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Success of digital ads

Digital vs. Traditional Ad Spending
United States, 2018-2021

2021

@ Traditional media ad spending (billions)
@ pigital ad spending (billions)

Source: eMarketer, Feb 2019
www.eMarketer.com
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Some popular auction designs:

@ second-price auction: the bidder with the highest bid wins the
auction, and pays the price equal to the second highest bid

o first-price auction: the bidder with the highest bid wins the auction,
and pays the price equal to the highest bid
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From second-price to first-price

There is a recent industrial shift to first-price auctions for display ads:
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From second-price to first-price

There is a recent industrial shift to first-price auctions for display ads:

1
AppNxed)SlmjpS .?NDEX EXCHANGE"

*OpenX Google

@ greater transparency to bidders
@ enhanced monetization for sellers

@ preferable mechanism for header-bidding
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More recent news

Google AdSense (contextual ads):

Moving AdSense to a first-price auction

Oct 07,2021 1 min read

2 Matt Wong < Share
8‘ Product Manager

Source: https://blog.google/products/adsense/our-move-to-a-first-price-auction/
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Bidder's challenge

How to bid in first-price auctions where it is
no longer optimal to bid truthfully?
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Bidder's challenge

How to bid in first-price auctions where it is
no longer optimal to bid truthfully?

Optimal bid in first-price auction:

b* =argmax, (v —b) -P(b>m)
I

private value others’ maximum bid

@ unknown bid distribution: need to learn P(b > m)
@ censored feedback: cannot directly observe m

@ non-stationary environment: P¢(b > m) depends on t

46



An example strategy

AppNexus whitepaper 2018:

The available evidence suggests that many large buyers have yet to adjust their
bidding behavior for first-price auctions.

Source: https://wuw.appnexus.com/sites/default/files/whitepapers/
49344-CM-Auction-Type-Whitepaper-V9.pdf
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An example strategy

AppNexus whitepaper 2018:

The available evidence suggests that many large buyers have yet to adjust their
bidding behavior for first-price auctions.

A suggested strategy in the whitepaper:

- The buyer starts by shading her bid by 20% of her valuation.

- If the buyer wins and has never lost, she reduces her bid by
another 10% from her initial valuation.

+ Once the buyer loses for the first time, she would increase her bid
by 8% from her initial valuation.

- If the buyer wins a round but has also lost before, she reduces her
bid by 4% from her initial valuation.

- If the buyer loses twice or more in a row, she increases her bid by
10%, up to 99% higher than her valuation.

Source: https://www.appnexus.com/sites/default/files/whitepapers/
49344-CM-Auction-Type-Whitepaper-V9.pdf


https://www.appnexus.com/sites/default/files/whitepapers/49344-CM-Auction-Type-Whitepaper-V9.pdf
https://www.appnexus.com/sites/default/files/whitepapers/49344-CM-Auction-Type-Whitepaper-V9.pdf

Empirical study

[Goke et al. 2021]: “at least a subset of bidders responded suboptimally to
the format change”

Effects for Global Company September Publishers

"o

Difference in USD/1000

—60 0 60
Number of days from 9/21/2017

Our target

Provide sound theoretical guidelines and timely practical solutions to
bidders




Model and Main Results
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Bidder's sequential decision model

private source other bidders
lprivate value v; maximum competing bid m{

T r current bid b; ’

(\‘ feedback information /; /-

target bidder ad exchange
(V17 bla Il7 o, Vi bta It)

Vi, bt, ms € [0, 1]
Instantaneous reward: r(bs; ve, me) = (ve — be) - 1(by > my)
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Model assumption: feedback

@ Unobservable bids: the bidder only knows whether he/she wins or
not, i.e.
It = ﬂ(bt Z mt)
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Model assumption: feedback

@ Unobservable bids: the bidder only knows whether he/she wins or
not, i.e.
It = ﬂ(bt Z mt)

@ Censored bids: others’ bids are left- or right-censored:

It = max{bs, m:} (winning price is announced)
It = min{b;, m;} (feedback inherited from SPA)

@ Observable bids: the bidder always knows the minimum bid to win,

i.e.
It = My

11 /46



Model assumption: values and bids

@ Stochastic setting: m; "% G with unknown CDF G(+)

- falls into standard learning framework
- no additional assumption on G
- reasonable in a short time window, or with irrelevant competitors
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Model assumption: values and bids

@ Stochastic setting: m; "% G with unknown CDF G(+)

- falls into standard learning framework
- no additional assumption on G
- reasonable in a short time window, or with irrelevant competitors

@ Adversarial setting: m; is an adversarial sequence

- no distributional assumption
- allows for others’ strategic or even adversarial moves

@ Private value v; always assumed to be known and adversarial
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Bidder's target: regret

Regret of a bidding policy 7 = (b;)/_;:

-
Z r(f(ve); ve, mt)] —-E

t=1

Rr(m) = rpa}fE
€
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Bidder's target: regret

Regret of a bidding policy 7 = (b;)/_;:

-
Rr(m) = maxE Z r(f(ve);ve,me)| — E Z r(bt; ve, mt)]
fer i t=1
oracle’s reward bidder’s reward

e stochastic setting: F = {all functions}

T
Rr(r) 2 3" | max(ve — 61)6(57) — El(ve — b)G ()]

t=1 i

bidder's reward
oracle’s reward

e adversarial setting: F = Fj, = {all 1-Lipschitz functions}
T

fe]:up .

=1 t=1

;
Rr(m) £ max Y r(f(v); ve,m:) — E [Z r(be; vt,mt)].

oracle’s reward bidder’s reward
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Some key features

@ non-linear reward with continuous action
- r(b;v,m)= (v —b)-1(b> m) not linear nor concave in b
- a challenging problem in bandits, where UCB or Thompson sampling
does not directly work
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Some key features

@ non-linear reward with continuous action
- r(b;v,m)= (v —b)-1(b> m) not linear nor concave in b
- a challenging problem in bandits, where UCB or Thompson sampling
does not directly work

@ minimal assumptions on v; and my
- no structural assumptions such as smoothness or log-concavity

@ censored feedback
- interesting interplay between feedback structure and reward function

strong time-variant oracle
- competing with a meaningful and powerful benchmark

14 /46



Table of optimal regrets

Setting
Feedback

stochastic

adversarial

Unobservable
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Observable
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Table of optimal regrets

Feedback Setting stochastic | adversarial
Unobservable T2/3 T3/4
Censored VT open
Observable VT VT

@ unobservable case implied by [Balseiro et al. 2019]

@ all terms within polylog(T) factors

o real-data experiments for the adversarial observable setting
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Part |: Stochastic Auctions with Censored Feedback

i 2
Zhengyuan Zhou Tsachy Weissman
NYU Stern Stanford EE

“Optimal No-regret Learning in Repeated First-price Auctions”
arXiv: 2003.09795
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A first trial

left censoring: whenever the bidder wins the auction (exploitation), he/she
loses the information for learning (exploration)
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A first trial

left censoring: whenever the bidder wins the auction (exploitation), he/she
loses the information for learning (exploration)

Explore-then-commit (ETC):

bid the optimal price under G

To T

always bid zero

maximum competing bids

distribution estimator G
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A first trial

left censoring: whenever the bidder wins the auction (exploitation), he/she
loses the information for learning (exploration)

Explore-then-commit (ETC):

bid the optimal price under G

To T

always bid zero

maximum competing bids

|

distribution estimator G

Regret analysis:
T

~T2/
regret of 75'C = O <To + ﬁ) ToT* o(T?/3)
0
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Monotone Feedback and Monotone Successive Elimination
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Contextual multi-armed bandit

@ context (state): private value

@ arm (action): bidder's bid

@ reward: the bidder receives a random reward depending on both the
bidding price (action) and the private value (context)
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Contextual multi-armed bandit

@ context (state): private value

@ arm (action): bidder's bid

@ reward: the bidder receives a random reward depending on both the
bidding price (action) and the private value (context)

Time Time
Bid 1 2 3 4 5 ... T Bid 1 2 3 4 5
Price 1 Price 1
Price 2 Price 2 v
Price 3 v Price 3
Price 4 Price 4
Price 5 v Price 5 v
Price K v Price K

environment under private value #1  environment under private value #2

Under bandit feedback, the optimal regret is ©(/#context - #action - T).
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Monotone feedback

Monotone feedback: each bid provides full information for all larger bids
and all private values

o if bidder wins, then any larger bid wins too

o if bidder loses, then others’” maximum bid is perfectly observed
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Monotone feedback

Monotone feedback: each bid provides full information for all larger bids

and all private values

o if bidder wins, then any larger bid wins too

o if bidder loses, then others’” maximum bid is perfectly observed

Time

Time

Bid 1 2 3 4 5 T Bid 1 2 3 4 5 T
Price 1 v Price 1 v
Price 2 v v Price 2 v v
Price 3 v v v Price 3 v v v
Price 4 v v v Price 4 v v v
Price 5 v v v v Price 5 v v v v v

ce v v v v ' cee v v v v v
Price K v v v v v v Price K v v v v v v

environment under private value #1

environment under private value #2

20 /46



Algorithm: monotone successive elimination

The monotone successive elimination (MSE) policy: at each time,
o bidder observes the current private value (context)
@ successively eliminate probably bad bids (actions) under this context

@ choose the smallest non-eliminated bid (action) under this context
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Algorithm: monotone successive elimination

The monotone successive elimination (MSE) policy: at each time,
o bidder observes the current private value (context)
@ successively eliminate probably bad bids (actions) under this context

@ choose the smallest non-eliminated bid (action) under this context

Time Time

Bid 1 2 3 4 5 T Bid 1 2 3 4 5 T
Price— v Price—t v
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Price 3 v v Price 3 v v v
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Performance of MSE

Theorem (Upper Bound with Exchangeable Contexts)

For contextual bandits with monotone feedback, if the contexts have an
exchangeable distribution, then the MSE policy satisfies

Efregret of 7] < /T log(T) log(#context - #action - T).
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Performance of MSE

Theorem (Upper Bound with Exchangeable Contexts)

For contextual bandits with monotone feedback, if the contexts have an
exchangeable distribution, then the MSE policy satisfies

Efregret of 7] < /T log(T) log(#context - #action - T).

When the private values are exchangeable, for stochastic auctions with

(left or right) censored feedback, the MSE bidding policy achieves an
O(V/'T log? T) expected regret.
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Limitation of MSE

Theorem (Lower Bound)

There exists an instance of contextual bandit with monotone feedback and
an adversarially chosen sequence of contexts such that, any policy incurs a
worst-case regret at least Q(T%/3).
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Limitation of MSE

Theorem (Lower Bound)

There exists an instance of contextual bandit with monotone feedback and
an adversarially chosen sequence of contexts such that, any policy incurs a
worst-case regret at least Q(T%/3).

o O(V/T) regret on average, but Q(T2/3) for worst-case contexts

@ monotone feedback is insufficient to achieve a small regret

23 /46



An Interval-Splitting Scheme
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Help from the reward function
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adversarial private value: T2/3 regret
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Help from the reward function

stochastic private value: v/ T regret
adversarial private value: T2/3 regret

T

monotone feedback

full information

small bid large bid
bl ~

'I \'
T partial information ~___. -7

special reward function

For prices b < b':
IF’(mt > b) = P(mt > bl) + ]P)(b < mg S bl)
—_—— —_——

one more observation  smaller target quantity
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Interval-splitted estimation

« my !
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i ms I I I
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0 [ [ b 1
b3 by bs by by

B(me > b) = B(b < my < bs) +B(bs < me < bs) +P(bs < me < by) + P(me > by)
_0,1.1.0
“2737475
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Interval-splitted estimation

« my !

L my I I

i ms I I I

| v Mmooy oms

1 1 1 1

1 1 1 1

L . L \Ir L \Ir L

0 [ [ b 1
b3 by bs by by

B(me > b) = B(b < my < bs) +B(bs < me < bs) +P(bs < me < by) + P(me > by)
_0,1.1.0
“2737475

(an additive version of Kaplan-Meier estimator)
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Interval-splitted estimation
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Interval-splitted estimation

p mo !
P mg : |
i ms : : :
: L mLooms
: o ]

b3 bl b5 b4 b2

sd(b) =~

IF’b<mt<b5 L Blbs <me < b))  P(bs<me<b)  PB(me>by)
3 + 4 + 5

R

b < mt < b5 P(bs <m; < b4) P(b4 <m; < bz) (mt > b2)
3 + 4 + 5
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UCB policy
The upper confidence bound policy:

b; = arg brg[gﬁ] (vt — b) - (Pt(mt < b)+ sdt(b)) .
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UCB policy
The upper confidence bound policy:

b; = arg b@[gﬁ] (vt — b) - (Pt(mt < b)+ sdt(b)) .

@ some technical issues:

- dependence across different intervals
- dependence across time
- estimation error in standard deviation

@ solution: a multi-stage algorithm

Theorem (Upper Bound with Adversarial Private Values)

For adversarially chosen private values, the (multi-stage version of) UCB
algorithm achieves

regret of 798 < /T log® T.

27 / 46
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Summary of Part |

stochastic private value: v/ T regret
adversarial private value: T2/3 regret

T

LT monotone feedback
. full information
//
’
/7 . .
K small bid large bid
, 7 .
1 i )
1 N . . . ’
h ~ .. partial information -7
' TT=-.____partialinformation
\ special reward function
\
' :
\ 1
~ hd

"= - adversarial private value: v/ T regret
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Part IlI: Adversarial Auctions with Full Information

r | L -”"””

Zhengyuan Zhou Aaron Flores Erik Ordentlich ~ Tsachy Weissman
NYU Stern Yahoo! Research  Yahoo! Research Stanford EE

“Learning to Bid Optimally and Efficiently in Adversarial First-price Auctions”
arXiv: 2007.04568
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Adversarial setting revisited

Assumptions:
@ modeling of private value: v; adversarial
@ modeling of others’ bids: m; adversarial

o feedback structure: m; is always revealed

Regret in adversarial auctions

.
Rr(m) £ max Z r(f(ve); ve,me) — E Z r(be; ve, me) |,
= t=1
oracle’s reward bidder;rreward
where Fij, is the set of all 1-Lipschitz functions f : [0,1] — [0, 1].
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An Optimal and Efficient Policy
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Prediction with expert advice

@ oracle f € Fijp, +— expert
@ expert f bids price by = f(v;) at each time

@ full-information feedback: rewards of all experts are revealed
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@ full-information feedback: rewards of all experts are revealed

Time
Expert

T

policy fi
policy f»
policy f3 v
policy f4

policy fx
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@ full-information feedback: rewards of all experts are revealed
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Expert
policy fi v v v v v
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Prediction with expert advice

@ oracle f € Fijp, +— expert
@ expert f bids price by = f(v;) at each time

@ full-information feedback: rewards of all experts are revealed

Tmel y 2 3 4 T

Expert
policy fi v v v v v
policy v o v v v v
policy f3 v o v v v v
policy f4 v v v v v
policy fx v v v v v

Optimal regret relative to the best fixed expert is ©(v/ T log K).
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An independent set of experts

— bidder

Optimal expert size K = exp(T/3), achieving regret T2/3
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A hierarchical chaining of experts
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Help from a good expert

@ note that the reward b +— (v — b)1(b > m) is discontinuous

@ need a good notion of similarity
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Help from a good expert

@ note that the reward b +— (v — b)1(b > m) is discontinuous

@ need a good notion of similarity

Definition (Good Expert)

In prediction with expert advice, an expert is A-good if at each time, the
reward of that expert is A-close to the reward of the best expert.
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Help from a good expert

@ note that the reward b +— (v — b)1(b > m) is discontinuous

@ need a good notion of similarity

Definition (Good Expert)

In prediction with expert advice, an expert is A-good if at each time, the
reward of that expert is A-close to the reward of the best expert.

A

Theorem (Optimal Regret with Good Expert)

For A € [T !log K, 1], the optimal regret in prediction with expert advice
and a A-good expert is O(v/TAlog K).

v
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Improve regrets in the chain
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Computational efficiency

A modified policy: successive exponential weighting (SEW)
bid
1h---- o

bid «—

0 T 1 private value

private value

Different layers of experts correspond to different resolutions. .



Regret guarantee

Theorem (Adversarial Auction with Full Information)
The SEW policy takes O(T) space and O(T*®) time, and satisfies

regret of 7 < V/Tlog T.
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Real-data Experiments
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Real data experiments

Datasets:
@ three real datasets from Verizon Media
@ each consists of two sequences {v;} and {m;}
@ duration: from June 8, 2020 to July 6, 2020
@ sample size: 0.70M, 1.34M, and 1.53M
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Real data experiments

Datasets:
@ three real datasets from Verizon Media
@ each consists of two sequences {v;} and {m;}
@ duration: from June 8, 2020 to July 6, 2020
@ sample size: 0.70M, 1.34M, and 1.53M

Competing policies:
@ linear bid-shading: by =60 - v;
@ non-linear bid-shading: by = f(v; 8) with non-linear f

@ context-based prediction: estimate m; based on side information
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Experimental results

—SEW
— linear bid shading
— non-linear bid shading

—— context-based prediction

SEW

: = linear bid shading

= non-linear bid shading
—— context-based prediction

Dataset B

—SEW

— linear bid shading
osf|=—non-linear bid shading
—— context-based prediction

Dataset C

s
<108
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Adaptation to different data nature

Visualization of Dataset A:

aAla4IIa— o5 o8 o ‘.,u [ T

Private values Competing bids

Bidder's bids:

Non-linear bid shading SEW
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Adaptation to different data nature (cont.)

Visualization of Dataset C:

Private values Competing bids

Bidder's bids:

Non-linear bid shading SEW
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Online experiments

£
3
s
Z
2 T 3+ s s 7 s v w T 2+ s s 7 s %
s
3
a ¢ D
=
i
Bid price

Comparisons of distributions of b; and m;

Reference: Zhang et al. "MEOW: A Space-Efficient Non-Parametric Bid Shading
Algorithm.” KDD 2021. 4446



Summary of Part Il
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Concluding remarks

Optimal regret efficiently achievable for a single bidder in various scenarios

with different assumptions on:

@ characteristics of the other bidders’ bids

@ characteristics of the bidder's private valuation
o feedback structure of the auction
o

reference policies with which our bidder competes

Future directions:
e additional contexts (hints, semiparametric model, etc.)
@ budget constraints (model return instead of revenue)
@ joint value estimation and bidding
@ equilibrium theory for multiple bidders/sellers

Thank You!
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