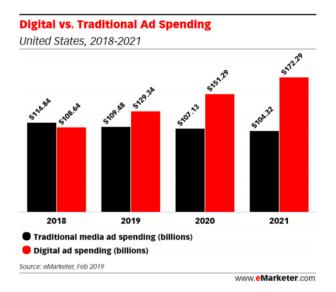
Learning to Bid in Repeated First-price Auctions

Yanjun Han (UC Berkeley)

Tsachy Weissman (Stanford), Zhengyuan Zhou (NYU), Aaron Flores & Erik Ordentlich (Yahoo! Research)

TOPS Seminar Department of Technology, Operations, and Statistics NYU Stern School of Business

Success of digital ads



Online auctions

Online auctions

Some popular auction designs:

- second-price auction: the bidder with the highest bid wins the auction, and pays the price equal to the second highest bid
- first-price auction: the bidder with the highest bid wins the auction, and pays the price equal to the highest bid

From second-price to first-price

There is a recent industrial shift to first-price auctions for display ads:

From second-price to first-price

There is a recent industrial shift to first-price auctions for display ads:

- greater transparency to bidders
- enhanced monetization for sellers
- preferable mechanism for header-bidding

Google AdSense (contextual ads):

ADSENSE

Moving AdSense to a first-price auction

Oct 07, 2021 · 1 min read

Matt Wong Product Manager < Share

Source: https://blog.google/products/adsense/our-move-to-a-first-price-auction/

Bidder's challenge

How to bid in first-price auctions where it is no longer optimal to bid truthfully?

Bidder's challenge

How to bid in first-price auctions where it is no longer optimal to bid truthfully?

Optimal bid in first-price auction:

$$b^{\star} = \arg \max_{b} \quad (v - b) \cdot \mathbb{P}(b \ge m)$$

private value others' maximum bid

Bidder's challenge

How to bid in first-price auctions where it is no longer optimal to bid truthfully?

Optimal bid in first-price auction:

private value others' maximum bid

- unknown bid distribution: need to learn $\mathbb{P}(b \ge m)$
- censored feedback: cannot directly observe m
- non-stationary environment: $\mathbb{P}_t(b \ge m)$ depends on t

An example strategy

AppNexus whitepaper 2018:

The available evidence suggests that many large buyers have yet to adjust their bidding behavior for first-price auctions.

Source: https://www.appnexus.com/sites/default/files/whitepapers/ 49344-CM-Auction-Type-Whitepaper-V9.pdf

An example strategy

AppNexus whitepaper 2018:

The available evidence suggests that many large buyers have yet to adjust their bidding behavior for first-price auctions.

A suggested strategy in the whitepaper:

- The buyer starts by shading her bid by 20% of her valuation.
- If the buyer wins and has never lost, she reduces her bid by another 10% from her initial valuation.
- Once the buyer loses for the first time, she would increase her bid by 8% from her initial valuation.
- If the buyer wins a round but has also lost before, she reduces her bid by 4% from her initial valuation.
- If the buyer loses twice or more in a row, she increases her bid by 10%, up to 99% higher than her valuation.

Source: https://www.appnexus.com/sites/default/files/whitepapers/ 49344-CM-Auction-Type-Whitepaper-V9.pdf

Empirical study

[Goke et al. 2021]: "at least a subset of bidders responded suboptimally to the format change"

Effects for Global Company September Publishers

Our target

Provide sound theoretical guidelines and timely practical solutions to bidders

Model and Main Results

private source

other bidders

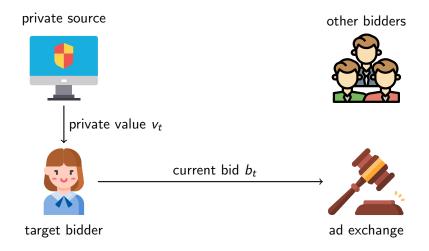
ad exchange

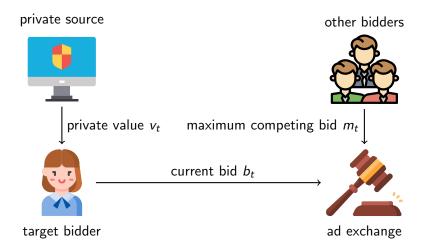
private source private value v_t

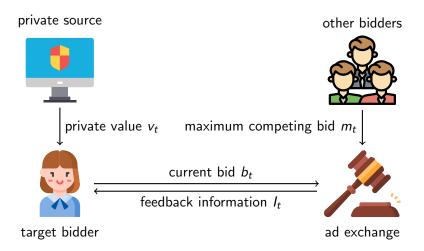
target bidder

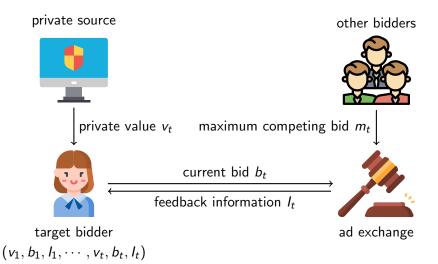
other bidders

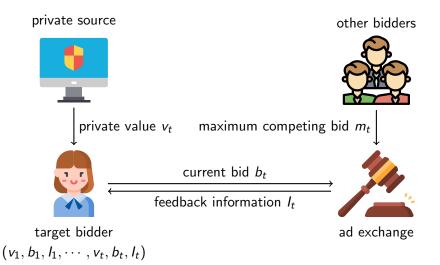
ad exchange











$$v_t, b_t, m_t \in [0, 1]$$

Instantaneous reward: $r(b_t; v_t, m_t) = (v_t - b_t) \cdot \mathbb{1}(b_t \ge m_t)$

Model assumption: feedback

• Unobservable bids: the bidder only knows whether he/she wins or not, i.e.

$$I_t = \mathbb{1}(b_t \geq m_t)$$

Model assumption: feedback

• Unobservable bids: the bidder only knows whether he/she wins or not, i.e.

$$I_t = \mathbb{1}(b_t \geq m_t)$$

• Censored bids: others' bids are left- or right-censored:

$$I_t = \max\{b_t, m_t\}$$
 (winning price is announced)
 $I_t = \min\{b_t, m_t\}$ (feedback inherited from SPA)

Model assumption: feedback

• Unobservable bids: the bidder only knows whether he/she wins or not, i.e.

$$I_t = \mathbb{1}(b_t \geq m_t)$$

• Censored bids: others' bids are left- or right-censored:

$$I_t = \max\{b_t, m_t\}$$
 (winning price is announced)
 $I_t = \min\{b_t, m_t\}$ (feedback inherited from SPA)

• Observable bids: the bidder always knows the minimum bid to win, i.e.

$$I_t = m_t$$

Model assumption: values and bids

- Stochastic setting: $m_t \stackrel{\text{i.i.d.}}{\sim} G$ with unknown CDF $G(\cdot)$
 - falls into standard learning framework
 - no additional assumption on G
 - reasonable in a short time window, or with irrelevant competitors

Model assumption: values and bids

- Stochastic setting: $m_t \stackrel{\text{i.i.d.}}{\sim} G$ with unknown CDF $G(\cdot)$
 - falls into standard learning framework
 - no additional assumption on G
 - reasonable in a short time window, or with irrelevant competitors

- Adversarial setting: *m_t* is an adversarial sequence
 - no distributional assumption
 - allows for others' strategic or even adversarial moves

Model assumption: values and bids

- Stochastic setting: $m_t \stackrel{\text{i.i.d.}}{\sim} G$ with unknown CDF $G(\cdot)$
 - falls into standard learning framework
 - no additional assumption on G
 - reasonable in a short time window, or with irrelevant competitors

- Adversarial setting: *m_t* is an adversarial sequence
 - no distributional assumption
 - allows for others' strategic or even adversarial moves

• Private value vt always assumed to be known and adversarial

Bidder's target: regret

Regret of a bidding policy $\pi = (b_t)_{t=1}^T$:

$$R_{T}(\pi) \triangleq \underbrace{\max_{f \in \mathcal{F}} \mathbb{E}\left[\sum_{t=1}^{T} r(f(v_{t}); v_{t}, m_{t})\right]}_{\text{oracle's reward}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{T} r(b_{t}; v_{t}, m_{t})\right]}_{\text{bidder's reward}}$$

Bidder's target: regret

Regret of a bidding policy $\pi = (b_t)_{t=1}^T$:

$$R_{T}(\pi) \triangleq \max_{\substack{f \in \mathcal{F} \\ t=1}} \mathbb{E}\left[\sum_{\substack{t=1 \\ t=1}}^{T} r(f(v_{t}); v_{t}, m_{t})\right] - \mathbb{E}\left[\sum_{\substack{t=1 \\ t=1}}^{T} r(b_{t}; v_{t}, m_{t})\right]$$

$$\text{bidder's reward}$$

$$\text{stochastic setting: } \mathcal{F} = \{\text{all functions}\}$$

$$R_{T}(\pi) \triangleq \sum_{\substack{t=1 \\ t=1}}^{T} \left(\underbrace{\max_{\substack{b_{t}^{\star} \\ t=1}}^{T} O(b_{t}^{\star}) - \underbrace{\mathbb{E}[(v_{t} - b_{t})G(b_{t})]}_{\text{bidder's reward}}\right)$$

Bidder's target: regret

Regret of a bidding policy $\pi = (b_t)_{t=1}^T$:

$$R_{T}(\pi) \triangleq \max_{\substack{f \in \mathcal{F}}} \mathbb{E}\left[\sum_{\substack{t=1 \\ t=1}}^{T} r(f(v_{t}); v_{t}, m_{t})\right] - \mathbb{E}\left[\sum_{\substack{t=1 \\ t=1}}^{T} r(b_{t}; v_{t}, m_{t})\right]$$

oracle's reward
• stochastic setting: $\mathcal{F} = \{\text{all functions}\}$

$$R_{T}(\pi) \triangleq \sum_{\substack{t=1 \\ t=1}}^{T} \left(\underbrace{\max_{\substack{b_{t}^{\star} \\ b_{t}^{\star}}}(v_{t} - b_{t}^{\star})G(b_{t}^{\star})}_{\text{oracle's reward}} - \underbrace{\mathbb{E}\left[(v_{t} - b_{t})G(b_{t})\right]}_{\text{bidder's reward}}\right)$$

• adversarial setting: $\mathcal{F} = \mathcal{F}_{Lip} = \{ all \ 1-Lipschitz \ functions \}$

$$R_{T}(\pi) \triangleq \underbrace{\max_{f \in \mathcal{F}_{\text{Lip}}} \sum_{t=1}^{T} r(f(v_{t}); v_{t}, m_{t})}_{\text{oracle's reward}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{T} r(b_{t}; v_{t}, m_{t})\right]}_{\text{bidder's reward}}.$$

• non-linear reward with continuous action

- $r(b; v, m) = (v b) \cdot 1(b \ge m)$ not linear nor concave in b
- a challenging problem in bandits, where UCB or Thompson sampling does not directly work

• non-linear reward with continuous action

- $r(b; v, m) = (v b) \cdot 1(b \ge m)$ not linear nor concave in b
- a challenging problem in bandits, where UCB or Thompson sampling does not directly work

• minimal assumptions on v_t and m_t

- no structural assumptions such as smoothness or log-concavity

• non-linear reward with continuous action

- $r(b; v, m) = (v b) \cdot 1(b \ge m)$ not linear nor concave in b
- a challenging problem in bandits, where UCB or Thompson sampling does not directly work

• minimal assumptions on v_t and m_t

- no structural assumptions such as smoothness or log-concavity

censored feedback

- interesting interplay between feedback structure and reward function

• non-linear reward with continuous action

- $r(b; v, m) = (v b) \cdot 1(b \ge m)$ not linear nor concave in b
- a challenging problem in bandits, where UCB or Thompson sampling does not directly work

• minimal assumptions on v_t and m_t

- no structural assumptions such as smoothness or log-concavity
- censored feedback
 - interesting interplay between feedback structure and reward function
- strong time-variant oracle
 - competing with a meaningful and powerful benchmark

Table of optimal regrets

Setting Feedback	stochastic	adversarial
Unobservable		
Censored		
Observable		

Table of optimal regrets

Setting Feedback	stochastic	adversarial
Unobservable	T ^{2/3}	$T^{3/4}$
Censored		
Observable		

• unobservable case implied by [Balseiro et al. 2019]

Settin, Feedback	g stochastic adversarial
Unobservable	$T^{2/3}$ $T^{3/4}$
Censored	
Observable	\sqrt{T}

• unobservable case implied by [Balseiro et al. 2019]

Setting Feedback	stochastic	adversarial
Unobservable	$T^{2/3}$	$T^{3/4}$
Censored	\sqrt{T}	
Observable	\sqrt{T}	\sqrt{T}

• unobservable case implied by [Balseiro et al. 2019]

Setting Feedback	stochastic	adversarial
Unobservable	T ^{2/3}	$T^{3/4}$
Censored	\sqrt{T}	
Observable	\sqrt{T}	\sqrt{T}

- unobservable case implied by [Balseiro et al. 2019]
- all terms within polylog(T) factors
- real-data experiments for the adversarial observable setting

Setting Feedback	stochastic	adversarial
Unobservable	$T^{2/3}$	T ^{3/4}
Censored	\sqrt{T}	open
Observable	\sqrt{T}	\sqrt{T}

- unobservable case implied by [Balseiro et al. 2019]
- all terms within polylog(T) factors
- real-data experiments for the adversarial observable setting

Part I: Stochastic Auctions with Censored Feedback

Zhengyuan Zhou NYU Stern

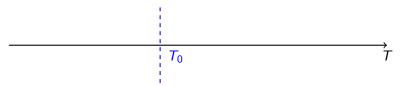
Tsachy Weissman Stanford EE

"Optimal No-regret Learning in Repeated First-price Auctions" arXiv: 2003.09795

left censoring: whenever the bidder wins the auction (exploitation), he/she loses the information for learning (exploration)

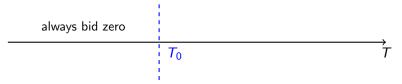
left censoring: whenever the bidder wins the auction (exploitation), he/she loses the information for learning (exploration)

Explore-then-commit (ETC):



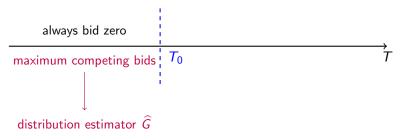
left censoring: whenever the bidder wins the auction (exploitation), he/she loses the information for learning (exploration)

Explore-then-commit (ETC):



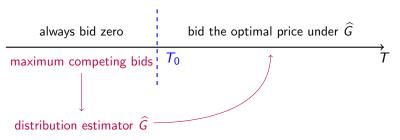
left censoring: whenever the bidder wins the auction (exploitation), he/she loses the information for learning (exploration)

```
Explore-then-commit (ETC):
```



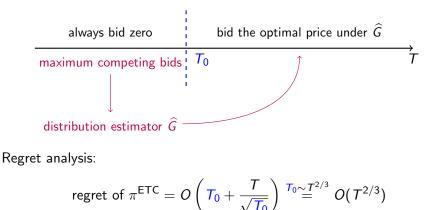
left censoring: whenever the bidder wins the auction (exploitation), he/she loses the information for learning (exploration)

Explore-then-commit (ETC):



left censoring: whenever the bidder wins the auction (exploitation), he/she loses the information for learning (exploration)

Explore-then-commit (ETC):



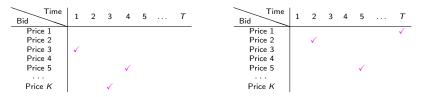
Monotone Feedback and Monotone Successive Elimination

Contextual multi-armed bandit

- context (state): private value
- arm (action): bidder's bid
- reward: the bidder receives a random reward depending on both the bidding price (action) and the private value (context)

Contextual multi-armed bandit

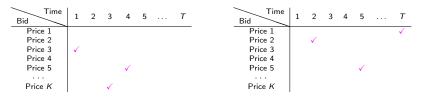
- context (state): private value
- arm (action): bidder's bid
- reward: the bidder receives a random reward depending on both the bidding price (action) and the private value (context)



environment under private value #1

Contextual multi-armed bandit

- context (state): private value
- arm (action): bidder's bid
- reward: the bidder receives a random reward depending on both the bidding price (action) and the private value (context)



environment under private value #1 environment under private value #2

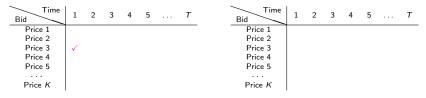
Under bandit feedback, the optimal regret is $\Theta(\sqrt{\#\text{context} \cdot \#\text{action} \cdot T})$.

Monotone feedback: each bid provides full information for all larger bids and all private values

- if bidder wins, then any larger bid wins too
- if bidder loses, then others' maximum bid is perfectly observed

Monotone feedback: each bid provides full information for all larger bids and all private values

- if bidder wins, then any larger bid wins too
- if bidder loses, then others' maximum bid is perfectly observed



environment under private value #1

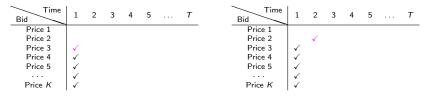
Monotone feedback: each bid provides full information for all larger bids and all private values

- if bidder wins, then any larger bid wins too
- if bidder loses, then others' maximum bid is perfectly observed

environment under private value #1

Monotone feedback: each bid provides full information for all larger bids and all private values

- if bidder wins, then any larger bid wins too
- if bidder loses, then others' maximum bid is perfectly observed



environment under private value #1

Monotone feedback: each bid provides full information for all larger bids and all private values

- if bidder wins, then any larger bid wins too
- if bidder loses, then others' maximum bid is perfectly observed

environment under private value #1

Monotone feedback: each bid provides full information for all larger bids and all private values

- if bidder wins, then any larger bid wins too
- if bidder loses, then others' maximum bid is perfectly observed

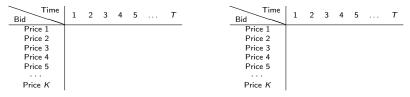
environment under private value #1

The monotone successive elimination (MSE) policy: at each time,

- bidder observes the current private value (context)
- successively eliminate probably bad bids (actions) under this context
- choose the smallest non-eliminated bid (action) under this context

The monotone successive elimination (MSE) policy: at each time,

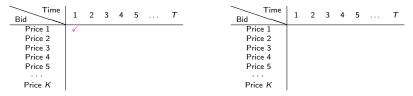
- bidder observes the current private value (context)
- successively eliminate probably bad bids (actions) under this context
- choose the smallest non-eliminated bid (action) under this context



environment under private value #1

The monotone successive elimination (MSE) policy: at each time,

- bidder observes the current private value (context)
- successively eliminate probably bad bids (actions) under this context
- choose the smallest non-eliminated bid (action) under this context



environment under private value #1

The monotone successive elimination (MSE) policy: at each time,

- bidder observes the current private value (context)
- successively eliminate probably bad bids (actions) under this context
- choose the smallest non-eliminated bid (action) under this context

Time Bid	1	2	3	4	5	 Т		Time Bid	1	2	3	4	5	 т
Price 1	\checkmark							Price 1	\checkmark					
Price 2	\checkmark							Price 2	\checkmark					
Price 3	\checkmark							Price 3	1					
Price 4	\checkmark							Price 4	\checkmark					
Price 5	\checkmark							Price 5	\checkmark					
	\checkmark								\checkmark					
Price K	\checkmark							Price K	1					

environment under private value #1

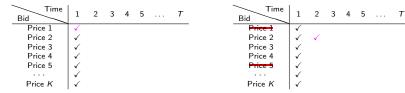
The monotone successive elimination (MSE) policy: at each time,

- bidder observes the current private value (context)
- successively eliminate probably bad bids (actions) under this context
- choose the smallest non-eliminated bid (action) under this context

environment under private value #1

The monotone successive elimination (MSE) policy: at each time,

- bidder observes the current private value (context)
- successively eliminate probably bad bids (actions) under this context
- choose the smallest non-eliminated bid (action) under this context



environment under private value #1

The monotone successive elimination (MSE) policy: at each time,

- bidder observes the current private value (context)
- successively eliminate probably bad bids (actions) under this context
- choose the smallest non-eliminated bid (action) under this context

Time Bid	1	2	3	4	5	 т
Price 1	\checkmark					
Price 2	\checkmark	\checkmark				
Price 3	\checkmark	\checkmark				
Price 4	\checkmark	\checkmark				
Price 5	\checkmark	\checkmark				
	\checkmark	\checkmark				
Price K	\checkmark	\checkmark				

Time Bid	1	2	3	4	5	 т
Price 1	\checkmark					
Price 2	\checkmark	\checkmark				
Price 3	\checkmark	\checkmark				
Price 4	\checkmark	\checkmark				
Price 5	\checkmark					
	\checkmark	\checkmark				
Price K	\checkmark	\checkmark				

environment under private value #1

The monotone successive elimination (MSE) policy: at each time,

- bidder observes the current private value (context)
- successively eliminate probably bad bids (actions) under this context
- choose the smallest non-eliminated bid (action) under this context

Time Bid	1	2	3	4	5	 т
Price 1	-					
Price 2	\checkmark	\checkmark				
Price 3	\checkmark	\checkmark				
Price 4	\checkmark	\checkmark				
Price 5	\checkmark	\checkmark				
	\checkmark	\checkmark				
Price K	\checkmark	\checkmark				

environment under private value #1

The monotone successive elimination (MSE) policy: at each time,

- bidder observes the current private value (context)
- successively eliminate probably bad bids (actions) under this context
- choose the smallest non-eliminated bid (action) under this context

Bid	1	2	3	4	5	 Т
Price 1	 Image: A second s					
Price 2	\checkmark	\checkmark				
Price 3	1	\checkmark	\checkmark			
Price 4	1	\checkmark				
Price 5	1	\checkmark				
	1	\checkmark				
Price K	\checkmark	\checkmark				

environment under private value #1

The monotone successive elimination (MSE) policy: at each time,

- bidder observes the current private value (context)
- successively eliminate probably bad bids (actions) under this context
- choose the smallest non-eliminated bid (action) under this context

Time Bid	1	2	3	4	5	 т
Price 1	\checkmark					
Price 2	\checkmark	\checkmark				
Price 3	\checkmark	\checkmark	\checkmark			
Price 4	√	\checkmark				
Price 5	\checkmark	\checkmark				
	√	\checkmark	\checkmark			
Price K	\checkmark	\checkmark	\checkmark			

environment under private value #1

Theorem (Upper Bound with Exchangeable Contexts)

For contextual bandits with monotone feedback, if the contexts have an exchangeable distribution, then the MSE policy satisfies

 $\mathbb{E}[\text{regret of } \pi^{\mathsf{MSE}}] \lesssim \sqrt{\mathcal{T}} \log(\mathcal{T}) \log(\# \text{context} \cdot \# \text{action} \cdot \mathcal{T}).$

Theorem (Upper Bound with Exchangeable Contexts)

For contextual bandits with monotone feedback, if the contexts have an exchangeable distribution, then the MSE policy satisfies

 $\mathbb{E}[\text{regret of } \pi^{\mathsf{MSE}}] \lesssim \sqrt{T} \log(T) \log(\#\text{context} \cdot \#\text{action} \cdot T).$

Corollary

When the private values are exchangeable, for stochastic auctions with (left or right) censored feedback, the MSE bidding policy achieves an $O(\sqrt{T} \log^2 T)$ expected regret.

Theorem (Lower Bound)

There exists an instance of contextual bandit with monotone feedback and an adversarially chosen sequence of contexts such that, any policy incurs a worst-case regret at least $\Omega(T^{2/3})$.

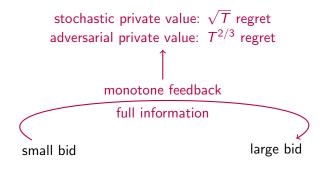
Theorem (Lower Bound)

There exists an instance of contextual bandit with monotone feedback and an adversarially chosen sequence of contexts such that, any policy incurs a worst-case regret at least $\Omega(T^{2/3})$.

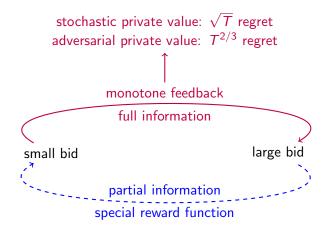
- $\widetilde{O}(\sqrt{T})$ regret on average, but $\Omega(T^{2/3})$ for worst-case contexts
- monotone feedback is insufficient to achieve a small regret

An Interval-Splitting Scheme

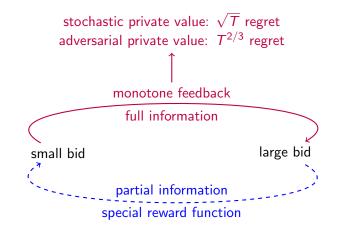
Help from the reward function



Help from the reward function



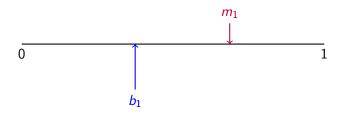
Help from the reward function

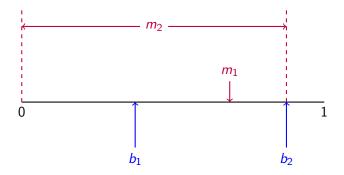


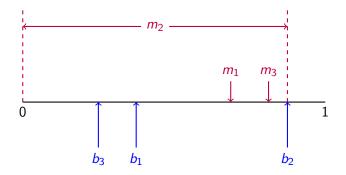
For prices b < b':

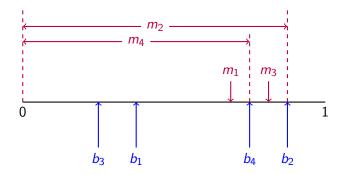
$$\mathbb{P}(m_t > b) = \underbrace{\mathbb{P}(m_t > b')}_{t = t} + \underbrace{\mathbb{P}(b < m_t \le b')}_{t = t}$$

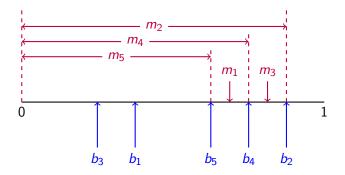
one more observation smaller target quantity

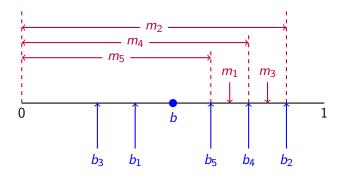


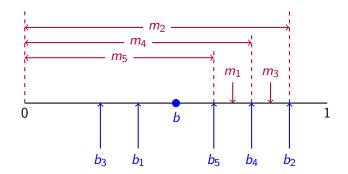




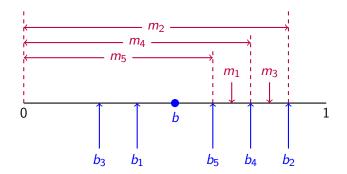






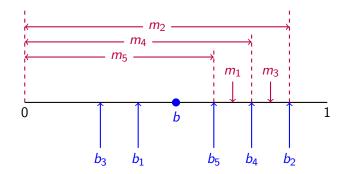


$$egin{aligned} \widehat{\mathbb{P}}(m_t > b) &= \widehat{\mathbb{P}}(b < m_t \leq b_5) + \widehat{\mathbb{P}}(b_5 < m_t \leq b_4) + \widehat{\mathbb{P}}(b_4 < m_t \leq b_2) + \widehat{\mathbb{P}}(m_t > b_2) \ &= rac{0}{2} + rac{1}{3} + rac{1}{4} + rac{0}{5} \end{aligned}$$

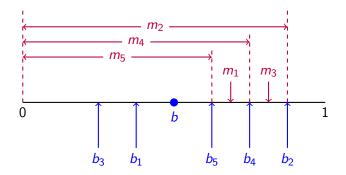


$$egin{aligned} \widehat{\mathbb{P}}(m_t > b) &= \widehat{\mathbb{P}}(b < m_t \leq b_5) + \widehat{\mathbb{P}}(b_5 < m_t \leq b_4) + \widehat{\mathbb{P}}(b_4 < m_t \leq b_2) + \widehat{\mathbb{P}}(m_t > b_2) \ &= rac{0}{2} + rac{1}{3} + rac{1}{4} + rac{0}{5} \end{aligned}$$

(an additive version of Kaplan-Meier estimator)



$$\mathsf{sd}(b) pprox \sqrt{rac{\mathbb{P}(b < m_t \le b_5)}{2} + rac{\mathbb{P}(b_5 < m_t \le b_4)}{3} + rac{\mathbb{P}(b_4 < m_t \le b_2)}{4} + rac{\mathbb{P}(m_t > b_2)}{5}}$$



$$sd(b) \approx \sqrt{\frac{\mathbb{P}(b < m_t \le b_5)}{2} + \frac{\mathbb{P}(b_5 < m_t \le b_4)}{3} + \frac{\mathbb{P}(b_4 < m_t \le b_2)}{4} + \frac{\mathbb{P}(m_t > b_2)}{5}}{\widehat{sd}(b)} \approx \sqrt{\frac{\widehat{\mathbb{P}}(b < m_t \le b_5)}{2} + \frac{\widehat{\mathbb{P}}(b_5 < m_t \le b_4)}{3} + \frac{\widehat{\mathbb{P}}(b_4 < m_t \le b_2)}{4} + \frac{\widehat{\mathbb{P}}(m_t > b_2)}{5}}{5}}$$

The upper confidence bound policy:

$$b_t = \arg \max_{b \in [0,1]} (v_t - b) \cdot \left(\widehat{\mathbb{P}}_t(m_t \le b) + \widehat{\mathrm{sd}_t(b)}\right).$$

The upper confidence bound policy:

$$b_t = \arg \max_{b \in [0,1]} (v_t - b) \cdot \left(\widehat{\mathbb{P}}_t(m_t \le b) + \widehat{\operatorname{sd}_t(b)}\right).$$

- some technical issues:
 - dependence across different intervals
 - dependence across time
 - estimation error in standard deviation

The upper confidence bound policy:

$$b_t = \arg \max_{b \in [0,1]} (v_t - b) \cdot \left(\widehat{\mathbb{P}}_t(m_t \le b) + \widehat{\operatorname{sd}_t(b)}\right).$$

- some technical issues:
 - dependence across different intervals
 - dependence across time
 - estimation error in standard deviation
- solution: a multi-stage algorithm

The upper confidence bound policy:

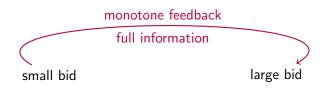
$$b_t = \arg \max_{b \in [0,1]} (v_t - b) \cdot \left(\widehat{\mathbb{P}}_t(m_t \le b) + \widehat{\operatorname{sd}_t(b)}\right).$$

- some technical issues:
 - dependence across different intervals
 - dependence across time
 - estimation error in standard deviation
- solution: a multi-stage algorithm

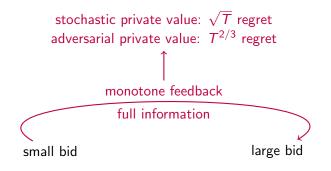
Theorem (Upper Bound with Adversarial Private Values)

For adversarially chosen private values, the (multi-stage version of) UCB algorithm achieves

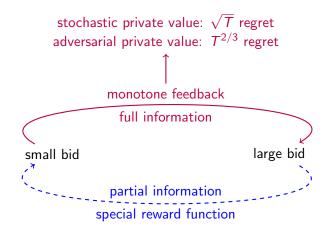
regret of
$$\pi^{\rm UCB} \lesssim \sqrt{T} \log^3 T$$
.



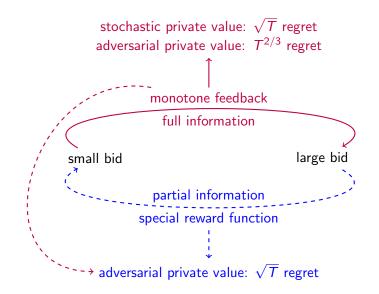
Summary of Part I



Summary of Part I



Summary of Part I



Part II: Adversarial Auctions with Full Information

Zhengyuan Zhou NYU Stern

Aaron Flores Yahoo! Research

Erik Ordentlich Yahoo! Research

Tsachy Weissman Stanford EE

"Learning to Bid Optimally and Efficiently in Adversarial First-price Auctions" arXiv: 2007.04568

Adversarial setting revisited

Assumptions:

- modeling of private value: v_t adversarial
- modeling of others' bids: *m_t* adversarial
- feedback structure: m_t is always revealed

Regret in adversarial auctions

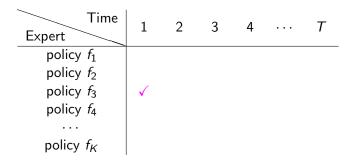
$$R_{T}(\pi) \triangleq \underbrace{\max_{f \in \mathcal{F}_{\text{Lip}}} \sum_{t=1}^{T} r(f(v_{t}); v_{t}, m_{t})}_{\text{oracle's reward}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{T} r(b_{t}; v_{t}, m_{t})\right]}_{\text{bidder's reward}},$$

where \mathcal{F}_{Lip} is the set of all 1-Lipschitz functions $f : [0, 1] \rightarrow [0, 1].$

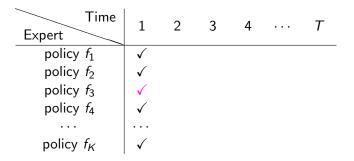
An Optimal and Efficient Policy

- oracle $f \in \mathcal{F}_{\mathsf{Lip}} \longleftrightarrow$ expert
- expert f bids price $b_t = f(v_t)$ at each time
- full-information feedback: rewards of all experts are revealed

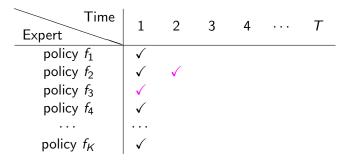
- oracle $f \in \mathcal{F}_{\mathsf{Lip}} \longleftrightarrow$ expert
- expert f bids price $b_t = f(v_t)$ at each time
- full-information feedback: rewards of all experts are revealed



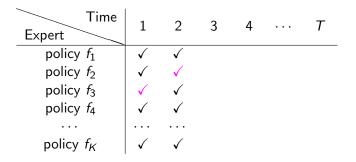
- oracle $f \in \mathcal{F}_{\mathsf{Lip}} \longleftrightarrow$ expert
- expert f bids price $b_t = f(v_t)$ at each time
- full-information feedback: rewards of all experts are revealed



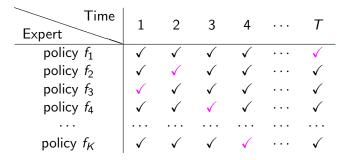
- oracle $f \in \mathcal{F}_{\mathsf{Lip}} \longleftrightarrow$ expert
- expert f bids price $b_t = f(v_t)$ at each time
- full-information feedback: rewards of all experts are revealed



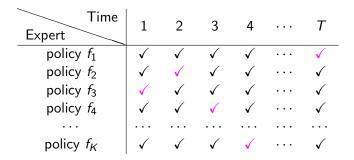
- oracle $f \in \mathcal{F}_{\mathsf{Lip}} \longleftrightarrow$ expert
- expert f bids price $b_t = f(v_t)$ at each time
- full-information feedback: rewards of all experts are revealed



- oracle $f \in \mathcal{F}_{\mathsf{Lip}} \longleftrightarrow$ expert
- expert f bids price $b_t = f(v_t)$ at each time
- full-information feedback: rewards of all experts are revealed

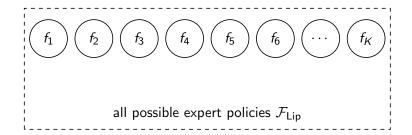


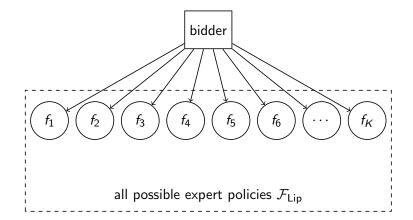
- oracle $f \in \mathcal{F}_{\mathsf{Lip}} \longleftrightarrow$ expert
- expert f bids price $b_t = f(v_t)$ at each time
- full-information feedback: rewards of all experts are revealed

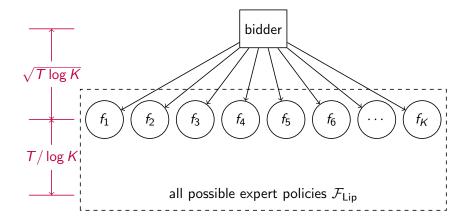


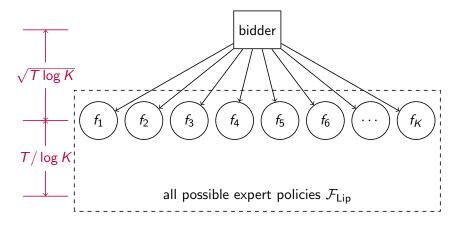
Optimal regret relative to the best fixed expert is $\Theta(\sqrt{T \log K})$.

all possible expert policies $\mathcal{F}_{\mathsf{Lip}}$

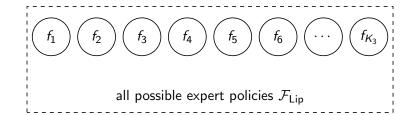


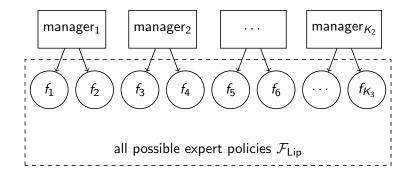


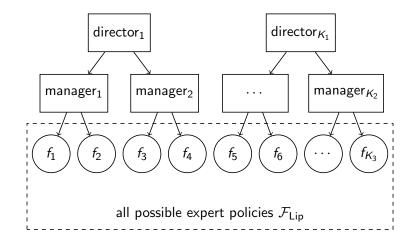


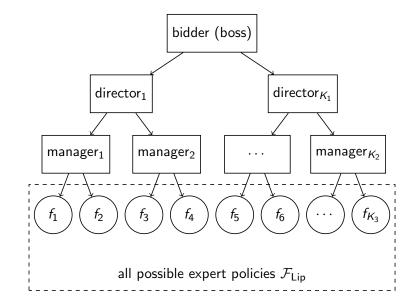


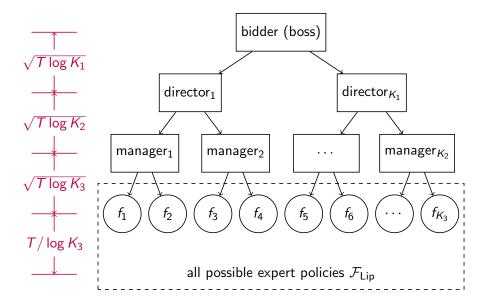
Optimal expert size $K = \exp(T^{1/3})$, achieving regret $T^{2/3}$











Help from a good expert

- note that the reward $b\mapsto (v-b)\mathbb{1}(b\geq m)$ is discontinuous
- need a good notion of similarity

Help from a good expert

- note that the reward $b\mapsto (v-b)\mathbb{1}(b\geq m)$ is discontinuous
- need a good notion of similarity

Definition (Good Expert)

In prediction with expert advice, an expert is Δ -good if at each time, the reward of that expert is Δ -close to the reward of the best expert.

Help from a good expert

- note that the reward $b\mapsto (v-b)\mathbb{1}(b\geq m)$ is discontinuous
- need a good notion of similarity

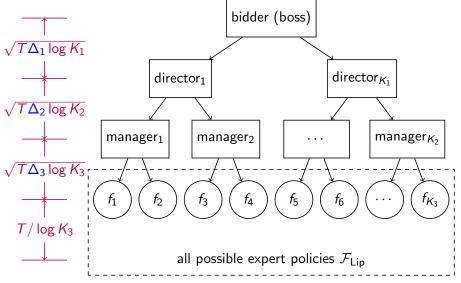
Definition (Good Expert)

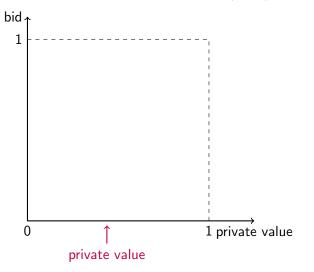
In prediction with expert advice, an expert is Δ -good if at each time, the reward of that expert is Δ -close to the reward of the best expert.

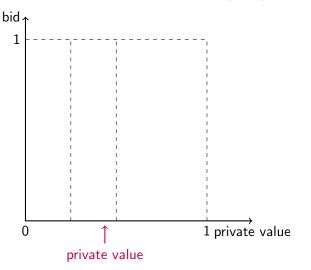
Theorem (Optimal Regret with Good Expert)

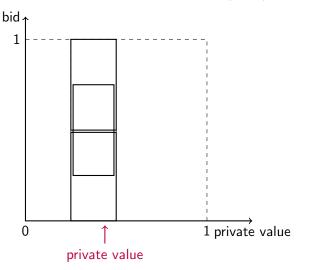
For $\Delta \in [T^{-1} \log K, 1]$, the optimal regret in prediction with expert advice and a Δ -good expert is $\Theta(\sqrt{T\Delta \log K})$.

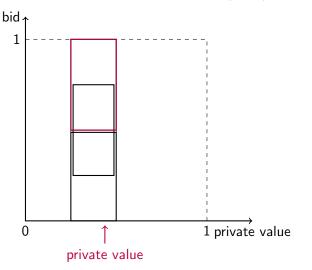
Improve regrets in the chain

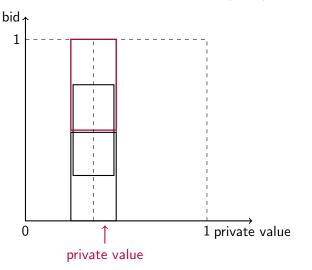


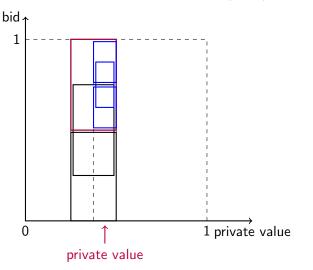


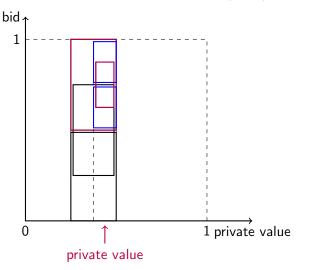




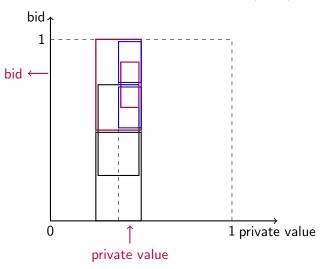








A modified policy: successive exponential weighting (SEW)



Different layers of experts correspond to different resolutions.

Theorem (Adversarial Auction with Full Information)

The SEW policy takes O(T) space and $O(T^{1.5})$ time, and satisfies

regret of
$$\pi^{\text{SEW}} \lesssim \sqrt{T} \log T$$
.

Real-data Experiments

Real data experiments

Datasets:

- three real datasets from Verizon Media
- each consists of two sequences $\{v_t\}$ and $\{m_t\}$
- duration: from June 8, 2020 to July 6, 2020
- sample size: 0.70M, 1.34M, and 1.53M

Real data experiments

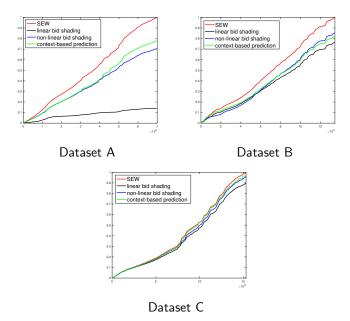
Datasets:

- three real datasets from Verizon Media
- each consists of two sequences $\{v_t\}$ and $\{m_t\}$
- duration: from June 8, 2020 to July 6, 2020
- sample size: 0.70M, 1.34M, and 1.53M

Competing policies:

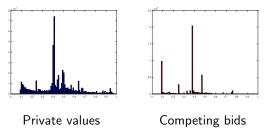
- linear bid-shading: $b_t = \theta \cdot v_t$
- non-linear bid-shading: $b_t = f(v_t; \theta)$ with non-linear f
- context-based prediction: estimate m_t based on side information

Experimental results

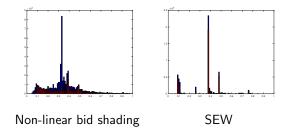


Adaptation to different data nature

Visualization of Dataset A:

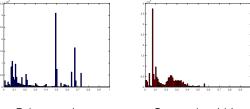


Bidder's bids:



Adaptation to different data nature (cont.)

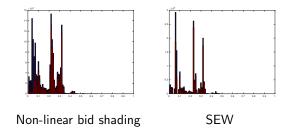
Visualization of Dataset C:



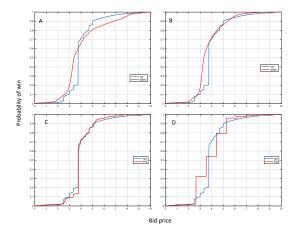
Private values

Competing bids

Bidder's bids:



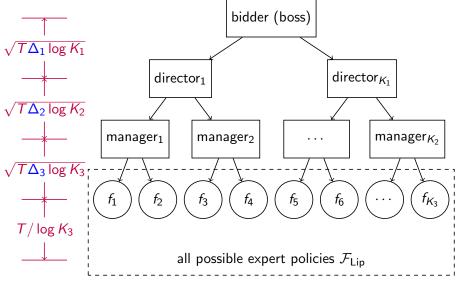
Online experiments



Comparisons of distributions of b_t and m_t

Reference: Zhang et al. "MEOW: A Space-Efficient Non-Parametric Bid Shading Algorithm." KDD 2021.

Summary of Part II



Concluding remarks

Optimal regret efficiently achievable for a single bidder in various scenarios with different assumptions on:

- characteristics of the other bidders' bids
- characteristics of the bidder's private valuation
- feedback structure of the auction
- reference policies with which our bidder competes

Future directions:

- additional contexts (hints, semiparametric model, etc.)
- budget constraints (model return instead of revenue)
- joint value estimation and bidding
- equilibrium theory for multiple bidders/sellers

Thank You!