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Theorem (Bobkov and Madiman 2011)

For any log-concave density f on R”, its differential entropy
h(f) = [gn —f(x)log f(x)dx satisfies

1 1
log < h(f) < log + n,
fmax fmax

where frax = sup,cgn f(x) is the sup-norm of the density f.
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[-concave function

A non-negative function f on R” is called S-concave iff

for some convex function g.

Theorem (Bobkov and Madiman 2011, Fradelizi et al. 2020)

For any [3-concave density f on R" with 8 > n, it holds that

1 1 :
Iog<f )Sh(f)§|0g<f >+ Bﬂ—i’
max max i=1




Extension to (3-concave densities

[-concave function

A non-negative function f on R” is called S-concave iff

The value of the density functional is constrained in a small range when
the density satisfies certain convexity conditions.
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Setup

General functional of density (¢-functional):
1) = | oF00)ax

General convexity condition (¢)-convexity): given a non-increasing function

¥,

f(X) = ¢(g(X)), g convex.




Target

Find tight upper and lower bounds for the ¢-functional of 1-convex
densities f:

LB(H, ¢;¢» fmax) S I¢(f) S UB(”7 ¢;¢, fmax)-




Target

Find tight upper and lower bounds for the ¢-functional of 1-convex
densities f:

LB(H, ¢;¢» fmax) S I¢(f) S UB(”7 ¢;¢, fmax)-

Main parameters:

@ n: dimensionality of the density;



Target

Find tight upper and lower bounds for the ¢-functional of 1-convex
densities f:

LB(H, ¢;¢» fmax) S /¢(f) S UB(”7 ¢;¢, fmax)-

Main parameters:
@ n: dimensionality of the density;

@ ¢: given function used in the target functional;



Target

Find tight upper and lower bounds for the ¢-functional of 1-convex
densities f:

LB(H, ¢;¢» fmax) S /¢(f) S UB(”7 ¢;¢, fmax)-

Main parameters:
@ n: dimensionality of the density;
@ ¢: given function used in the target functional;

@ 1: given function used in the convexity condition;



Target

Find tight upper and lower bounds for the ¢-functional of 1-convex
densities f:

LB(H, ¢;¢» fmax) S /¢(f) S UB(”7 ¢;¢, fmax)-

Main parameters:
@ n: dimensionality of the density;
@ ¢: given function used in the target functional;
@ 1: given function used in the convexity condition;
@ frax: the sup-norm of the density.



Main inequality

Theorem (Main Inequality)

Let b £ ¢~ (fnax), and Fi, Gy : [b,00) — R be real-valued functions
vanishing at the infinity such that
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Theorem (Main Inequality)

Let b £ ¢~ (fnax), and Fi, Gy : [b,00) — R be real-valued functions

vanishing at the infinity such that

k k
(DR = ), (DRSS Gl = (),

for k=0,1,---,n. If there exists a real number A such that:
(i) Fa(b) — A- Ga(b) < 0;
(i) Fo(b) —A- Go(b) < 0;

(iif) The function x — Fy(x) — A- Gp(x) has at most one zero on [b, 00);

then I,(f) < A.
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Main inequality

Theorem (Main Inequality)

Let b £ ¢~ (fnax), and Fi, Gy : [b,00) — R be real-valued functions
vanishing at the infinity such that

k k
(DR = ), (DRSS Gl = (),

for k=0,1,---,n. If there exists a real number A such that:
(i) Fn(b) —A- Gn(b) <0;
(i) Fo(b) — A- Go(b) <0;
(iif) The function x — Fy(x) — A- Gp(x) has at most one zero on [b, 00);

then I4(f) < A. Similarly, I4(f) > A if both < in conditions (i) and (ii) are
replaced by >

v
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Tightness of the main inequality

Recall that

4 R = -
(D g Fel) = 60 (x). (-1)

dxk
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Tightness of the main inequality

Recall that

IRV _
(~1)FS SR = 6(0(), (-1)

Theorem (Tightness)

If condition (iii) holds for the following choices of A and A’, then

sup{ly(f) : f is ¢-convex} = A = max {%’ g:EZ) } ’

~— ~—

Fo(b) Fa(b }
Go(b)" Gn(b) J -

inf{l;(f) : f is 1-convex} = A" £ min {




Example |: differential entropy

Log-concave density

Let ¢(x) = —xlog x and ¢(x) = e *. Then

b= log <fml> R = (x+ ke, Gu(x) = e,

Clearly condition (iii) holds, and the main inequality gives

log ( f;ax) = QZEZ; < h(f) < cF;E[Z; = log ( fmlax> +n.




Example I: differential entropy

Log-concave density

Let ¢(x) = —xlog x and ¢(x) = e *. Then

b= log <fml> R = (x+ ke, Gu(x) = e,

Clearly condition (iii) holds, and the main inequality gives

log ( fmlax> = g‘;g < h(f) < cF;EZ; = Iog( mlax> +n.

[-concave density

| |
\

For 8 > n, similar algebra for 1(x) = x~# gives

Iog<f1)§h(f)glog(fl)+ Bﬁ—i’
max max =il
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Example Il: Rényi entropy

Log-concave density

Let ¢(x) = x and ¢(x) = e~ *. Then

1
b= log <f ) , Fr(x) =a ke Gi(x)=e %
max

Clearly condition (iii) holds, and the main inequality gives

1 1 I
log < ho(f) < log o B
fmax fmax

a—1"




Example Il: Rényi entropy

Log-concave density

Let ¢(x) = x and ¢(x) = e~ *. Then

1
b= log <f ) , Fr(x) =a ke Gi(x)=e %
max

Clearly condition (iii) holds, and the main inequality gives

1 1 nlog a
< < .
Iog<f,max>_ho[(f)_log(’r >+0z—1

max

[-concave density

| A\

For min{3, a3} > n, similar algebra for ¢)(x) = x~# gives

1 . 1 1 <& af —i
log . < ho(f) < log F— + ] Z log 5 i
i=1
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Example Ill: truncated density
Let ¢¢(x) = min{x, t}, with 0 < t < fax. Then

Iy (F) = /R" min{f(x), t}dx.
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Example Ill: truncated density
Let ¢¢(x) = min{x, t}, with 0 < t < fax. Then

Iy (F) = /R" min{f(x), t}dx.

Log-concave density
For X ~ Poisson(log(fmax/t)),

P(X = 0) < I, (f) <P(X < n).

| A\

[-concave density
For integer 8 > n and Y ~ Binomial(8,1 — (t/fmax)'/?),

P(Y = 0) < I, (f) <P(Y < n).

.
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Side results on probability theory

Corollary 1: variational representation of Binomial CDF

Fix any integers n > k and A > 0. Let F,, x be the set of all n-concave
densities on R* with unit sup-norm, then

P(Binomial(n, 1 — e_’\/”) < k)= sup / min{f(x), e~ }dx.
fEJ'—,,,k Rk
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Side results on probability theory

Corollary 1: variational representation of Binomial CDF

Fix any integers n > k and A > 0. Let F,, x be the set of all n-concave
densities on R* with unit sup-norm, then

P(Binomial(n,1 — e ") < k) = sup / min{f(x), e *}dx.
fE]'—,,,k Rk

v

Corollary 2: an increasing Poisson limit

For any A > 0, the random variables

X, ~ Binomial(n,1 — e~*/")

is the series of Binomial random variables Binomial(n, p,) with largest
success probability p, such that X, weakly converges to X ~ Poisson(\)
and each X, is stochastically dominated by X.

.
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Proof sketch of the main inequality

An elementary proof starting from the first principle:
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Proof sketch of the main inequality
An elementary proof starting from the first principle:

Q Let h(u) = Vol,({x : g(x) < u})/", then the convexity of g implies
that h is non-negative, increasing, and concave.

@ Express both Iy(f) and [,, f(x)dx in terms of h:
1) = [ Hwd (@) (@)
1= [ hw (=)o
© Define Hy(x) = Fi(x) — A- G(x), then I4(f) < A is equivalent to

/boo h(u)" Hy (1) du > 0.
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Proof sketch of the main inequality (cont'd)

Will prove by induction on k=10,1,---, n that

Sk é/ h(u)*H! _,(u)du > 0.
b
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© Base case k =0: So = —H,(b) > 0 by condition (i);
@ Inductive step: integration by parts gives

[e.9]

Sevt = —h(bY Hy i 1(b)+(k + 1)/b h(u)*H (u)H,_ () du.

>0

o If H_,(u) >0 for all u> b, then the second term > 0;
o Otherwise, condition (i)-(iii) implies H! _,(u) has a unique zero
u=z € [b,0), then (h'(u) — h'(2))H,_,(u) > 0 and

Serr > (k+ l)h’(z)/b h(u)*H._ (u)du = (k + 1)(2)S > 0.
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Proof sketch of the main inequality (cont'd)

Will prove by induction on k=10,1,---, n that

Sk é/ h(u)*H! _,(u)du > 0.
b

© Base case k =0: So = —H,(b) > 0 by condition (i);
@ Inductive step: integration by parts gives

[e.9]

Sevt = —h(bY Hy i 1(b)+(k + 1)/b h(u)*H (u)H,_ () du.

>0

o If H_,(u) >0 for all u> b, then the second term > 0;
o Otherwise, condition (i)-(iii) implies H! _,(u) has a unique zero
u=z € [b,0), then (h'(u) — h'(2))H,_,(u) > 0 and
Sk+1 > (k+ l)h'(z)/ h(u)*H._, (u)du = (k + 1)h'(z)Sk > 0.
b
@ Finally, S, > 0 gives the desired result. Ol
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Application to distributed simulation

. X
Alice ——
Common w
randomness source
Y
Bob —

o W= (Wi, Wy, --)isiid. Bern(1/2) sequence known to both Alice

and Bob
@ Alice and Bob each has local randomness, independent of each other

and W
e Given a stopping time L and (W4, -, W;) = w, Alice and Bob

generates X ~ q(x|w), Y ~ q(y|w)

Target of exact simulation
Minimize E[L] over all possible generators such that g(x,y) = p(x, y).
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Exact common information

Definition (Exact Common Information)

Theorem (Kumar-Li—El Gamal 2014)

G(X;Y)< min E[L<G(X;Y)+2.
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Exact common information

Definition (Exact Common Information)

G(X;Y)= mn H(W).

Theorem (Kumar-Li—El Gamal 2014)
G(X;Y)< min E[[]<G(X;Y)+2

Generators

Theorem (Li-El Gamal 2017)

If the probability density function of (X, Y) on R? (with respect to the
Lebesgue measure) is log-concave, then

I(X;Y) < G(X; Y) < I(X;Y) + 24.

A,

15/18
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The role of convex geometry

Why do we need log-concave densities?

o Prékopa-Leindler: log-concavity is preserved under marginalization

o Differential entropy is highly constrained under log-concavity

@ Similar properties also hold for other convexity notions

If the probability density function of (X, Y) on R? (with respect to the
Lebesgue measure) is 3-concave with 5 > 2 + ¢, then

I(X:Y) < G(X;Y) < I(X; Y)+ C(e).

16 /18



Generalization to n agents

Definition (General Exact Common Information)

G(X1; Xa; -+ 3 Xp) min H(W).

XL Xo L L X W
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Generalization to n agents

Definition (General Exact Common Information)

G(X1; Xa; -+ 3 Xp) min H(W).

XL Xo L L X W

If the probability density function of X = (X1, X2, -+, X,) on R"” (with
respect to the Lebesgue measure) is S-concave with > n+ ¢,

Ip(X1; Xo; -+ Xp) < G(X1; Xo; -+ 3 Xn) < Ip(X1; Xo; -+ 3 Xn) + C(e)n®.
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Thank you!

Contact: yjhan@stanford.edu
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