Constrained Functional Value under General Convexity Conditions with Applications to Distributed Simulation

Yanjun Han (Stanford EE)

ISIT 2020

A motivating example

Log-concave function

A non-negative function f on \mathbb{R}^n is called log-concave iff

$$f(x) = \exp(-g(x))$$

for some convex function g.

A motivating example

Log-concave function

A non-negative function f on \mathbb{R}^n is called log-concave iff

$$f(x) = \exp(-g(x))$$

for some convex function g.

Theorem (Bobkov and Madiman 2011)

For any log-concave density f on \mathbb{R}^n , its differential entropy $h(f) = \int_{\mathbb{R}^n} -f(x) \log f(x) dx$ satisfies

$$\log\left(\frac{1}{f_{\max}}\right) \leq h(f) \leq \log\left(\frac{1}{f_{\max}}\right) + n,$$

where $f_{\max} = \sup_{x \in \mathbb{R}^n} f(x)$ is the sup-norm of the density f.

Extension to β -concave densities

β -concave function

A non-negative function f on \mathbb{R}^n is called β -concave iff

$$f(x) = g(x)^{-\beta}$$

for some convex function g.

Extension to β -concave densities

β -concave function

A non-negative function f on \mathbb{R}^n is called β -concave iff

$$f(x) = g(x)^{-\beta}$$

for some convex function g.

Theorem (Bobkov and Madiman 2011, Fradelizi et al. 2020)

For any β -concave density f on \mathbb{R}^n with $\beta > n$, it holds that

$$\log\left(\frac{1}{f_{\max}}\right) \leq h(f) \leq \log\left(\frac{1}{f_{\max}}\right) + \sum_{i=1}^{n} \frac{\beta}{\beta - i},$$

Extension to β -concave densities

$\beta\text{-concave}$ function

A non-negative function f on \mathbb{R}^n is called β -concave iff

$$f(x) = g(x)^{-\beta}$$

for some convex function g.

Theorem (Bobkov and Madiman 2011, Fradelizi et al. 2020)

For any β -concave density f on \mathbb{R}^n with $\beta > n$, it holds that

$$\log\left(\frac{1}{f_{\mathsf{max}}}\right) \le h(f) \le \log\left(\frac{1}{f_{\mathsf{max}}}\right) + \sum_{i=1}^{n} \frac{\beta}{\beta - i},$$

Intuition

The value of the density functional is constrained in a small range when the density satisfies certain convexity conditions.

A general setup

Question

Is there a general phenomenon for a wide class of functionals and convexity conditions?

A general setup

Question

Is there a general phenomenon for a wide class of functionals and convexity conditions?

Setup

General functional of density (ϕ -functional):

$$I_{\phi}(f) = \int_{\mathbb{R}^n} \phi(f(x)) dx.$$

A general setup

Question

Is there a general phenomenon for a wide class of functionals and convexity conditions?

Setup

General functional of density (ϕ -functional):

$$J_{\phi}(f) = \int_{\mathbb{R}^n} \phi(f(x)) dx.$$

General convexity condition (ψ -convexity): given a non-increasing function ψ ,

$$f(x) = \psi(g(x)), g$$
 convex.

Find tight upper and lower bounds for the ϕ -functional of ψ -convex densities f:

 $LB(n, \phi, \psi, f_{\max}) \leq I_{\phi}(f) \leq UB(n, \phi, \psi, f_{\max}).$

Find tight upper and lower bounds for the ϕ -functional of ψ -convex densities f:

```
LB(n, \phi, \psi, f_{\max}) \leq I_{\phi}(f) \leq UB(n, \phi, \psi, f_{\max}).
```

Main parameters:

• *n*: dimensionality of the density;

Find tight upper and lower bounds for the ϕ -functional of ψ -convex densities f:

```
LB(n, \phi, \psi, f_{\max}) \leq I_{\phi}(f) \leq UB(n, \phi, \psi, f_{\max}).
```

Main parameters:

- n: dimensionality of the density;
- ϕ : given function used in the target functional;

Find tight upper and lower bounds for the ϕ -functional of ψ -convex densities f:

```
LB(n, \phi, \psi, f_{\max}) \leq I_{\phi}(f) \leq UB(n, \phi, \psi, f_{\max}).
```

Main parameters:

- n: dimensionality of the density;
- ϕ : given function used in the target functional;
- ψ : given function used in the convexity condition;

Find tight upper and lower bounds for the ϕ -functional of ψ -convex densities f:

```
LB(n, \phi, \psi, f_{\max}) \leq I_{\phi}(f) \leq UB(n, \phi, \psi, f_{\max}).
```

Main parameters:

- *n*: dimensionality of the density;
- ϕ : given function used in the target functional;
- ψ : given function used in the convexity condition;
- *f*_{max}: the sup-norm of the density.

Main inequality

Theorem (Main Inequality)

Let $b \triangleq \psi^{-1}(f_{\max})$, and $F_k, G_k : [b, \infty) \to \mathbb{R}$ be real-valued functions vanishing at the infinity such that

$$(-1)^k \frac{d^k}{dx^k} F_k(x) = \phi(\psi(x)), \quad (-1)^k \frac{d^k}{dx^k} G_k(x) = \psi(x),$$

for $k = 0, 1, \cdots, n$.

Main inequality

Theorem (Main Inequality)

Let $b \triangleq \psi^{-1}(f_{\max})$, and $F_k, G_k : [b, \infty) \to \mathbb{R}$ be real-valued functions vanishing at the infinity such that

$$(-1)^k \frac{d^k}{dx^k} F_k(x) = \phi(\psi(x)), \quad (-1)^k \frac{d^k}{dx^k} G_k(x) = \psi(x),$$

for $k = 0, 1, \dots, n$. If there exists a real number A such that: (i) $F_n(b) - A \cdot G_n(b) \le 0$; (ii) $F_0(b) - A \cdot G_0(b) \le 0$; (iii) The function $x \mapsto F_0(x) - A \cdot G_0(x)$ has at most one zero on $[b, \infty)$; then $I_{\phi}(f) \le A$.

Main inequality

Theorem (Main Inequality)

Let $b \triangleq \psi^{-1}(f_{\max})$, and $F_k, G_k : [b, \infty) \to \mathbb{R}$ be real-valued functions vanishing at the infinity such that

$$(-1)^k \frac{d^k}{dx^k} F_k(x) = \phi(\psi(x)), \quad (-1)^k \frac{d^k}{dx^k} G_k(x) = \psi(x),$$

for $k = 0, 1, \dots, n$. If there exists a real number A such that:

(i)
$$F_n(b) - A \cdot G_n(b) \leq 0;$$

(ii) $F_0(b) - A \cdot G_0(b) \le 0;$

(iii) The function $x \mapsto F_0(x) - A \cdot G_0(x)$ has at most one zero on $[b, \infty)$; then $I_{\phi}(f) \leq A$. Similarly, $I_{\phi}(f) \geq A$ if both \leq in conditions (i) and (ii) are replaced by \geq .

Tightness of the main inequality

Recall that

$$(-1)^k \frac{d^k}{dx^k} F_k(x) = \phi(\psi(x)), \quad (-1)^k \frac{d^k}{dx^k} G_k(x) = \psi(x).$$

Tightness of the main inequality

Recall that

$$(-1)^k \frac{d^k}{dx^k} F_k(x) = \phi(\psi(x)), \quad (-1)^k \frac{d^k}{dx^k} G_k(x) = \psi(x).$$

Theorem (Tightness)

If condition (iii) holds for the following choices of A and A', then

$$\sup\{I_{\phi}(f) : f \text{ is } \psi\text{-convex}\} = A \triangleq \max\left\{\frac{F_0(b)}{G_0(b)}, \frac{F_n(b)}{G_n(b)}\right\},$$
$$\inf\{I_{\phi}(f) : f \text{ is } \psi\text{-convex}\} = A' \triangleq \min\left\{\frac{F_0(b)}{G_0(b)}, \frac{F_n(b)}{G_n(b)}\right\}.$$

Example I: differential entropy

Log-concave density

Let
$$\phi(x) = -x \log x$$
 and $\psi(x) = e^{-x}$. Then

$$b = \log\left(rac{1}{f_{\max}}
ight), \quad F_k(x) = (x+k)e^{-x}, \quad G_k(x) = e^{-x}.$$

Clearly condition (iii) holds, and the main inequality gives

$$\log\left(\frac{1}{f_{\max}}\right) = \frac{F_0(b)}{G_0(b)} \le h(f) \le \frac{F_n(b)}{G_n(b)} = \log\left(\frac{1}{f_{\max}}\right) + n.$$

Example I: differential entropy

Log-concave density

Let
$$\phi(x) = -x \log x$$
 and $\psi(x) = e^{-x}$. Then

$$b = \log\left(rac{1}{f_{\max}}
ight), \quad F_k(x) = (x+k)e^{-x}, \quad G_k(x) = e^{-x}.$$

Clearly condition (iii) holds, and the main inequality gives

$$\log\left(\frac{1}{f_{\max}}\right) = \frac{F_0(b)}{G_0(b)} \le h(f) \le \frac{F_n(b)}{G_n(b)} = \log\left(\frac{1}{f_{\max}}\right) + n.$$

β -concave density

For $\beta > n$, similar algebra for $\psi(x) = x^{-\beta}$ gives

$$\log\left(\frac{1}{f_{\max}}\right) \leq h(f) \leq \log\left(\frac{1}{f_{\max}}\right) + \sum_{i=1}^{n} \frac{\beta}{\beta-i}.$$

Example II: Rényi entropy

Log-concave density

Let
$$\phi(x) = x^{\alpha}$$
 and $\psi(x) = e^{-x}$. Then

$$b = \log\left(\frac{1}{f_{\max}}\right), \quad F_k(x) = \alpha^{-k}e^{-\alpha x}, \quad G_k(x) = e^{-x}.$$

Clearly condition (iii) holds, and the main inequality gives

$$\log\left(\frac{1}{f_{\mathsf{max}}}\right) \leq h_{\alpha}(f) \leq \log\left(\frac{1}{f_{\mathsf{max}}}\right) + \frac{n\log\alpha}{\alpha - 1}.$$

Example II: Rényi entropy

Log-concave density

Let
$$\phi(x) = x^{\alpha}$$
 and $\psi(x) = e^{-x}$. Then

$$b = \log\left(\frac{1}{f_{\max}}\right), \quad F_k(x) = \alpha^{-k}e^{-\alpha x}, \quad G_k(x) = e^{-x}.$$

Clearly condition (iii) holds, and the main inequality gives

$$\log\left(\frac{1}{f_{\mathsf{max}}}\right) \leq h_{\alpha}(f) \leq \log\left(\frac{1}{f_{\mathsf{max}}}\right) + \frac{n\log\alpha}{\alpha - 1}.$$

β -concave density

For min $\{\beta, \alpha\beta\} > n$, similar algebra for $\psi(x) = x^{-\beta}$ gives

$$\log\left(\frac{1}{f_{\mathsf{max}}}\right) \leq h_{\alpha}(f) \leq \log\left(\frac{1}{f_{\mathsf{max}}}\right) + \frac{1}{\alpha - 1}\sum_{i=1}^{n}\log\frac{\alpha\beta - i}{\beta - i}.$$

Example III: truncated density

Let $\phi_t(x) = \min\{x, t\}$, with $0 < t < f_{max}$. Then

$$I_{\phi_t}(f) = \int_{\mathbb{R}^n} \min\{f(x), t\} dx.$$

Example III: truncated density

Let $\phi_t(x) = \min\{x, t\}$, with $0 < t < f_{max}$. Then

$$I_{\phi_t}(f) = \int_{\mathbb{R}^n} \min\{f(x), t\} dx.$$

Log-concave density

For $X \sim \text{Poisson}(\log(f_{\max}/t))$,

 $\mathbb{P}(X=0) \leq I_{\phi_t}(f) \leq \mathbb{P}(X \leq n).$

Example III: truncated density

Let $\phi_t(x) = \min\{x, t\}$, with $0 < t < f_{max}$. Then

$$I_{\phi_t}(f) = \int_{\mathbb{R}^n} \min\{f(x), t\} dx.$$

Log-concave density

For $X \sim \text{Poisson}(\log(f_{\max}/t))$,

$$\mathbb{P}(X=0) \leq I_{\phi_t}(f) \leq \mathbb{P}(X \leq n)$$
.

β -concave density

For integer
$$\beta > n$$
 and $Y \sim \text{Binomial}(\beta, 1 - (t/f_{\text{max}})^{1/\beta})$,

$$\mathbb{P}(Y=0) \leq I_{\phi_t}(f) \leq \mathbb{P}(Y \leq n).$$

Side results on probability theory

Corollary 1: variational representation of Binomial CDF

Fix any integers $n \ge k$ and $\lambda > 0$. Let $\mathcal{F}_{n,k}$ be the set of all *n*-concave densities on \mathbb{R}^k with unit sup-norm, then

$$\mathbb{P}(\mathsf{Binomial}(n, 1 - e^{-\lambda/n}) \le k) = \sup_{f \in \mathcal{F}_{n,k}} \int_{\mathbb{R}^k} \min\{f(x), e^{-\lambda}\} dx.$$

Side results on probability theory

Corollary 1: variational representation of Binomial CDF

Fix any integers $n \ge k$ and $\lambda > 0$. Let $\mathcal{F}_{n,k}$ be the set of all *n*-concave densities on \mathbb{R}^k with unit sup-norm, then

$$\mathbb{P}(\mathsf{Binomial}(n, 1 - e^{-\lambda/n}) \le k) = \sup_{f \in \mathcal{F}_{n,k}} \int_{\mathbb{R}^k} \min\{f(x), e^{-\lambda}\} dx.$$

Corollary 2: an increasing Poisson limit

For any $\lambda > 0$, the random variables

$$X_n\sim {\sf Binomial}(n,1-e^{-\lambda/n})$$

is the series of Binomial random variables $Binomial(n, p_n)$ with largest success probability p_n such that X_n weakly converges to $X \sim Poisson(\lambda)$ and each X_n is stochastically dominated by X.

An elementary proof starting from the first principle:

An elementary proof starting from the first principle:

• Let $h(u) = \operatorname{Vol}_n(\{x : g(x) \le u\})^{1/n}$, then the convexity of g implies that h is non-negative, increasing, and concave.

I

An elementary proof starting from the first principle:

- Let $h(u) = \operatorname{Vol}_n(\{x : g(x) \le u\})^{1/n}$, then the convexity of g implies that h is non-negative, increasing, and concave.
- **2** Express both $I_{\phi}(f)$ and $\int_{\mathbb{R}^n} f(x) dx$ in terms of *h*:

$$egin{aligned} & h(u)^n \phi'(\psi(u))(-\psi'(u))du, \ & 1 = \int_b^\infty h(u)^n (-\psi'(u))du. \end{aligned}$$

An elementary proof starting from the first principle:

- Let $h(u) = \operatorname{Vol}_n(\{x : g(x) \le u\})^{1/n}$, then the convexity of g implies that h is non-negative, increasing, and concave.
- **2** Express both $I_{\phi}(f)$ and $\int_{\mathbb{R}^n} f(x) dx$ in terms of *h*:

$$I_{\phi}(f) = \int_{b}^{\infty} h(u)^{n} \phi'(\psi(u))(-\psi'(u)) du,$$
$$1 = \int_{b}^{\infty} h(u)^{n}(-\psi'(u)) du.$$

3 Define $H_k(x) = F_k(x) - A \cdot G_k(x)$, then $I_{\phi}(f) \leq A$ is equivalent to

$$\int_b^\infty h(u)^n H_0'(u) du \ge 0.$$

Will prove by induction on $k = 0, 1, \cdots, n$ that

$$S_k \triangleq \int_b^\infty h(u)^k H'_{n-k}(u) du \ge 0.$$

Will prove by induction on $k = 0, 1, \cdots, n$ that

$$S_k \triangleq \int_b^\infty h(u)^k H'_{n-k}(u) du \ge 0.$$

9 Base case k = 0: $S_0 = -H_n(b) \ge 0$ by condition (i);

Will prove by induction on $k = 0, 1, \cdots, n$ that

$$S_k \triangleq \int_b^\infty h(u)^k H'_{n-k}(u) du \ge 0.$$

9 Base case k = 0: $S_0 = -H_n(b) \ge 0$ by condition (i);

Inductive step: integration by parts gives

$$S_{k+1} = \underbrace{-h(b)^{k+1}H_{n-k-1}(b)}_{\geq 0} + (k+1)\int_{b}^{\infty}h(u)^{k}h'(u)H'_{n-k}(u)du.$$

Will prove by induction on $k = 0, 1, \cdots, n$ that

$$S_k \triangleq \int_b^\infty h(u)^k H'_{n-k}(u) du \ge 0.$$

9 Base case k = 0: $S_0 = -H_n(b) \ge 0$ by condition (i);

Inductive step: integration by parts gives

$$S_{k+1} = \underbrace{-h(b)^{k+1}H_{n-k-1}(b)}_{\geq 0} + (k+1)\int_{b}^{\infty}h(u)^{k}h'(u)H'_{n-k}(u)du.$$

• If $H'_{n-k}(u) \ge 0$ for all $u \ge b$, then the second term ≥ 0 ;

Proof sketch of the main inequality (cont'd)

Will prove by induction on $k = 0, 1, \cdots, n$ that

$$S_k \triangleq \int_b^\infty h(u)^k H'_{n-k}(u) du \ge 0.$$

() Base case k = 0: $S_0 = -H_n(b) \ge 0$ by condition (i);

Inductive step: integration by parts gives

$$S_{k+1} = \underbrace{-h(b)^{k+1}H_{n-k-1}(b)}_{\geq 0} + (k+1)\int_{b}^{\infty}h(u)^{k}h'(u)H'_{n-k}(u)du.$$

• If $H'_{n-k}(u) \ge 0$ for all $u \ge b$, then the second term ≥ 0 ;

• Otherwise, condition (i)-(iii) implies $H'_{n-k}(u)$ has a unique zero $u = z \in [b, \infty)$, then $(h'(u) - h'(z))H'_{n-k}(u) \ge 0$ and

$$S_{k+1} \ge (k+1)h'(z)\int_b^\infty h(u)^k H'_{n-k}(u)du = (k+1)h'(z)S_k \ge 0.$$

Proof sketch of the main inequality (cont'd)

Will prove by induction on $k = 0, 1, \cdots, n$ that

$$S_k \triangleq \int_b^\infty h(u)^k H'_{n-k}(u) du \ge 0.$$

() Base case k = 0: $S_0 = -H_n(b) \ge 0$ by condition (i);

Inductive step: integration by parts gives

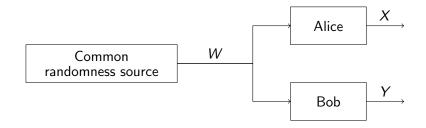
$$S_{k+1} = \underbrace{-h(b)^{k+1}H_{n-k-1}(b)}_{\geq 0} + (k+1)\int_{b}^{\infty}h(u)^{k}h'(u)H'_{n-k}(u)du.$$

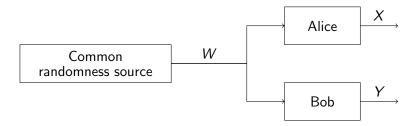
• If $H'_{n-k}(u) \ge 0$ for all $u \ge b$, then the second term ≥ 0 ;

• Otherwise, condition (i)-(iii) implies $H'_{n-k}(u)$ has a unique zero $u = z \in [b, \infty)$, then $(h'(u) - h'(z))H'_{n-k}(u) \ge 0$ and

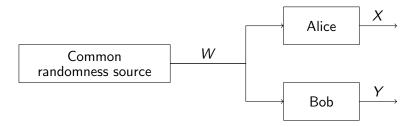
$$S_{k+1} \ge (k+1)h'(z)\int_b^\infty h(u)^k H'_{n-k}(u)du = (k+1)h'(z)S_k \ge 0.$$

Sinally, $S_n \ge 0$ gives the desired result.

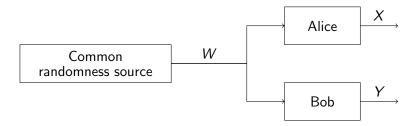




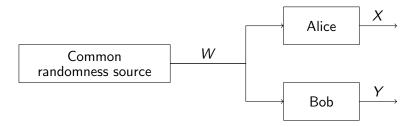
• $W = (W_1, W_2, \cdots)$ is i.i.d. Bern(1/2) sequence known to both Alice and Bob



- $W = (W_1, W_2, \cdots)$ is i.i.d. Bern(1/2) sequence known to both Alice and Bob
- \bullet Alice and Bob each has local randomness, independent of each other and W



- $W = (W_1, W_2, \cdots)$ is i.i.d. Bern(1/2) sequence known to both Alice and Bob
- Alice and Bob each has local randomness, independent of each other and *W*
- Given a stopping time L and $(W_1, \dots, W_L) = w$, Alice and Bob generates $X \sim q(x|w), Y \sim q(y|w)$



- $W = (W_1, W_2, \cdots)$ is i.i.d. Bern(1/2) sequence known to both Alice and Bob
- Alice and Bob each has local randomness, independent of each other and *W*
- Given a stopping time L and $(W_1, \cdots, W_L) = w$, Alice and Bob generates $X \sim q(x|w), Y \sim q(y|w)$

Target of exact simulation

Minimize $\mathbb{E}[L]$ over all possible generators such that q(x, y) = p(x, y).

Exact common information

Definition (Exact Common Information)

$$G(X;Y) = \min_{X-W-Y} H(W).$$

Theorem (Kumar–Li–El Gamal 2014)

$$G(X; Y) \leq \min_{\text{Generators}} \mathbb{E}[L] < G(X; Y) + 2.$$

Exact common information

Definition (Exact Common Information)

$$G(X;Y) = \min_{X-W-Y} H(W).$$

Theorem (Kumar–Li–El Gamal 2014)

$$G(X; Y) \leq \min_{\text{Generators}} \mathbb{E}[L] < G(X; Y) + 2.$$

Theorem (Li–El Gamal 2017)

If the probability density function of (X, Y) on \mathbb{R}^2 (with respect to the Lebesgue measure) is log-concave, then

 $I(X;Y) \leq G(X;Y) \leq I(X;Y) + 24.$

Question

Why do we need log-concave densities?

Question

Why do we need log-concave densities?

• Prékopa-Leindler: log-concavity is preserved under marginalization

Question

Why do we need log-concave densities?

- Prékopa-Leindler: log-concavity is preserved under marginalization
- Differential entropy is highly constrained under log-concavity

Question

Why do we need log-concave densities?

- Prékopa-Leindler: log-concavity is preserved under marginalization
- Differential entropy is highly constrained under log-concavity
- Similar properties also hold for other convexity notions

Question

Why do we need log-concave densities?

- Prékopa-Leindler: log-concavity is preserved under marginalization
- Differential entropy is highly constrained under log-concavity
- Similar properties also hold for other convexity notions

Theorem

If the probability density function of (X, Y) on \mathbb{R}^2 (with respect to the Lebesgue measure) is β -concave with $\beta \geq 2 + \varepsilon$, then

 $I(X; Y) \leq G(X; Y) \leq I(X; Y) + C(\varepsilon).$

Generalization to n agents

Definition (General Exact Common Information)

$$G(X_1; X_2; \cdots; X_n) = \min_{X_1 \perp X_2 \perp \cdots \perp X_n \mid W} H(W).$$

Generalization to n agents

Definition (General Exact Common Information)

$$G(X_1; X_2; \cdots; X_n) = \min_{X_1 \perp X_2 \perp \cdots \perp X_n \mid W} H(W).$$

Definition (Dual Total Correlation)

$$I_D(X_1; X_2; \cdots; X_n) = H(X) - \sum_{i=1}^n H(X_i | X_{\setminus i}).$$

Generalization to n agents

Definition (General Exact Common Information)

$$G(X_1; X_2; \cdots; X_n) = \min_{X_1 \perp X_2 \perp \cdots \perp X_n \mid W} H(W).$$

Definition (Dual Total Correlation)

$$I_D(X_1; X_2; \cdots; X_n) = H(X) - \sum_{i=1}^n H(X_i | X_{\setminus i}).$$

Theorem

If the probability density function of $X = (X_1, X_2, \dots, X_n)$ on \mathbb{R}^n (with respect to the Lebesgue measure) is β -concave with $\beta \ge n + \varepsilon$,

 $I_D(X_1; X_2; \cdots; X_n) \leq G(X_1; X_2; \cdots; X_n) \leq I_D(X_1; X_2; \cdots; X_n) + C(\varepsilon)n^2.$

Thank you!

Contact: yjhan@stanford.edu