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Interactive decision making

robotics games clinical systems algorithm design

Examples:

bandits

reinforcement learning

control

online optimization

dynamic pricing

dynamic treatments

Aim of this talk

Characterize the optimal sample complexity/fundamental limits for interactive decision
making problems.
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The interactive model

Decision making with structured observations (DMSO)

At each round t = 1, 2, · · · ,T :

learner chooses a decision at ∈ A;

nature reveals reward rt ∈ [0, 1] and observation ot ∈ O (possibly empty).

Stochastic model:

a given model class M
unknown true model M⋆ ∈ M
(rt , ot) ∼ M⋆(at), with E[rt | at = a] = rM

⋆

(a)

for M ∈ M, let rM⋆ = maxa∈A rM(a) be the maximum reward under M
learner’s regret:

Reg(T ) =
T∑
t=1

(
rM

⋆

⋆ − rM
⋆

(at)
)
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DMSO examples

Multi-armed bandits:

A = {1, 2, · · · ,K};
O = ∅;

M = “all 1-subGaussian reward distributions”

Episodic reinforcement learning:

A = a sequence of policies (π1, · · · , πH)

reward rt =
∑H

h=1 rt,h

observation trajectory ot = {(st,1, at,1, rt,1), · · · , (st,H , at,H , rt,H)}
M = “a collection of transition and reward distributions”
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Part I: Interactive two-point lower bound

Dylan Foster
Microsoft Research

Noah Golowich
MIT EECS

“Tight Guarantees for Interactive Decision Making with the Decision-Estimation
Coefficient” (COLT 2023; arXiv: 2301.08215)
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Decision-estimation coefficient (DEC)

DEC (Foster, Kakade, Qian, Rakhlin, 2021)

decγ(M,M) = inf
p∈∆(A)

sup
M∈M

Ea∼p[r
M
⋆ − rM(a)]︸ ︷︷ ︸

regret of decision

−γ Ea∼p[H
2(M(a),M(a))]︸ ︷︷ ︸

information gain from obs.

M: a reference model

H2(P,Q) =
∫
(
√
dP −

√
dQ)2 is the squared Hellinger distance

γ > 0: a Lagrangian parameter
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DEC result: an overview

Theorem (Foster, Kakade, Qian, Rakhlin, 2021)

For any model class M:

lower bound: for a worst case M ∈ M, any algorithm must have

E[Reg(T )] ≳ min
γ>0

(
max
M∈M

decγ(Mγ(M),M) · T + γ

)
where Mγ ⊆ M is a “localized set”;

upper bound: there is an algorithm that achieves

E[Reg(T )] ≲ min
γ>0

(
max

M∈co(M)
decγ(M,M) · T + γ · Est(M)

)
,

where Est(M) ≤ log |M| is the optimal rate for cond. density estimation for M.

Several gaps:

✗ UB has full class M, LB has localized class Mγ(M)

✗ UB takes M ∈ co(M), LB takes M ∈ M
✗ UB has Est(M), LB does not
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Constrained DEC

Constrained DEC

For ε > 0, the constrained decision-to-estimation coefficient (DEC) of a model class M
is defined as

decε(M) = sup
M

inf
p∈∆(A)

sup
M∈M∪{M}

{
Ea∼p[r

M
⋆ − rM(a)] : Ea∼p[H

2(M(a),M(a))] ≤ ε2
}

Features:

hard constraint on the information gain

connect with original DEC via Lagrangian:

decε(M) ≤ inf
γ>0

{
sup
M

decγ(M,M) + γε2
}

converse does not hold (strong duality fails)
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Connection to modulus of continuity in statistics

Hellinger modulus of continuity

ωε(M) = sup
M,M′∈M

{
∥T (M)− T (M ′)∥ : H2(M,M ′) ≤ ε2

}
lower bound: Le Cam’s two-point method (ε ≍ T−1/2)

simple upper bound: projection-based estimator (ε ≍
√

log |M|/T )

better upper bound: strong duality results (ε ≍ T−1/2) when T is linear, e.g.
[Donoho and Liu, 1987, 1991; Juditsky and Nemirovski, 2009; Polyanskiy and Wu,
2019]
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Constrained DEC: main results

Theorem (Foster, Golowich, Han, 2023)

For any model class M:

lower bound: for a worst case M ∈ M, any algorithm must have

E[Reg(T )] ≳ decε(T )(M) · T ,

for ε(T ) = Θ̃(
√

1/T );

upper bound: there is an algorithm that achieves

E[Reg(T )] ≲ decε(T )(M) · T ,

for ε(T ) = Θ̃(
√

Est(M)/T ) = Õ(
√

log |M|/T ).

Gaps revisited:

✓ no localization in both UB and LB

✓ no constraint on M in both UB and LB

✗ UB still has Est(M), LB does not (more in second part of the talk)

✓ uniformly improves over DEC results, with arbitrarily large separation
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Constrained DEC: examples

setting decε(M) lower bound LB tightness

Multi-Armed Bandit ε
√
A

√
AT ✓

Multi-Armed Bandit w/ gap ∆ · 1(ε > ∆/
√
A) A/∆ ✓

Linear Bandit ε
√
d

√
dT ✗

Lipschitz Bandit ε1−
d

d+2 T
d+1
d+2 ✓

ReLU Bandit 1(ε > 2−Ω(d) 2Ω(d) ✓

Tabular RL ε
√
HSA

√
HSAT ✓

Linear MDP ε
√
d

√
dT ✗

RL w/ linear Q⋆ 1(ε ≥ 2−Ω(d) ∨ 2−Ω(H) 2Ω(d) ∧ 2Ω(H) ✓

Deterministic RL w/ linear Q⋆ 1(ε ≤ 1/
√
d) d ✓
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Proof of lower bound

decε(M) = sup
M

inf
p∈∆(A)

sup
M∈M∪{M}

{
Ea∼p[r

M
⋆ − rM(a)] : Ea∼p[H

2(M(a),M(a))] ≤ ε2
}

Theorem (formal statement of lower bound)

Let ε(T ) ≍ 1/
√
T logT , and assume that decε(T )(M) ≥ C · ε(T ) for a large constant C .

Then for a worst case M ∈ M, any algorithm must have

EM [Reg(T )] ≳ decε(T )(M) · T .

Preparations:

M ∈ M: any fixed reference model

pM = EM [T−1 ∑T
t=1 pt(· | Ht−1)]: learner’s average play under M

M: the inner maximizer under p = pM

pM = EM [T−1 ∑T
t=1 pt(· | Ht−1)]: learner’s average play under M
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Two-point argument

Let gM(a) = rM⋆ − rM(a) and ∆ = decε(T )(M), it suffices to arrive at a
contradiction based on the following inequalities:

Ea∼p
M
[gM(a)] ≥ ∆, (defn. of constrained DEC - OBJ)

Ea∼p
M
[H2(M(a),M(a))] ≤ ε(T )2, (constraints - C)

Ea∼pM [g
M(a)] ≤ c∆, (small regret under M - SM)

Ea∼p
M
[gM(a)] ≤ c∆. (small regret under M - SM)

Not hard to show that

(C) ⇒ TV(pM , pM) ≤ 0.1 (indistinguishability - TV)

Problems with some attempts:

→ (SM) + (TV) ⇒ ¬ (SM): gM(a) + gM(a) could be small

→ (OBJ) + (TV) ⇒ ¬ (SM): gM(a) might have a heavy tail under a ∼ pM
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A pictorial proof

a

rM(a)

rM⋆

{a : gM (a) ≤ c∆}

(SM ) ⇒ pM

rM(a)

(C)
⇑

Ea∼p
M
[|rM (a) − rM (a)|] ≤ ε(T )

rM⋆

rM⋆ − rM⋆ ≈ ∆

(OBJ)
⇓

{a : gM (a) ≤ c∆}

(SM ) ⇒ pM

This is a contradiction to (TV)
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Role of improper M

Lower bound view:

we use a reduction to deal with improper M

recently, [Glasgow and Rakhlin, 2023] showed that the condition (SM) could be

replaced by pM(gM(a) ∈ [b, b + c∆]) = Ω(1) for any translation b

Upper bound view:

the learner could use an improper estimate M̂t for M
⋆

algorithmic idea: at time t, find an online estimatior M̂t , then choose

at ∼ pt = argmin
p[

sup
M∈M∪{M̂t}

{
Ep[r

M
⋆ − rM(a)] : Ea∼p[H

2(M(a), M̂t(a))] ≤
Est(M)

T

}]
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Part II: Interactive Fano-type lower bound

Jiantao Jiao
Berkeley EECS

Nived Rajaraman
Berkeley EECS

Kannan Ramchandran
Berkeley EECS

“Statistical Complexity and Optimal Algorithms for Non-linear Ridge Bandits”
(arXiv: 2302.06025)
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Ridge bandits

Setting for ridge bandits:

model class: M = Sd−1 = {θ ∈ Rd : ∥θ∥2 = 1}
action space: A = Bd = {a ∈ Rd : ∥a∥2 ≤ 1}
mean reward: rθ(a) = f (⟨θ, a⟩)
known link function: f : [−1, 1] → [−1, 1]

Interactive version of generalized linear regression:

rt = f (⟨θ⋆, at⟩) + εt , t = 1, 2, · · · ,T .

Questions

Does interactivity help?

Does non-linearity of f make the problem more difficult/interesting?

17 / 29



Ridge bandits

Setting for ridge bandits:

model class: M = Sd−1 = {θ ∈ Rd : ∥θ∥2 = 1}
action space: A = Bd = {a ∈ Rd : ∥a∥2 ≤ 1}
mean reward: rθ(a) = f (⟨θ, a⟩)
known link function: f : [−1, 1] → [−1, 1]

Interactive version of generalized linear regression:

rt = f (⟨θ⋆, at⟩) + εt , t = 1, 2, · · · ,T .

Questions

Does interactivity help?

Does non-linearity of f make the problem more difficult/interesting?

17 / 29



Ridge bandits

Setting for ridge bandits:

model class: M = Sd−1 = {θ ∈ Rd : ∥θ∥2 = 1}
action space: A = Bd = {a ∈ Rd : ∥a∥2 ≤ 1}
mean reward: rθ(a) = f (⟨θ, a⟩)
known link function: f : [−1, 1] → [−1, 1]

Interactive version of generalized linear regression:

rt = f (⟨θ⋆, at⟩) + εt , t = 1, 2, · · · ,T .

Questions

Does interactivity help?

Does non-linearity of f make the problem more difficult/interesting?

17 / 29



A motivating example

A non-linear bandit example

f (⟨θ, a⟩) = ⟨θ, a⟩3 : θ ∈ Sd−1, a ∈ Bd .

minimax regret

time horizon T
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time horizon Td3
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d4

minimax regret ≍ min{T , d3 + d
√
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A motivating example

A non-linear bandit example

f (⟨θ, a⟩) = ⟨θ, a⟩3 : θ ∈ Sd−1, a ∈ Bd .

minimax regret

time horizon Td3

d3

d4

burn-in
phase

learning phase

minimax regret ≍ min{T , d3 + d
√
T}.
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Curious phenomena

Curious phenomena in non-linear bandits:

phase transition in the regret

burn-in phase: regret grows linearly and results in a burn-in cost
→ find a good “initial action” to start learning

learning phase: regret grows sublinearly and looks like a linear bandit
→ learning starts from the good initial action

Questions

what is the optimal burn-in cost?

what algorithms should we use in different phases?
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Literature review

Ridge bandits:

linear bandit f (x) = x : optimal regret Θ̃(d
√
T ) [Dani et al. 2008, Chu et al. 2011,

Abbasi-Yadkori et al. 2011]

generalized linear bandit with c1 ≤ |f ′(x)| ≤ c2: same as linear bandit [Filippi et al.
2010, Russo and Van Roy 2014]

concave bandit (f is concave): same as linear bandit [Lattimore, 2021]

bandit phase retrieval (f (x) = x2): same as linear bandit [Lattimore and Hao, 2021]

polynomial bandit (f (x) = xp, p ≥ 2): optimal regret Θ̃(
√
dpT ) assuming ∥θ∥2 ≤ 1

[Huang et al. 2021]

General complexity measures for bandits:

decision-estimation coefficient (DEC) [Foster et al. 2021, 2022]

information ratio [Lattimore, 2022]

often do not lead to tight regret dependence on d (the gap of Est(M))
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Main result

Only assumption on f : f is increasing on [−1, 1] with f (0) = 0

→ aim to maximize the inner product ⟨θ⋆, at⟩

Theorem (Rajaraman, Han, Jiao, Ramchandran, 2023)

The minimax sample complexity T ⋆(ε) of achieving ⟨θ⋆, aT ⟩ ≥ ε ∈ [1/
√
d , 1/2] satisfies

(within poly-logarithmic factors)

T ⋆(ε) ≲ d2 ·
∫ ε

1/
√
d

d(x2)

max1/
√
d≤y≤x minz∈[y/2,y ] f ′(z)2

,

T ⋆(ε) ≳ d ·
∫ ε

1/
√
d

d(x2)

f (x)2
.

pointwise upper and lower bounds

burn-in cost by choosing ε = 1/2

learning trajectory via differential equations
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Learning trajectory

t

xt = ⟨θ⋆, at⟩

1/
√
d

UB:
d(x2

t )
dt =

maxy≤xt miny/2≤z≤y f
′(z)2

d2

√
log(1/δ)/d

LB:
d(x2

t )
dt = f (xt)

2

d

UCB or RO

Theorem (learning trajectory)

there is an algorithm attaining the UB learning curve

for any algorithm, its learning trajectory lies below the LB learning curve with
probability at least 1− Tδ under θ⋆ ∼ Unif(Sd−1)

UCB or RO algorithms makes no progress whenever t < d/f (1/
√
d)2
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Formal lower bound

Theorem (formal lower bound)

Let δ > 0 be any parameter, and c > 0 be a large absolute constant. Define a sequence
{εt}t≥1 with

ε1 =

√
c log(1/δ)

d
, ε2t+1 = ε2t +

c

d
f (εt)

2, t ≥ 1.

Then if θ⋆ ∼ Unif(Sd−1), any learner {at}t≥1 satisfies that

P

 ⋂
1≤t≤T

{⟨θ⋆, at⟩ ≤ εt}

 ≥ 1− Tδ.

the continuous-time version of {εt} gives the differential equation
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Information-theoretic insights

Let It = I (θ⋆;Ht) be the mutual information between the true parameter θ⋆ and the
history Ht up to time t, then

It+1 − It = I (θ⋆; rt+1 | at+1,Ht)

≤ E
[
1

2
log

(
1 + E[f (⟨θ⋆, at+1⟩)2]

)]
≤ 1

2
E[f (⟨θ⋆, at+1⟩)2].

To argue that ⟨θ⋆, at+1⟩ should not be large, note that

I (θ⋆; at+1) ≤ I (θ⋆;Ht) = It .

Key insight

I (θ⋆; a) ≤ I =⇒ |⟨θ⋆, a⟩| ≲
√

I/d with high probability.

Applying the insight gives the desired recursion

ε2t+1 − ε2t ≲
1

d
f (εt)

2.
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More on the above insights

reasoning behind the insight:

a | θ⋆ ∼ Unif({a ∈ Sd−1 : ⟨a, θ⋆⟩ ≥ ε}) =⇒ I (a; θ⋆) ≍ dε2

however, it does not hold with high probability: Fano’s inequality only gives

P(|⟨θ⋆, a⟩| ≤ ε) ≥ 1− I (θ⋆; a) + log 2

Θ(dε2)
,

which is tight for the worst-case distribution of (θ⋆, a)

our solution: use χ2-informativity instead
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Formal proof via χ2-informativity

χ2-informativity between X and Y :

Iχ2(X ;Y ) = inf
QY

χ2(PXY ∥PX × QY ),

where χ2(P∥Q) =
∫
(dP)2/dQ− 1

error probability lower bound using χ2-informativity:

P(|⟨θ⋆, a⟩| ≤ ε) ≥ 1− e−Θ(dε2) ·
√

Iχ2(θ⋆; a) + 1.

suffices to upper bound Iχ2(θ⋆; at+1) ≤ Iχ2(θ⋆;Ht) for each t

issue: χ2-informativity does not satisfy the chain rule or subadditivity
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Conditioning technique

let Et = ∩s≤t{|⟨θ⋆, as⟩| ≤ εs} be the error event

upper bound of conditioned χ2-informativity:

Iχ2 (θ
⋆;Ht | Et) + 1

≤ min
Qt−1

∫
P(θ⋆,Ht |Et )

2︷ ︸︸ ︷1(Et)

P(Et)
π(θ⋆)

∏
s≤t

φ(rs − f (⟨θ⋆
, as⟩))

2

π(θ⋆)Qt−1(r
t−1) · φ(rt)︸ ︷︷ ︸

π(θ⋆)Qt (Ht )

dθ⋆dr t

= min
Qt−1

∫ [
1(Et )
P(Et )

π(θ⋆)
∏

s≤t−1 φ(rs − f (⟨θ⋆, as⟩))
]2

π(θ⋆)Qt−1(r t−1)
· exp(f (⟨θ⋆

, at⟩)2)dθ⋆dr t−1

≤ exp(f (εt)
2) · min

Qt−1

∫ [
1(Et )
P(Et )

π(θ⋆)
∏

s≤t−1 φ(rs − f (⟨θ⋆, as⟩))
]2

π(θ⋆)Qt−1(r t−1)
dr t−1

≤
exp(f (εt)

2)

P(Et | Et−1)2
· min
Qt−1

∫ [
1(Et−1)

P(Et−1)
π(θ⋆)

∏
s≤t−1 φ(rs − f (⟨θ⋆, as⟩))

]2
π(θ⋆)Qt−1(r t−1)

dr t−1
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2) · min

Qt−1

∫ [
1(Et )
P(Et )

π(θ⋆)
∏

s≤t−1 φ(rs − f (⟨θ⋆, as⟩))
]2

π(θ⋆)Qt−1(r t−1)
dr t−1

≤
exp(f (εt)

2)

P(Et | Et−1)2
· min
Qt−1

∫ [
1(Et−1)

P(Et−1)
π(θ⋆)

∏
s≤t−1 φ(rs − f (⟨θ⋆, as⟩))

]2
π(θ⋆)Qt−1(r t−1)

dr t−1
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Conditioning technique

let Et = ∩s≤t{|⟨θ⋆, as⟩| ≤ εs} be the error event

upper bound of conditioned χ2-informativity:

Iχ2(θ⋆;Ht | Et) + 1 ≤ exp(f (εt)
2)

P(Et | Et−1)2
(
Iχ2(θ⋆;Ht−1 | Et−1) + 1

)
.

continuing this process gives

Iχ2(θ⋆;Ht | Et) + 1 ≤
exp(

∑
s≤t f (εs)

2)

P(Et)2
.

recursion of error probability:

P(Et+1) = P(Et) · P(|⟨θ⋆, at+1⟩| ≤ εt+1 | Et)

≥ P(Et)
(
1− e−Θ(dε2t+1)

√
Iχ2(θ⋆;Ht | Et) + 1

)
≥ P(Et)− e−Θ(dε2t+1)+

1
2

∑
s≤t f (εs )

2︸ ︷︷ ︸
=δ

.
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Further improvements

fill in the gap between upper and lower bounds

It − It−1 ≤ Var(f (⟨θ⋆, at⟩) | at ,Ht−1)
?

≲ max
y≤εt

f ′(y)2

d

unclear if the above holds with high probability

for linear f , posterior concentration holds using Brascamp-Lieb theory

28 / 29



Concluding remarks

interactive lower bounds are more challenging to establish, while we still have the
counterparts of two-point and Fano

when the rewards are observable, via a two-point argument, constrained DEC gives
the right complexity up to a factor of Est(M)

the Fano-type argument could derive a complicated interactive learning trajectory,
suggesting the difficulty of closing the gap of Est(M) in general

Thank You!
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