of referring to the discounted counts c∗, we might describe a smooth-
ing algorithm in terms of a relative discount di, the ratio of the discounted counts todiscount

the original counts:

di =
c∗i
ci

Now that we have the intuition for the unigram case, let’s smooth our Berkeley
Restaurant Project bigrams. Figure 3.6 shows the add-one smoothed counts for the
bigrams in Fig. 3.1.

i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 3.6 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Figure 3.7 shows the add-one smoothed probabilities for the bigrams in Fig. 3.2.
Recall that normal bigram probabilities are computed by normalizing each row of
counts by the unigram count:

PMLE(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(3.26)

For add-one smoothed bigram counts, we need to augment the unigram count by the
number of total word types in the vocabulary V :

PLaplace(wn|wn−1) =
C(wn−1wn)+1∑
w (C(wn−1w)+1)

=
C(wn−1wn)+1
C(wn−1)+V

(3.27)

Thus, each of the unigram counts given in the previous section will need to be aug-
mented by V = 1446. The result is the smoothed bigram probabilities in Fig. 3.7.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be

3.6 • SMOOTHING, INTERPOLATION, AND BACKOFF 47

i want to eat chinese food lunch spend
i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 3.7 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

i want to eat chinese food lunch spend
i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 3.8 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.

computed by Eq. 3.28. Figure 3.8 shows the reconstructed counts.

c∗(wn−1wn) =
[C(wn−1wn)+1]×C(wn−1)

C(wn−1)+V
(3.28)

Note that add-one smoothing has made a very big change to the counts. Com-
paring Fig. 3.8 to the original counts in Fig. 3.1, we can see that C(want to) changed
from 608 to 238! We can see this in probability space as well: P(to|want) decreases
from 0.66 in the unsmoothed case to 0.26 in the smoothed case. Looking at the dis-
count d (the ratio between new and old counts) shows us how strikingly the counts
for each prefix word have been reduced; the discount for the bigram want to is 0.39,
while the discount for Chinese food is 0.10, a factor of 10! The sharp change occurs
because too much probability mass is moved to all the zeros.

3.6.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a
fractional count k (0.5? 0.01?). This algorithm is therefore called add-k smoothing.add-k

P∗Add-k(wn|wn−1) =
C(wn−1wn)+ k
C(wn−1)+ kV

(3.29)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

Yanjun Han (NYU) Next-symbol prediction 9



How to analyze these estimators without assumptions?

Wishful thinking (ignore smoothing for now):

Suppose the chain is stationary with stationary distribution (πa, πb, πc) and transition
matrix M.

Number of occurrences of a: Na ≈ nπa

Number of occurrences of ab: Nab ≈ nπaM(b|a)
So

Nab

Na

≈ M(b|a)

Let’s attempt to analyze the denominator
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Key difficulty

Suppose the chain is stationary with stationary distribution (πa, πb, πc).

Empirical frequency is unbiased: E[π̂a] = E[Na

n
] = πa

Concentration: [Lezaud ’98, Pauline ’15]

Var(π̂a) ≲
1

n · spectral gap

P (|π̂a − πa| > t) ≤ exp

(
− cnt2

πa + t
· spectral gap

)
This is tight in worst case; but spectral gap can be arbitrarily small

So we need some new ideas other than applying concentration
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Mathematical formulation

Observe a single trajectory X n = (X1, . . . ,Xn) of a random process taking values in
a finite set [k] ≡ {1, . . . , k}

Consider Kullback-Leibler loss:

KL(P∥Q) = EX∼P

[
log

P

Q
(X )

]
=

k∑
j=1

P(j) log
P(j)

Q(j)

An estimate for PXn+1|Xn ⇐⇒ a conditional distribution QXn+1|Xn

Average prediction risk:
E[KL(PXn+1|Xn∥QXn+1|Xn )]
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Optimal (minimax) prediction risk

Model class P = collection of joint distributions of (X1, . . . ,Xn+1)

iid data

Markov model

Hidden Markov model ...

the optimal prediction risk is:

Riskn ≡ Riskn(P) ≜ inf
QXn+1|Xn

sup
P
Xn+1∈P

EP [KL(PXn+1|Xn∥QXn+1|Xn )]
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Existing results: iid data

X1,X2, . . . ∼ P on [k]: reduces to density estimation under KL loss

Riskn = inf
Q

sup
P

E[KL(P∥Q)]

Minimax rate is parametric:

Riskn ≍ k

n
, k ≲ n

achieved by, e.g., add-one estimator (Laplace rule of succession)

Q(j) =
Nj + 1

n + k
, Nj = number of occurrences of j

Explicit computation with binomial: E[KL(P∥Q)] ≤ E[χ2(P∥Q)] ≤ k−1
n+1

Furthermore

For fixed k: Riskn = (1 + o(1)) k−1
2n

[Braess et al ’02]

For k ≫ n: Riskn = (1 + o(1)) log k
n

[Paninski ’04]
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Existing results: Markov model

X1,X2, . . .: stationary first-order Markov chain with k states

Optimal prediction risk: Riskk,n := inf supE[KL(PXn+1|Xn∥QXn+1|Xn )]

Two states: [Falahatgar-Orlitsky-Pichapati-Suresh ’16]

Risk2,n ≍ log log n

n

Slower than parametric (!)

k states: [Hao-Orlitsky-Pichapati ’18]

Riskk,n ≳
k log log n

n

Claimed Riskk,n ≲ k2 log log n
n

, but implicitly assumed fast mixing
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Main result

Theorem [H.-Jana-Wu ’21]

For all 3 ≤ k ≲
√
n,

Riskk,n ≍ k2

n
log

n

k2

Remarks:

Lower bound holds even for irreducible reversible chains

Sample complexity (minimal sample size to achieve error ϵ) vs model complexity
(number of parameters d)

n∗(d , ϵ) ≍


d
ϵ

iid
d
ϵ
log log 1

ϵ
Markov with 2 states

d
ϵ
log 1

ϵ
Markov with k ≥ 3 states.

Strict but only logarithmic increase of sample complexity due to memory in the data
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Higher-order Markov chains

Optimal rate for mth-order Markov chains: km+1

n
log n

km+1 for k ≥ 2

The rate log log n
n

is highly special and only for binary 1st-order Markov chains

Next: only focus on 1st-order Markov chains.
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An optimal estimator

Cesàro mean of add-1 estimators averaged over different sample sizes:

Given trajectory xn = (x1, . . . , xn), add-1 estimator for transition probability
M(j |i) ≡ PXn+1|Xn (j |i):

M̂xn (j |i) ≜
Nij + 1

Ni + k
,

where Ni = number of occurrences of i and Nij = number of occurrences of
consecutive ij

Final estimator:

Q(xn+1|xn) ≜
1

n

n∑
t=1

M̂xnn−t+1
(xn+1|xn)︸ ︷︷ ︸

add-1 applied to most recent t observations

Such Cesàro-mean-type strategy appeared before in density estimation literature
[Yang-Barron ’99]
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Open question

Open question: simple add-1 estimator with full data is optimal?

Numerical experiments suggest adaptivity to mixing time:

102 103

Sample size

10 2

10 1

100

KL
 lo

ss

k = 2
k = 5
k = 10
k = 20
k = 30

Large spectral gap γ = 0.2.
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Small spectral gap γ = 0.1.

KL prediction loss: 95% confidence intervals over 500 independent trials.
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Plan next

Characterizing risk by redundancy

Bounding redundancy

Conclusions and discussions
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Redundancy

Let P be a collection of joint distributions:

Redn ≜ inf
QXn

sup
PXn∈P

KL(PXn∥QXn )

A key quantity in information theory (universal compression and prediction)

Interpretation: best uniform approximation error of a class (not an estimation error!)

Rule of thumb:
Redn ≍ model complexity · log n

Redundancy-risk inequality:

Redn ≤
n∑

m=1

Riskm

We will show for Markov model: Riskn ≍ Redn
n

.
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Risk vs Redundancy: upper bound

Riskk,n−1 ≲
Redk,n
n − 1

Idea: “batch-to-online”

Any joint distribution QXn induces a Cesàro-mean style predictor:

Q̃Xn|Xn−1(xn|xn−1) ≜
1

n − 1

n∑
t=2

QXt |X t−1(xn|xn−1
n−t+1)

Prediction risk:

E[KL(PXn|Xn−1
∥Q̃Xn|Xn−1)]

≤ 1

n − 1

n∑
t=1

E[KL(PXt |X t−1∥QX t |X t−1)] convexity and stationarity

=
1

n − 1
KL(PXn∥QXn ) chain rule
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Risk vs Redundancy: lower bound

Riskk,n ≳
1

n
Redsymk−1,n

where

Redsymk−1,n = redundancy of Markov chain with k − 1 states and symmetric transition
matrix.

We will show
Redsymk−1,n ≍ model complexity︸ ︷︷ ︸

≍k2

· log n
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Sketch of reduction argument

Embed a (k − 1)-state chain into a state space of size k:

M =


1− 1

n
1

n(k−1)
1

n(k−1)
· · · 1

n(k−1)

1/n
1/n
...

1/n

(
1− 1

n

)
T


Here T is a symmetric transition matrix for k − 1 states to be optimized (randomized)
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Sketch of reduction argument

1

2 3 . . . k

S1
S2

1
n(k−1)

1
n(k−1) 1

n(k−1)

1− 1
n

1
n

(1− 1
n
)T2,3

(1− 1
n
)T2,k

(1− 1
n
)T2,2

1
n

(1− 1
n
)T3,3

(1− 1
n
)T3,k

1
n

1
n

(1− 1
n
)Tk,k
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Sketch of reduction argument

Stationary distribution π = ( 1
2
, 1
2(k−1)

, · · · , 1
2(k−1)

);

With constant probability, the chain starts from and stays at state 1 for a period of time,
then enters S2 = {2, . . . , k} and never returns

Conditioned on this,

Time t spent in S2 ≈ Uniform[n]

(Xn−t+1, . . . ,Xn) is a Markov chain with k − 1 states and transition matrix T

Overeall risk ≈ 1

n

n∑
t=1

Prediction risk for T -chain with sample size t︸ ︷︷ ︸
≈Redundancy
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Summary

For k ≥ 3,
1

n
Redsymk,n ≲ Riskk,n ≲

1

n
Redk,n

Theoretical consequence: it suffices to show both Red are Θ(k2 log n)

Algorithmic consequence: if Redk,n is attained by a

QXn =
n∏

t=1

QXt |X t−1

whose conditionals are fast to compute (sequential probability assignment), then we
have an equally fast predictor

Bound redundancy from below: Bayesian argument and mutual information
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Bounding redundancy

Redn = inf
QXn

sup
PXn∈P

KL(PXn∥QXn )

≤ inf
QXn

sup
PXn∈P

max
xn

log
PXn

QXn
(xn)

= log

(∑
xn

max
PXn∈P

PXn (xn)

)

attained by normalized maximum likelihood (NML) distribution [Shtarkov ’87]

Q(xn) ∝ max
PXn∈P

PXn (xn) = objective value of MLE

This quantity (Shtarkov sum) can be bounded by combinatorial methods, leading to
Redk,n ≲ k2 log n for k-state Markov chains

However, NML distribution is not sequentially defined through its conditionals

Yanjun Han (NYU) Next-symbol prediction 27



Bounding redundancy

Redn = inf
QXn

sup
PXn∈P

EP

[
log

PXn

QXn
(X n)

]

≤ inf
QXn

sup
PXn∈P

max
xn

log
PXn

QXn
(xn)

= log

(∑
xn

max
PXn∈P

PXn (xn)

)

attained by normalized maximum likelihood (NML) distribution [Shtarkov ’87]

Q(xn) ∝ max
PXn∈P

PXn (xn) = objective value of MLE

This quantity (Shtarkov sum) can be bounded by combinatorial methods, leading to
Redk,n ≲ k2 log n for k-state Markov chains

However, NML distribution is not sequentially defined through its conditionals

Yanjun Han (NYU) Next-symbol prediction 27



Bounding redundancy

Redn = inf
QXn

sup
PXn∈P

EP

[
log

PXn

QXn
(X n)

]

≤ inf
QXn

sup
PXn∈P

max
xn

log
PXn

QXn
(xn)

= log

(∑
xn

max
PXn∈P

PXn (xn)

)

attained by normalized maximum likelihood (NML) distribution [Shtarkov ’87]

Q(xn) ∝ max
PXn∈P

PXn (xn) = objective value of MLE

This quantity (Shtarkov sum) can be bounded by combinatorial methods, leading to
Redk,n ≲ k2 log n for k-state Markov chains

However, NML distribution is not sequentially defined through its conditionals

Yanjun Han (NYU) Next-symbol prediction 27



Bounding redundancy

Redn = inf
QXn

sup
PXn∈P

EP

[
log

PXn

QXn
(X n)

]
≤ inf

QXn
sup

PXn∈P
max
xn

log
PXn

QXn
(xn)

= log

(∑
xn

max
PXn∈P

PXn (xn)

)

attained by normalized maximum likelihood (NML) distribution [Shtarkov ’87]

Q(xn) ∝ max
PXn∈P

PXn (xn) = objective value of MLE

This quantity (Shtarkov sum) can be bounded by combinatorial methods, leading to
Redk,n ≲ k2 log n for k-state Markov chains

However, NML distribution is not sequentially defined through its conditionals

Yanjun Han (NYU) Next-symbol prediction 27



Bounding redundancy

Redn = inf
QXn

sup
PXn∈P

EP

[
log

PXn

QXn
(X n)

]
≤ inf

QXn
sup

PXn∈P
max
xn

log
PXn

QXn
(xn)

= log

(∑
xn

max
PXn∈P

PXn (xn)

)

attained by normalized maximum likelihood (NML) distribution [Shtarkov ’87]

Q(xn) ∝ max
PXn∈P

PXn (xn) = objective value of MLE

This quantity (Shtarkov sum) can be bounded by combinatorial methods, leading to
Redk,n ≲ k2 log n for k-state Markov chains

However, NML distribution is not sequentially defined through its conditionals

Yanjun Han (NYU) Next-symbol prediction 27



Bounding redundancy

Redn = inf
QXn

sup
PXn∈P

EP

[
log

PXn

QXn
(X n)

]
≤ inf

QXn
sup

PXn∈P
max
xn

log
PXn

QXn
(xn)

= log

(∑
xn

max
PXn∈P

PXn (xn)

)

attained by normalized maximum likelihood (NML) distribution [Shtarkov ’87]

Q(xn) ∝ max
PXn∈P

PXn (xn) = objective value of MLE

This quantity (Shtarkov sum) can be bounded by combinatorial methods, leading to
Redk,n ≲ k2 log n for k-state Markov chains

However, NML distribution is not sequentially defined through its conditionals

Yanjun Han (NYU) Next-symbol prediction 27



Bounding redundancy

Redn = inf
QXn

sup
PXn∈P

EP

[
log

PXn

QXn
(X n)

]
≤ inf

QXn
sup

PXn∈P
max
xn

log
PXn

QXn
(xn)

= log

(∑
xn

max
PXn∈P

PXn (xn)

)

attained by normalized maximum likelihood (NML) distribution [Shtarkov ’87]

Q(xn) ∝ max
PXn∈P

PXn (xn) = objective value of MLE

This quantity (Shtarkov sum) can be bounded by combinatorial methods, leading to
Redk,n ≲ k2 log n for k-state Markov chains

However, NML distribution is not sequentially defined through its conditionals

Yanjun Han (NYU) Next-symbol prediction 27



Bounding redundancy

Redn = inf
QXn

sup
PXn∈P

EP

[
log

PXn

QXn
(X n)

]
≤ inf

QXn
sup

PXn∈P
max
xn

log
PXn

QXn
(xn)

= log

(∑
xn

max
PXn∈P

PXn (xn)

)

attained by normalized maximum likelihood (NML) distribution [Shtarkov ’87]

Q(xn) ∝ max
PXn∈P

PXn (xn) = objective value of MLE

This quantity (Shtarkov sum) can be bounded by combinatorial methods, leading to
Redk,n ≲ k2 log n for k-state Markov chains

However, NML distribution is not sequentially defined through its conditionals

Yanjun Han (NYU) Next-symbol prediction 27



Bounding redundancy

For Markov chains, a simple sequential assignment is optimal up to constant factors
[Davisson ’83, Csiszár-Shields ’04]

Q(xn) =
1

k

k∏
i=1

∏k
j=1 Nij !

k · (k + 1) · · · · · (Ni + k − 1)
.

leading to add-1 estimators

Q(xn|xn−1) =
Nij + 1

Ni + k

Comments:

At the heart, replacing E by maxxn is what allows risk bound without mixing
conditions

This information-theoretic technique departs from prevailing analysis based on
concentration inequalities
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Part II: Models with infinite memory
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Hidden Markov Model (HMM)

HMM = Markov chain observed in iid noise

Parameters: Transition probabilities M and Emission probabilities T

Latent states: Zt
M−→ Zt+1; Observation: Zt

T−→ Xt

Examples:
binary state binary observation (Gilbert-Elliot channel)
Gaussian emission (extension of Gaussian mixtures: iid states)

Long-range dependency: Xn+1 ̸⊥⊥ X1, . . . ,Xt |Xt+1, . . . ,Xn

Commonly used for modeling natural language and speech signals

Goal: PXn+1|X1,...,Xn

Yanjun Han (NYU) Next-symbol prediction 30



Hidden Markov Model (HMM)

HMM = Markov chain observed in iid noise

Parameters: Transition probabilities M and Emission probabilities T

Latent states: Zt
M−→ Zt+1; Observation: Zt

T−→ Xt

Examples:
binary state binary observation (Gilbert-Elliot channel)
Gaussian emission (extension of Gaussian mixtures: iid states)

Long-range dependency: Xn+1 ̸⊥⊥ X1, . . . ,Xt |Xt+1, . . . ,Xn

Commonly used for modeling natural language and speech signals

Goal: PXn+1|X1,...,Xn

Yanjun Han (NYU) Next-symbol prediction 30



Main result

Theorem [H.-Jiang-Wu ’24]

Consider HMM with |state space| = k and |observation space| = ℓ.

Optimal prediction risk : Riskn ≍ kℓ

n
log

n

kℓ
+

k2

n
log

n

k2

where

the lower bound assumes sufficiently large n

the upper bound is attained by an nO(k2+kℓ)-time dynamic programming algorithm

Remarks:

Previous SOTA: O( 1
log n

) based on Markov approximation [Sharan-Kakade-Liang-Valiant ’18]

Gaussian emissions in d dimensions: k(k+d) log n
n

, provided centers are in [−1, 1]d .

Main idea: again redundancy
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From finite to infinite memory

Riskn ≤ Redn
n

no longer holds. Instead,

Riskn ≤ Redn
n

+Memn

where Memn is a memory term (worst case over model class)

1

n

n∑
t=1

I (X1, . . . ,Xn−t︸ ︷︷ ︸
past

;Xn+1︸︷︷︸
future

|Xn−t+1, . . . ,Xn︸ ︷︷ ︸
recent

)
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From finite to infinite memory

For HMM, one can show:

Memory is weak: Memn ≤ log k
n

[Birch ’62]

Redn ≍ model complexity · log n still holds [Gassiat ’18]:
model complexity ≍ k2 + kℓ for discrete
model complexity ≍ k2 + kd for Gaussians
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Algorithm

Joint state-observation likelihood:

P(xn+1, zn+1) = P(zn+1)P(xn+1|zn+1)

Probability assignment

Q(xn+1, zn+1) =
1

k

n∏
t=1

Mt(zt+1|zt)
n∏

t=1

Tt(xt |zt)

where Mt and Tt are add-1 estimators for the transition and emission probabilities
(applied to first t − 1)

Mt(z
′|z) =

1 +
∑t−1

i=1 1zi+1=z′ and zi=z

k +
∑t−1

i=1 1zi=z

, Tt(x |z) =
1 +

∑t−1
i=1 1zi=z and xi=x

l +
∑t−1

i=1 1zi=z

.

Marginalize out state sequences:

Q(xn+1) =
∑
zn+1

Q(xn+1, zn+1)

As before averaging its conditionals yields an optimal predictor
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Experiment

0.0 0.1 0.2 0.3 0.4 0.5
spectral gap

0.00
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0.07

KL
 lo

ss
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BW

KL loss vs spectral gap for DP and Baum-Welch
(n = 50) KL loss vs n for Baum-Welch.

HMM with binary symmetric Markov chain and emission.

Baum-Welch: EM algorithm for HMM

Question: Does Baum-Welch work for prediction without conditions assumed for
parameter estimation [Yang-Balakrishnan-Wainwright ’17]
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Hardness

For large state space:

Learning HMM is harder than certain hard problems such as Learning Parity in Noise
[Mossel-Roch ’06] and CSPs [Sharan-Kakade-Liang-Valiant ’18]

Prediction is also hard [H.-Jiang-Wu ’24]: k ≥ polylog(n), achieving optimal
prediction is computationally hard based on these assumptions
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Renewal Process: a Puzzle
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Renewal process

Suppose for a given driver the time (in months) between consecutive traffic accidents are
iid with finite mean. Observe the driving record (0 for safety or 1 for accident) for the
past n months:

X n = 00001000000000000000100010000000001000000001

Goal: Predict next month by estimating P(Xn+1 = 1|X n)

This model class is

Nonparametric: parametrized by interarrival time distribution

Infinite memory: can be recast as an HMM with state space N

Optimal prediction error [H.-Jiang-Wu ’24]: Θ(n− 1
2 )

Based on Redn = Θ(
√
n) for renewal processes [Csiszár-Shields ’96]

Open problem: What’s a simple algorithm?
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Concluding remarks

Main result: Prediction risk via Redundancy

Theoretical consequence: Riskn ≍ Redn
n

determines optimal prediction rate without
mixing conditions

Algorithmic consequence: sequential probability assignment =⇒ computationally
efficient prediction algorithm

Yanjun Han (NYU) Next-symbol prediction 38



Concluding remarks

Many open problems

Stationarity: Needed for reduction to Red, not for bounding Red

How fast does the chain need to mix?

Spectral gap ≳ (log n)2

k
=⇒ Risk ≲ k2

n

Practical prediction algorithm (Laplace smoothing or Baum–Welch?)
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