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A motivating example

Log-concave function

A non-negative function f on Rn is called log-concave iff

f (x) = exp(−g(x))

for some convex function g .

Theorem (Bobkov and Madiman 2011)

For any log-concave density f on Rn, its differential entropy
h(f ) =

∫
Rn −f (x) log f (x)dx satisfies

log

(
1

fmax

)
≤ h(f ) ≤ log

(
1

fmax

)
+ n,

where fmax = supx∈Rn f (x) is the sup-norm of the density f .
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Extension to β-concave densities

β-concave function

A non-negative function f on Rn is called β-concave iff

f (x) = g(x)−β

for some convex function g .

Theorem (Bobkov and Madiman 2011, Fradelizi et al. 2020)

For any β-concave density f on Rn with β > n, it holds that

log

(
1

fmax

)
≤ h(f ) ≤ log

(
1

fmax

)
+

n∑
i=1

β

β − i
,

Intuition

The value of the density functional is constrained in a small range when
the density satisfies certain convexity conditions.
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A general setup

Question

Is there a general phenomenon for a wide class of functionals and
convexity conditions?

Setup

General functional of density (φ-functional):

Iφ(f ) =

∫
Rn

φ(f (x))dx .

General convexity condition (ψ-convexity): given a non-increasing function
ψ,

f (x) = ψ(g(x)), g convex.
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Target

Target

Find tight upper and lower bounds for the φ-functional of ψ-convex
densities f :

LB(n, φ, ψ, fmax) ≤ Iφ(f ) ≤ UB(n, φ, ψ, fmax).

Main parameters:

n: dimensionality of the density;

φ: given function used in the target functional;

ψ: given function used in the convexity condition;

fmax: the sup-norm of the density.
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Main inequality

Theorem (Main Inequality)

Let b , ψ−1(fmax), and Fk ,Gk : [b,∞)→ R be real-valued functions
vanishing at the infinity such that

(−1)k
dk

dxk
Fk(x) = φ(ψ(x)), (−1)k

dk

dxk
Gk(x) = ψ(x),

for k = 0, 1, · · · , n.

If there exists a real number A such that:

(i) Fn(b)− A · Gn(b) ≤ 0;

(ii) F0(b)− A · G0(b) ≤ 0;

(iii) The function x 7→ F0(x)− A · G0(x) has at most one zero on [b,∞);

then Iφ(f ) ≤ A. Similarly, Iφ(f ) ≥ A if both ≤ in conditions (i) and (ii) are
replaced by ≥.
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Tightness of the main inequality

Recall that

(−1)k
dk

dxk
Fk(x) = φ(ψ(x)), (−1)k

dk

dxk
Gk(x) = ψ(x).

Theorem (Tightness)

If condition (iii) holds for the following choices of A and A′, then

sup{Iφ(f ) : f is ψ-convex} = A , max

{
F0(b)

G0(b)
,
Fn(b)

Gn(b)

}
,

inf{Iφ(f ) : f is ψ-convex} = A′ , min

{
F0(b)

G0(b)
,
Fn(b)

Gn(b)

}
.
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Example I: differential entropy

Log-concave density

Let φ(x) = −x log x and ψ(x) = e−x . Then

b = log

(
1

fmax

)
, Fk(x) = (x + k)e−x , Gk(x) = e−x .

Clearly condition (iii) holds, and the main inequality gives

log

(
1

fmax

)
=

F0(b)

G0(b)
≤ h(f ) ≤ Fn(b)

Gn(b)
= log

(
1

fmax

)
+ n.

β-concave density

For β > n, similar algebra for ψ(x) = x−β gives

log

(
1

fmax

)
≤ h(f ) ≤ log

(
1

fmax

)
+

n∑
i=1

β

β − i
.
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Example II: Rényi entropy

Log-concave density

Let φ(x) = xα and ψ(x) = e−x . Then

b = log

(
1

fmax

)
, Fk(x) = α−ke−αx , Gk(x) = e−x .

Clearly condition (iii) holds, and the main inequality gives

log

(
1

fmax

)
≤ hα(f ) ≤ log

(
1

fmax

)
+

n logα

α− 1
.

β-concave density

For min{β, αβ} > n, similar algebra for ψ(x) = x−β gives

log

(
1

fmax

)
≤ hα(f ) ≤ log

(
1

fmax

)
+

1

α− 1

n∑
i=1

log
αβ − i

β − i
.
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Example III: truncated density

Let φt(x) = min{x , t}, with 0 < t < fmax. Then

Iφt (f ) =

∫
Rn

min{f (x), t}dx .

Log-concave density

For X ∼ Poisson(log(fmax/t)),

P(X = 0) ≤ Iφt (f ) ≤ P (X ≤ n) .

β-concave density

For integer β > n and Y ∼ Binomial(β, 1− (t/fmax)1/β),

P(Y = 0) ≤ Iφt (f ) ≤ P (Y ≤ n) .
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Side results on probability theory

Corollary 1: variational representation of Binomial CDF

Fix any integers n ≥ k and λ > 0. Let Fn,k be the set of all n-concave
densities on Rk with unit sup-norm, then

P(Binomial(n, 1− e−λ/n) ≤ k) = sup
f ∈Fn,k

∫
Rk

min{f (x), e−λ}dx .

Corollary 2: an increasing Poisson limit

For any λ > 0, the random variables

Xn ∼ Binomial(n, 1− e−λ/n)

is the series of Binomial random variables Binomial(n, pn) with largest
success probability pn such that Xn weakly converges to X ∼ Poisson(λ)
and each Xn is stochastically dominated by X .
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Proof sketch of the main inequality

An elementary proof starting from the first principle:

1 Let h(u) = Voln({x : g(x) ≤ u})1/n, then the convexity of g implies
that h is non-negative, increasing, and concave.

2 Express both Iφ(f ) and
∫
Rn f (x)dx in terms of h:

Iφ(f ) =

∫ ∞
b

h(u)nφ′(ψ(u))(−ψ′(u))du,

1 =

∫ ∞
b

h(u)n(−ψ′(u))du.

3 Define Hk(x) = Fk(x)− A · Gk(x), then Iφ(f ) ≤ A is equivalent to∫ ∞
b

h(u)nH ′0(u)du ≥ 0.
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Proof sketch of the main inequality (cont’d)

Will prove by induction on k = 0, 1, · · · , n that

Sk ,
∫ ∞
b

h(u)kH ′n−k(u)du ≥ 0.

1 Base case k = 0: S0 = −Hn(b) ≥ 0 by condition (i);
2 Inductive step: integration by parts gives

Sk+1 = −h(b)k+1Hn−k−1(b)︸ ︷︷ ︸
≥0

+(k + 1)

∫ ∞
b

h(u)kh′(u)H ′n−k(u)du.

If H ′n−k(u) ≥ 0 for all u ≥ b, then the second term ≥ 0;
Otherwise, condition (i)-(iii) implies H ′n−k(u) has a unique zero
u = z ∈ [b,∞), then (h′(u)− h′(z))H ′n−k(u) ≥ 0 and

Sk+1 ≥ (k + 1)h′(z)

∫ ∞
b

h(u)kH ′n−k(u)du = (k + 1)h′(z)Sk ≥ 0.

3 Finally, Sn ≥ 0 gives the desired result.
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Application to distributed simulation

Common
randomness source

Alice

Bob

W

X

Y

W = (W1,W2, · · · ) is i.i.d. Bern(1/2) sequence known to both Alice
and Bob
Alice and Bob each has local randomness, independent of each other
and W
Given a stopping time L and (W1, · · · ,WL) = w , Alice and Bob
generates X ∼ q(x |w),Y ∼ q(y |w)

Target of exact simulation

Minimize E[L] over all possible generators such that q(x , y) = p(x , y).
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Exact common information

Definition (Exact Common Information)

G (X ;Y ) = min
X−W−Y

H(W ).

Theorem (Kumar–Li–El Gamal 2014)

G (X ;Y ) ≤ min
Generators

E[L] < G (X ;Y ) + 2.

Theorem (Li–El Gamal 2017)

If the probability density function of (X ,Y ) on R2 (with respect to the
Lebesgue measure) is log-concave, then

I (X ;Y ) ≤ G (X ;Y ) ≤ I (X ;Y ) + 24.
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The role of convex geometry

Question

Why do we need log-concave densities?

Prékopa–Leindler: log-concavity is preserved under marginalization

Differential entropy is highly constrained under log-concavity

Similar properties also hold for other convexity notions

Theorem

If the probability density function of (X ,Y ) on R2 (with respect to the
Lebesgue measure) is β-concave with β ≥ 2 + ε, then

I (X ;Y ) ≤ G (X ;Y ) ≤ I (X ;Y ) + C (ε).
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Generalization to n agents

Definition (General Exact Common Information)

G (X1;X2; · · · ;Xn) = min
X1⊥X2⊥···⊥Xn|W

H(W ).

Definition (Dual Total Correlation)

ID(X1;X2; · · · ;Xn) = H(X )−
n∑

i=1

H(Xi |X\i ).

Theorem

If the probability density function of X = (X1,X2, · · · ,Xn) on Rn (with
respect to the Lebesgue measure) is β-concave with β ≥ n + ε,

ID(X1;X2; · · · ;Xn) ≤ G (X1;X2; · · · ;Xn) ≤ ID(X1;X2; · · · ;Xn) + C (ε)n2.
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Thank you!

Contact: yjhan@stanford.edu

18 / 18


