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Examples:
@ bandits @ online optimization
@ reinforcement learning @ dynamic pricing
@ control @ dynamic treatments

Aim of this talk

Characterize the optimal sample complexity/fundamental limits for interactive decision
making problems.
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The interactive model

Decision making with structured observations (DMSO)
At each round t=1,2,--- , T:

@ learner chooses a decision a; € A;

@ nature reveals reward r; € [0, 1] and observation o; € O (possibly empty).
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The interactive model

Decision making with structured observations (DMSO)
At each round t=1,2,--- , T:

@ learner chooses a decision a; € A;

@ nature reveals reward r; € [0,1] and observation o € O (possibly empty).

Stochastic model:
@ a given model class M
@ unknown true model M* € M
(rt, 00) ~ M*(a;), with E[r: | a: = a] = r"(a)

for M € M, let r™ = max,c4 r™(a) be the maximum reward under M

@ learner's regret:

Reg(T) = i (ry* — rM*(at))

t=1
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DMSQO examples

Multi-armed bandits:
° A:{1727 7K}'
o O =g,

o M = “all 1-subGaussian reward distributions”
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DMSQO examples

Multi-armed bandits:
° A:{1727 7K}v
o O =g,

o M = “all 1-subGaussian reward distributions”

Episodic reinforcement learning:
e A = a sequence of policies (71, ,7H)
o reward re = 31 rep
@ observation trajectory or = {(st,1, at,1, re,1), -+ 5 (St.H, @e,Hy FeH)

@ M = "“a collection of transition and reward distributions”
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Part I: Interactive two-point lower bound

Dylan Foster Noah Golowich
Microsoft Research MIT EECS

“Tight Guarantees for Interactive Decision Making with the Decision-Estimation
Coefficient” (COLT 2023; arXiv: 2301.08215)
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Decision-estimation coefficient (DEC)

DEC (Foster, Kakade, Qian, Rakhlin, 2021)

decy (M, M) = pelng Msgp Eap[r! — r"(a)] =y Eanp[H*(M(a), M(a))]

regret of decision information gain from obs.

o M: a reference model
o H*(P,Q) = [(VdP — +/dQ)? is the squared Hellinger distance

@ v > 0: a Lagrangian parameter
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DEC result: an overview

Theorem (Foster, Kakade, Qian, Rakhlin, 2021)

For any model class M:

o lower bound: for a worst case M € M, any algorithm must have
E[Reg(T)] 2 min <L’nax decy (M~ (M), M) - T + 'y>
7>0 \MeMm

where M., C M is a “localized set”;

@ upper bound: there is an algorithm that achieves

E[Reg(T)] < min ( max decy (M, M) - T + - Est(M)) ,

7>0 \ Meco(M)

where Est(M) < log| M| is the optimal rate for cond. density estimation for M.
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DEC result: an overview

Theorem (Foster, Kakade, Qian, Rakhlin, 2021)

For any model class M:

o lower bound: for a worst case M € M, any algorithm must have
E[Reg(T)] 2 min <L’nax decy (M~ (M), M) - T + 'y>
7>0 \MeMm

where M., C M is a “localized set”;

@ upper bound: there is an algorithm that achieves

E[Reg(T)] < min ( max decy (M, M) - T + - Est(M)) ,

7>0 \ Meco(M)

where Est(M) < log| M| is the optimal rate for cond. density estimation for M.

Several gaps:
X UB has full class M, LB has localized class M.,(M)
X UB takes M € co(M), LB takes M € M
X UB has Est(M), LB does not
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Constrained DEC

Constrained DEC

For € > 0, the constrained decision-to-estimation coefficient (DEC) of a model class M
is defined as

decc (M) =sup inf sup {Ewp[dw — M(a)] : Banp[H*(M(a), M(a))] < 52}
m PEAMA) Memumy
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Constrained DEC

Constrained DEC

For € > 0, the constrained decision-to-estimation coefficient (DEC) of a model class M
is defined as

decc (M) =sup inf sup {Ewp[dw — M(a)] : Banp[H*(M(a), M(a))] < 52}
M PEAMA) e mum}

Features:
@ hard constraint on the information gain

@ connect with original DEC via Lagrangian:

decc(M) < inf {supdeca,(/\/l,l\/l) + 'ysZ}
v>0 w

@ converse does not hold (strong duality fails)
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Connection to modulus of continuity in statistics

Hellinger modulus of continuity

we(M) = sup {||T(M) — T(M)|| : H* (M, M') < 52}
M,M’ e M

)

@ lower bound: Le Cam'’s two-point method (e < -,——1/2)

@ simple upper bound: projection-based estimator (¢ < /log |M|/T)

@ better upper bound: strong duality results (¢ < T’1/2) when T is linear, e.g.
[Donoho and Liu, 1987, 1991; Juditsky and Nemirovski, 2009; Polyanskiy and Wu,
2019]
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Constrained DEC: main results

Theorem (Foster, Golowich, Han, 2023)

For any model class M:

@ lower bound: for a worst case M € M, any algorithm must have

E[Reg(T)] 2 decg(ry(M) - T,

for (T) = ©(+/1/T);

@ upper bound: there is an algorithm that achieves

E[Reg(T)] < decg(ry(M) - T,

for (T) = ©(y/Est(M)/T) = O(+/log [M[/T).
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Constrained DEC: main results

Theorem (Foster, Golowich, Han, 2023)

For any model class M:

@ lower bound: for a worst case M € M, any algorithm must have

E[Reg(T)] 2 decg(ry(M) - T,

for e(T) = ©(,/1/T);

@ upper bound: there is an algorithm that achieves

E[Reg(T)] < decg(ry(M) - T,

for (T) = ©(y/Est(M)/T) = O(+/log [M[/T).

Gaps revisited:
v no localization in both UB and LB
v/ no constraint on M in both UB and LB
X UB still has Est(M), LB does not (more in second part of the talk)

v uniformly improves over DEC results, with arbitrarily large separation
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Constrained DEC: examples

setting dec. (M) lower bound | LB tightness
Multi-Armed Bandit VA VAT v
Multi-Armed Bandit w/ gap A-1(e > AJVA) A/A 4
Linear Bandit eVd VdT X
Lipschitz Bandit glmah T% v
ReLU Bandit 1(e > 279 2% v
Tabular RL eV HSA VHSAT v
Linear MDP eVd VdT X
RL w/ linear Q* 1(e > 2D 2~ RH) | HAd) UM v
Deterministic RL w/ linear Q* 1(e < 1/Vd) d v
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Proof of lower bound

dec. (M) =sup inf sup {EaNP[riw — M(a)] : Banp[H*(M(a), M(a))] < 52}

M PEACA) e mu{M}

Theorem (formal statement of lower bound)

Let (T) < 1/4/Tlog T, and assume that dec,(7y(M) > C-g(T) for a large constant C.
Then for a worst case M € M, any algorithm must have

Em[Reg(T)] 2 decgry(M) - T.

12/29



Proof of lower bound

dec. (M) =sup inf sup {IEaN,,[riw — M(a)] : Banp[H*(M(a), M(a))] < 52}

M PEACA) e mu{M}

Theorem (formal statement of lower bound)

Let (T) < 1/4/Tlog T, and assume that dec,(7y(M) > C-g(T) for a large constant C.
Then for a worst case M € M, any algorithm must have

Em[Reg(T)] 2 decgry(M) - T.

Preparations:
o M € M: any fixed reference model
o pii=Egy[T L, pe(- | He—1)]: learner’s average play under M
@ M: the inner maximizer under p = py;

o pm =Eu[T L, pe(- | He—1)]: learner's average play under M
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Two-point argument

o Let g"(a) = r — rM(a) and A = dec.(r)(M), it suffices to arrive at a
contradiction based on the following inequalities:

anpm[gM(a)] > A, (defn. of constrained DEC - OBJ)
ESNW[HZ(M(a),W(a))] <eg(T), (constraints - C)
Eompylg"(a)] < A, (small regret under M - Sy)
IEaNpm[gV(a)] < cA. (small regret under M - S;)
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contradiction based on the following inequalities:

anpm[gM(a)] > A, (defn. of constrained DEC - OBJ)
ESNW[HZ(M(a),W(a))] <eg(T), (constraints - C)
Eompylg"(a)] < A, (small regret under M - Sy)
IEaNpm[gV(a)] < cA. (small regret under M - S;)

@ Not hard to show that

(C) = TV(pm, pr7) <0.1 (indistinguishability - TV)
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Two-point argument

o Let g"(a) = r — rM(a) and A = dec.(r)(M), it suffices to arrive at a
contradiction based on the following inequalities:

anpm[gM(a)] > A, (defn. of constrained DEC - OBJ)
ESNW[HZ(M(a),W(a))] <eg(T), (constraints - C)
Eompylg"(a)] < A, (small regret under M - Sy)
IEaNpm[gV(a)] < cA. (small regret under M - S;)

@ Not hard to show that
(C) = TV(pm, pr7) <0.1 (indistinguishability - TV)
@ Problems with some attempts:

— (Sg7) + (TV) = = (Sm): gM(a) +gﬁ(a) could be small
— (OBJ) + (TV) = = (Sm): g"(a) might have a heavy tail under a ~ pg;
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A pictorial proof
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A pictorial proof

Eqp:[IrM () — rM(a)[] < &(T)

(©)

rM(a)




A pictorial proof

rt
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: (0BJ)
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r (a) : riw — riw ~ A
~

Eqp:[IrM () — rM(a)[] < &(T)

(©)

rm(a)




A pictorial proof
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Eapy,lIr(a) — rM(a)[] < &(T)
© !
| M(a)
' (Sg) = P! (Sm) = pil
{a:g"(a) < ca} {a:g"(a) < cA} a
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A pictorial proof

rt
""" x
1
X (OEJ)
M ! v
r (a) : ™ riw ~ A
~

Eqp:[IrM () — rM(a)[] < &(T)

(©)

' (Smr) = P

{a: gm(a) <cA}{a: g"(a) < cA}

This is a contradiction to (TV)
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Role of improper M

Lower bound view:
@ we use a reduction to deal with improper M
o recently, [Glasgow and Rakhlin, 2023] showed that the condition (Sy;) could be
replaced by p;(g"(a) € [b, b+ cA]) = Q(1) for any translation b
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Role of improper M

Lower bound view:
@ we use a reduction to deal with improper M
o recently, [Glasgow and Rakhlin, 2023] showed that the condition (Sy;) could be
replaced by p;(g"(a) € [b, b+ cA]) = Q(1) for any translation b

Upper bound view:
@ the learner could use an improper estimate I\7It for M*

@ algorithmic idea: at time t, find an online estimatior l\//\lt, then choose

ar ~ pt = argmin
P

{ wp {0 B (M(a), M) <
MeMU{M:}
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Part II: Interactive Fano-type lower bound

Jiantao Jiao Nived Rajaraman Kannan Ramchandran
Berkeley EECS Berkeley EECS Berkeley EECS

“Statistical Complexity and Optimal Algorithms for Non-linear Ridge Bandits”
(arXiv: 2302.06025)

16/29



Ridge bandits

Setting for ridge bandits:
o model class: M =S"! = {9 ¢ R? : ||9]|]» = 1}
o action space: A =B ={acR?: 3|2 <1}
@ mean reward: ryp(a) = f((0, a))
@ known link function: f:[-1,1] — [-1,1]
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Ridge bandits

Setting for ridge bandits:
o model class: M =S"! = {9 ¢ R? : ||9]|]» = 1}
o action space: A =B ={acR?: 3|2 <1}
@ mean reward: ryp(a) = f((0, a))
@ known link function: f:[-1,1] — [-1,1]

Interactive version of generalized linear regression:

I’t:)“(<0*,3t>)‘|’€t7 t:1’27...,T‘

@ Does interactivity help?

@ Does non-linearity of f make the problem more difficult/interesting?
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A motivating example

A non-linear bandit example
£((6,a)) = (9, a)®: fesit, aeB’

minimax regret

time horizon T
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A motivating example

A non-linear bandit example

£((6,a)) = (0, a)*: st aecB

minimax regret

d3 _________ —__——‘

a3 time horizon T
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A non-linear bandit example

£((6,a)) = (0, a)*: st aecB

minimax regret

dBl--------- 2 _-/

a3 d* time horizon T
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A motivating example

A non-linear bandit example

£((6,a)) = (0, a)*: st aecB

minimax regret

e dvT
d3 """"" — == 1

a3 d* time horizon T
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A motivating example

A non-linear bandit example

f((0,a) = (0,a)%: 0es™ acB.

minimax regret

d3 _________

a3 d* time horizon T

minimax regret < min{T,d* + dV'T}.
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A motivating example

A non-linear bandit example

f((0,a) = (0,a)%: 0es™ acB.

minimax regret

burn-in

phase learning phase

ol ey '

a3 d* time horizon T

minimax regret < min{T,d* + dV'T}.
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Curious phenomena

Curious phenomena in non-linear bandits:
@ phase transition in the regret
@ burn-in phase: regret grows linearly and results in a burn-in cost
— find a good “initial action” to start learning
@ learning phase: regret grows sublinearly and looks like a linear bandit
— learning starts from the good initial action
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Curious phenomena

Curious phenomena in non-linear bandits:

@ phase transition in the regret

@ burn-in phase: regret grows linearly and results in a burn-in cost
— find a good “initial action” to start learning

learning phase: regret grows sublinearly and looks like a linear bandit
— learning starts from the good initial action

what is the optimal burn-in cost?

what algorithms should we use in different phases?

19/29



Literature review

Ridge bandits:

o linear bandit f(x) = x: optimal regret ©(d+/T) [Dani et al. 2008, Chu et al. 2011,
Abbasi-Yadkori et al. 2011]

@ generalized linear bandit with ¢; < |f'(x)| < c: same as linear bandit [Filippi et al.
2010, Russo and Van Roy 2014]

@ concave bandit (f is concave): same as linear bandit [Lattimore, 2021]

o bandit phase retrieval (f(x) = x?): same as linear bandit [Lattimore and Hao, 2021]

e polynomial bandit (f(x) = xP, p > 2): optimal regret ©(v/dPT) assuming ||| < 1
[Huang et al. 2021]
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Literature review

Ridge bandits:

o linear bandit f(x) = x: optimal regret ©(d+/T) [Dani et al. 2008, Chu et al. 2011,
Abbasi-Yadkori et al. 2011]

generalized linear bandit with ¢; < |[f'(x)| < ¢: same as linear bandit [Filippi et al.
2010, Russo and Van Roy 2014]

concave bandit (f is concave): same as linear bandit [Lattimore, 2021]

bandit phase retrieval (f(x) = x?): same as linear bandit [Lattimore and Hao, 2021]

polynomial bandit (f(x) = x”, p > 2): optimal regret ©(v/d? T) assuming [|0]]» < 1
[Huang et al. 2021]

General complexity measures for bandits:
o decision-estimation coefficient (DEC) [Foster et al. 2021, 2022]
@ information ratio [Lattimore, 2022]

@ often do not lead to tight regret dependence on d (the gap of Est(M))
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Main result

Only assumption on f: f is increasing on [—1, 1] with £(0) =0

— aim to maximize the inner product (0*, a;)
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Main result

Only assumption on f: f is increasing on [—1, 1] with f(0) =0

— aim to maximize the inner product (0%, a;)

Theorem (Rajaraman, Han, Jiao, Ramchandran, 2023)

The minimax sample complexity T*(¢) of achieving (0*,ar) > ¢ € [1//d, 1/2] satisfies
(within poly-logarithmic factors)

€ 2
rEesd | ERr
1/vd MaXy /gy <x MiNzely /2, f (2)
€ 2
Te)zd. [ 4
1/va f(x)
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Main result

Only assumption on f: f is increasing on [—1, 1] with f(0) =0

— aim to maximize the inner product (0%, a;)

Theorem (Rajaraman, Han, Jiao, Ramchandran, 2023)

The minimax sample complexity T*(¢) of achieving (0*,ar) > ¢ € [1//d, 1/2] satisfies
(within poly-logarithmic factors)

€ 2
rEesd | ERr
1/vd MaXy /gy <x MiNzely /2, f (2)
€ 2
Te)zd. [ 4
1/va f(x)

@ pointwise upper and lower bounds
@ burn-in cost by choosing £ = 1/2

@ learning trajectory via differential equations
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Learning trajectory

xe = (0%, ar)

Theorem (learning trajectory)
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1/V/d

Theorem (learning trajectory)




Learning trajectory

xe = (0%, ar)

) max,<, ming o<, F(2)°
dt  — d?

1/V/d

Theorem (learning trajectory)

o there is an algorithm attaining the UB learning curve




Learning trajectory

xe = (0%, at)
log(1/6)/d Tt) — M¥y<q mi”é/fgzgy f'(2)?
1/Vd]4

Theorem (learning trajectory)

o there is an algorithm attaining the UB learning curve




Learning trajectory

xe = (0%, ar)

) max,<, ming o<, F(2)°

log(1/3)/d et 5

1/V/d

Theorem (learning trajectory)

o there is an algorithm attaining the UB learning curve

o for any algorithm, its learning trajectory lies below the LB learning curve with
probability at least 1 — T8 under #* ~ Unif(S?~1)




Learning trajectory

xe = (0%, ar)

log(1/6)/d UB: Tt) — M¥y<q mi”é/fgzgy f'(2)?
1/vd UCB or RO
t

Theorem (learning trajectory)

o there is an algorithm attaining the UB learning curve

o for any algorithm, its learning trajectory lies below the LB learning curve with
probability at least 1 — T8 under #* ~ Unif(S?~1)

o UCB or RO algorithms makes no progress whenever t < d/f(1/v/d)?
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Formal lower bound

Theorem (formal lower bound)

Let 6 > 0 be any parameter, and ¢ > 0 be a large absolute constant. Define a sequence

{Et}tzl with
€1 = \l < |Og((11/5), E%—f—l = 5% + %f(€t)2, t 2 1.
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Formal lower bound

Theorem (formal lower bound)

Let 6 > 0 be any parameter, and ¢ > 0 be a large absolute constant. Define a sequence
{Et}tzl with
clog(1/9 c
€1 =1/ clog(1/9) ), Eo1 =&+ =f(ee)’, t>1.
d d
Then if 8* ~ Unif(S?~'), any learner {a;}+>1 satisfies that

Pl () {(0"a) <e} | >1-T&.

1<t<T
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Formal lower bound

Theorem (formal lower bound)

Let 6 > 0 be any parameter, and ¢ > 0 be a large absolute constant. Define a sequence
{Et}tzl with
clog(1/9 c
€1 =1/ clog(1/9) ), Eo1 =&+ =f(ee)’, t>1.
d d
Then if 8* ~ Unif(S?~'), any learner {a;}+>1 satisfies that

Pl () {(0"a) <e} | >1-T&.

1<t<T

@ the continuous-time version of {e;} gives the differential equation
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Information-theoretic insights

Let I = I(0*;H:) be the mutual information between the true parameter 6* and the
history H: up to time t, then

lt+1 — It = I(G*, re+1 | at+1>Ht)
<E | log (14 E[F((0", 2:1))1)
<E | log art1

E[f((0", ae1))?]-
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Information-theoretic insights

Let I = I(0*;H:) be the mutual information between the true parameter 6* and the
history H: up to time t, then

lt+1 — It = I(G*, re+1 | at+1>Ht)

< [Log (1-+EIF(0" a0))1)]

1

< ZE[F((0", 1))’

N

To argue that (0, a;+1) should not be large, note that

1(9*; 3t+1) S I(g*;Ht) = It‘
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history H: up to time t, then

lt+1 — It = I(e*y re+1 | at+1>Ht)

< [Log (1-+EIF(0" a0))1)]

1

< ZE[F((0", 1))’

N

To argue that (0, a;+1) should not be large, note that

1(9*;at+1) S 1(9*;Ht) = It.

1(60%;a) < | = |(6*, a)| < \/I/d with high probability.
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Information-theoretic insights

Let I = I(0*;H:) be the mutual information between the true parameter 6* and the
history H: up to time t, then

lt+1 — It = I(e*y re+1 | at+1>Ht)

< [Log (1-+EIF(0" a0))1)]

1

< SE[F((07, ar1))?]-

N

To argue that (0, a;+1) should not be large, note that

I(a*;at+1) < 1(9*.Ht) = It.

1(07;a) < | = |(6*, a)| < \/I/d with high probability.

Applying the insight gives the desired recursion

1
€§+1 - Ef N gf(st)2-

24/29



More on the above insights

@ reasoning behind the insight:

al6* ~Unif({ae s ":(a,0%) >e}) = I(a;0") < de’
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More on the above insights

@ reasoning behind the insight:
al6* ~Unif({ae s ":(a,0%) >e}) = I(a;0") < de’
@ however, it does not hold with high probability: Fano's inequality only gives

1(6%; a) + log 2

B0 2)] < ) 21— S5,

which is tight for the worst-case distribution of (0%, a)
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More on the above insights

@ reasoning behind the insight:
al6* ~Unif({ae s ":(a,0%) >e}) = I(a;0") < de’

@ however, it does not hold with high probability: Fano's inequality only gives

1(6%; a) + log 2

B0 2)] < ) 21— S5,

which is tight for the worst-case distribution of (0%, a)

@ our solution: use x2-informativity instead
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Formal proof via x?-informativity

o x*-informativity between X and Y:
La(X; Y) = infx*(Pxv[|[Px x Qv),
Y

where \*(P||Q) = [(dP)?*/dQ — 1
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Formal proof via x?-informativity

o x*-informativity between X and Y:

La(X;Y) = ingQ(PXYHPx X Qv),
Y

where \*(P||Q) = [(dP)?*/dQ — 1

o error probability lower bound using x*-informativity:

P(|<9*, aH S 6) 2 1— e—@(dgz) . /IX2(9*; a) + 1.

o suffices to upper bound /,2(0%; ar41) < L2(0*; H:) for each t

e issue: y>-informativity does not satisfy the chain rule or subadditivity

26 /29



Conditioning technique

o let & = Ns<¢{|(0”, as)| < &5} be the error event
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Conditioning technique
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1(E:)
P(E)

m(0) [T e(rs — F((6", 25)))

s<t
w(0")Qe—1(r' ) - ()
w(0*)Qt(Hy)
/ [HE97(0") Mooy (s — F((0%,2)]
(6 Qea(rt 1)

do*dr*
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o let & = Ns<¢{|(0”, as)| < &5} be the error event
o upper bound of conditioned y*-informativity:

P(O* , H¢|€)?

1(E:)
P(E)

m(0) [T e(rs — F((6", 25)))

s<t
(0 )Qe—1(r' 1) - o(re)

m(0*)Qt(He)

do*dr*

IXQ(G*;Ht|Et)+1§(£nin/ |:

t—1

2

[HEGm(0") o 05 — F((07, 25))]
/ m(0*)Qe—1(rt—1)
HEm(0°) [z ol — F((0" )]
(01 (r )

= min - exp(F((07, a;))?)do*dr' ™
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Conditioning technique

o let & = Ns<¢{|(0”, as)| < &5} be the error event
o upper bound of conditioned y*-informativity:

P(O* , H¢|€)?

o) [T e(r ", a5))

(0% He | €)+1 < mln/ { = d6*drt
Q1 T(07)Qe—1(r'") - (re)

m(0*)Qt(He)

= min
Qr—1

/ [HE4m(0") Tozomy s — (67, 20))]
T(0)Qi_1(r )

HEDr(07) [Toee s s — F0%, 2],
(0901 (D)

(Ee—1)

op(fle)) /[p( GO s el = 107 200]

= P& E1)? G m(0%)Qe—1(rt—1)
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Conditioning technique

o let & = Ns<¢{[(0*, as)| < &5} be the error event
o upper bound of conditioned y*-informativity:
N exp(f(er)’) «
; < ——2 = ; _ _ .
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@ continuing this process gives

. exp(X, <, f(es)?)
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Conditioning technique

o let & = Ns<¢{[(0*, as)| < &5} be the error event
o upper bound of conditioned y*-informativity:
N exp(f(er)’) «
; < ——2 = ; _ _ .
/X2(9 ,Ht | gt) +1 =~ P(gt ‘ gt_1)2 (IXZ(Q ,Ht 1 | gt 1) + 1)

@ continuing this process gives

. exp(X, <, f(es)?)
/X2(9 THe | E)+1 < W

@ recursion of error probability:
B(Ecra) = B(E) - B((8", aes)| < evin | £0)
> P(&) (1 — O, [ (0% He | £) + 1)
> P(&) — e @) 3 Do, fles)®

=6
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Further improvements

o fill in the gap between upper and lower bounds
o f'y)?
It — It—l S Var( (<0 at>) | at,Ht 1) max d

@ unclear if the above holds with high probability

@ for linear f, posterior concentration holds using Brascamp-Lieb theory
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Concluding remarks

@ interactive lower bounds are more challenging to establish, while we still have the
counterparts of two-point and Fano

@ when the rewards are observable, via a two-point argument, constrained DEC gives
the right complexity up to a factor of Est(M)

@ the Fano-type argument could derive a complicated interactive learning trajectory,
suggesting the difficulty of closing the gap of Est(M) in general
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@ when the rewards are observable, via a two-point argument, constrained DEC gives
the right complexity up to a factor of Est(M)

@ the Fano-type argument could derive a complicated interactive learning trajectory,
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