
Learning to Bid in Repeated First-price Auctions

Yanjun Han
(UC Berkeley)

Tsachy Weissman (Stanford), Zhengyuan Zhou (NYU),
Aaron Flores & Erik Ordentlich (Yahoo! Research)

TOPS Seminar
Department of Technology, Operations, and Statistics

NYU Stern School of Business



Success of digital ads
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Online auctions

Advertiser (bidder) Ad exchange Publisher (seller)

Some popular auction designs:

second-price auction: the bidder with the highest bid wins the
auction, and pays the price equal to the second highest bid

first-price auction: the bidder with the highest bid wins the auction,
and pays the price equal to the highest bid
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From second-price to first-price

There is a recent industrial shift to first-price auctions for display ads:

greater transparency to bidders

enhanced monetization for sellers

preferable mechanism for header-bidding
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More recent news

Google AdSense (contextual ads):

Source: https://blog.google/products/adsense/our-move-to-a-first-price-auction/
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Bidder’s challenge

How to bid in first-price auctions where it is
no longer optimal to bid truthfully?

Optimal bid in first-price auction:

b? = arg maxb (v − b) · P(b ≥ m)

private value others’ maximum bid

unknown bid distribution: need to learn P(b ≥ m)

censored feedback: cannot directly observe m

non-stationary environment: Pt(b ≥ m) depends on t
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An example strategy

AppNexus whitepaper 2018:

The available evidence suggests that many large buyers have yet to adjust their

bidding behavior for first-price auctions.

A suggested strategy in the whitepaper:

BUT, DO WE GET REVENUE EQUIVALENCE IN THE  
REAL WORLD?

In the hypothetical example above, we got revenue equivalence. What about in 
the more complicated real-world example of digital ad exchanges, in which 
there are billions of bid requests, thousands of buyers bidding, unknown 
valuations, repeated auctions, and auction logic that often isn’t transparent or 
consistent? Will revenue equivalence still hold true?

The key issue appears to be technological investment rather than which 
assumptions hold. When buyers, or their technology platforms, try to bid 
intelligently across auction types, it is indeed the case that first- and second-
price auctions produce very similar results. However, buyers need technology 
and expertise to optimize for all auction types. If they don’t have that 
technology or expertise, then first-price auctions will yield more revenue for 
publishers.

Bid Price Optimization algorithm

We’ve seen the results first-hand. The AppNexus Programmable Platform (APP) 
recently added Bid Price Optimization (BPO), a bidding algorithm for first- and 
mixed-price auctions. BPO uses a form of machine learning called “reinforcement 
learning” to figure out how much to bid, so that the buyer wins without paying 
more than necessary. The key idea is that even if a buyer does not know ahead of 
time how others will bid or even how they have bid in the past, APP can learn, 
through trial and error, the correct amount to bid.

To get a feel for how this plays out, let’s use the valuations above but concentrate 
only on first-price auctions. Let’s also suppose that each buyer does not know how 
their opponent bids but uses the following highly simplified algorithm to decide its 
bid amount:

 •  The buyer starts by shading her bid by 20% of her valuation. 

 •  If the buyer wins and has never lost, she reduces her bid by 
another 10% from her initial valuation.

 •  Once the buyer loses for the first time, she would increase her bid 
by 8% from her initial valuation. 

 •  If the buyer wins a round but has also lost before, she reduces her 
bid by 4% from her initial valuation. 

 •  If the buyer loses twice or more in a row, she increases her bid by 
10%, up to 99% higher than her valuation.

DEMYSTIFYING AUCTION DYNAMICS FOR DIGITAL BUYERS AND SELLERS 07
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Empirical study

[Goke et al. 2021]: “at least a subset of bidders responded suboptimally to
the format change”

Our target

Provide sound theoretical guidelines and timely practical solutions to
bidders
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Model and Main Results
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Bidder’s sequential decision model

private source other bidders

target bidder ad exchange

private value vt

current bid bt

maximum competing bid mt

feedback information It

(v1, b1, I1, · · · , vt , bt , It)

vt , bt ,mt ∈ [0, 1]
Instantaneous reward: r(bt ; vt ,mt) = (vt − bt) · 1(bt ≥ mt)
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Model assumption: feedback

Unobservable bids: the bidder only knows whether he/she wins or
not, i.e.

It = 1(bt ≥ mt)

Censored bids: others’ bids are left- or right-censored:

It = max{bt ,mt} (winning price is announced)

It = min{bt ,mt} (feedback inherited from SPA)

Observable bids: the bidder always knows the minimum bid to win,
i.e.

It = mt
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Model assumption: values and bids

Stochastic setting: mt
i.i.d.∼ G with unknown CDF G (·)

- falls into standard learning framework
- no additional assumption on G
- reasonable in a short time window, or with irrelevant competitors

Adversarial setting: mt is an adversarial sequence

- no distributional assumption
- allows for others’ strategic or even adversarial moves

Private value vt always assumed to be known and adversarial
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Bidder’s target: regret

Regret of a bidding policy π = (bt)
T
t=1:

RT (π) , max
f ∈F

E

[
T∑
t=1

r(f (vt); vt ,mt)

]
︸ ︷︷ ︸

oracle’s reward

− E

[
T∑
t=1

r(bt ; vt ,mt)

]
︸ ︷︷ ︸

bidder’s reward

stochastic setting: F = {all functions}

RT (π) ,
T∑
t=1

max
b?t

(vt − b?t )G (b?t )︸ ︷︷ ︸
oracle’s reward

− E[(vt − bt)G (bt)]︸ ︷︷ ︸
bidder’s reward

 .

adversarial setting: F = FLip = {all 1-Lipschitz functions}

RT (π) , max
f ∈FLip

T∑
t=1

r(f (vt); vt ,mt)︸ ︷︷ ︸
oracle’s reward

− E

[
T∑
t=1

r(bt ; vt ,mt)

]
︸ ︷︷ ︸

bidder’s reward

.
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Some key features

non-linear reward with continuous action

- r(b; v ,m) = (v − b) · 1(b ≥ m) not linear nor concave in b
- a challenging problem in bandits, where UCB or Thompson sampling

does not directly work

minimal assumptions on vt and mt

- no structural assumptions such as smoothness or log-concavity

censored feedback

- interesting interplay between feedback structure and reward function

strong time-variant oracle

- competing with a meaningful and powerful benchmark
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Table of optimal regrets

XXXXXXXXXXXFeedback
Setting

stochastic adversarial

Unobservable

T 2/3 T 3/4

Censored

√
T open

Observable

√
T

√
T

unobservable case implied by [Balseiro et al. 2019]

all terms within polylog(T ) factors

real-data experiments for the adversarial observable setting
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Part I: Stochastic Auctions with Censored Feedback

Zhengyuan Zhou
NYU Stern

Tsachy Weissman
Stanford EE

“Optimal No-regret Learning in Repeated First-price Auctions”
arXiv: 2003.09795
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A first trial

left censoring: whenever the bidder wins the auction (exploitation), he/she
loses the information for learning (exploration)

Explore-then-commit (ETC):

TT0

always bid zero

maximum competing bids

distribution estimator Ĝ

bid the optimal price under Ĝ

Regret analysis:

regret of πETC = O

(
T0 +

T√
T0

)
T0∼T 2/3

= O(T 2/3)
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Regret analysis:

regret of πETC = O

(
T0 +

T√
T0

)
T0∼T 2/3

= O(T 2/3)

17 / 46



A first trial

left censoring: whenever the bidder wins the auction (exploitation), he/she
loses the information for learning (exploration)

Explore-then-commit (ETC):

TT0

always bid zero

maximum competing bids

distribution estimator Ĝ
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Regret analysis:

regret of πETC = O

(
T0 +

T√
T0

)
T0∼T 2/3

= O(T 2/3)

17 / 46



Monotone Feedback and Monotone Successive Elimination
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Contextual multi-armed bandit

context (state): private value

arm (action): bidder’s bid

reward: the bidder receives a random reward depending on both the
bidding price (action) and the private value (context)

PPPPPBid
Time

1 2 3 4 5 . . . T

Price 1
Price 2
Price 3

X

Price 4
Price 5

X

· · ·
Price K

X

environment under private value #1

PPPPPBid
Time

1 2 3 4 5 . . . T

Price 1

X

Price 2

X

Price 3
Price 4
Price 5

X

· · ·
Price K

environment under private value #2

Under bandit feedback, the optimal regret is Θ(
√

#context ·#action · T ).
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Monotone feedback

Monotone feedback: each bid provides full information for all larger bids
and all private values

if bidder wins, then any larger bid wins too

if bidder loses, then others’ maximum bid is perfectly observed

PPPPPBid
Time

1 2 3 4 5 . . . T

Price 1

X

Price 2

X X

Price 3

X X X

Price 4

X X X

Price 5

X X X X X

· · ·

X X X X X

Price K

X X X X X . . . X

environment under private value #1

PPPPPBid
Time

1 2 3 4 5 . . . T

Price 1

X

Price 2

X X

Price 3

X X X

Price 4

X X X

Price 5

X X X X X

· · ·

X X X X X

Price K

X X X X X . . . X

environment under private value #2
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if bidder loses, then others’ maximum bid is perfectly observed
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Algorithm: monotone successive elimination

The monotone successive elimination (MSE) policy: at each time,

bidder observes the current private value (context)

successively eliminate probably bad bids (actions) under this context

choose the smallest non-eliminated bid (action) under this context
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Performance of MSE

Theorem (Upper Bound with Exchangeable Contexts)

For contextual bandits with monotone feedback, if the contexts have an
exchangeable distribution, then the MSE policy satisfies

E[regret of πMSE] .
√
T log(T ) log(#context ·#action · T ).

Corollary

When the private values are exchangeable, for stochastic auctions with
(left or right) censored feedback, the MSE bidding policy achieves an
O(
√
T log2 T ) expected regret.
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Limitation of MSE

Theorem (Lower Bound)

There exists an instance of contextual bandit with monotone feedback and
an adversarially chosen sequence of contexts such that, any policy incurs a
worst-case regret at least Ω(T 2/3).

Õ(
√
T ) regret on average, but Ω(T 2/3) for worst-case contexts

monotone feedback is insufficient to achieve a small regret
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An Interval-Splitting Scheme
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Help from the reward function

small bid large bid

full information

monotone feedback

stochastic private value:
√
T regret

adversarial private value: T 2/3 regret

partial information

special reward function

For prices b < b′:

P(mt > b) = P(mt > b′)︸ ︷︷ ︸
one more observation

+ P(b < mt ≤ b′)︸ ︷︷ ︸
smaller target quantity
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Interval-splitted estimation

0 1

b1

m1

b2

m2

b3

m3

b4

m4

b5

m5

b

P̂(mt > b) = P̂(b < mt ≤ b5) + P̂(b5 < mt ≤ b4) + P̂(b4 < mt ≤ b2) + P̂(mt > b2)

=
0

2
+

1

3
+

1

4
+

0

5

(an additive version of Kaplan-Meier estimator)
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UCB policy

The upper confidence bound policy:

bt = arg max
b∈[0,1]

(vt − b) ·
(
P̂t(mt ≤ b) + ŝdt(b)

)
.

some technical issues:

- dependence across different intervals
- dependence across time
- estimation error in standard deviation

solution: a multi-stage algorithm

Theorem (Upper Bound with Adversarial Private Values)

For adversarially chosen private values, the (multi-stage version of) UCB
algorithm achieves

regret of πUCB .
√
T log3 T .
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Summary of Part I

small bid large bid

full information

monotone feedback

stochastic private value:
√
T regret

adversarial private value: T 2/3 regret

partial information

special reward function

adversarial private value:
√
T regret

28 / 46



Summary of Part I

small bid large bid

full information

monotone feedback

stochastic private value:
√
T regret

adversarial private value: T 2/3 regret

partial information

special reward function

adversarial private value:
√
T regret

28 / 46



Summary of Part I

small bid large bid

full information

monotone feedback

stochastic private value:
√
T regret

adversarial private value: T 2/3 regret

partial information

special reward function

adversarial private value:
√
T regret

28 / 46



Summary of Part I

small bid large bid

full information

monotone feedback

stochastic private value:
√
T regret

adversarial private value: T 2/3 regret

partial information

special reward function

adversarial private value:
√
T regret

28 / 46



Part II: Adversarial Auctions with Full Information

Zhengyuan Zhou
NYU Stern

Aaron Flores
Yahoo! Research

Erik Ordentlich
Yahoo! Research

Tsachy Weissman
Stanford EE

“Learning to Bid Optimally and Efficiently in Adversarial First-price Auctions”
arXiv: 2007.04568

29 / 46



Adversarial setting revisited

Assumptions:

modeling of private value: vt adversarial

modeling of others’ bids: mt adversarial

feedback structure: mt is always revealed

Regret in adversarial auctions

RT (π) , max
f ∈FLip

T∑
t=1

r(f (vt); vt ,mt)︸ ︷︷ ︸
oracle’s reward

− E

[
T∑
t=1

r(bt ; vt ,mt)

]
︸ ︷︷ ︸

bidder’s reward

,

where FLip is the set of all 1-Lipschitz functions f : [0, 1]→ [0, 1].
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An Optimal and Efficient Policy
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Prediction with expert advice

oracle f ∈ FLip ←→ expert

expert f bids price bt = f (vt) at each time

full-information feedback: rewards of all experts are revealed

PPPPPPPPPExpert
Time

1 2 3 4 · · · T

policy f1

X X X X · · · X

policy f2

X X X X · · · X

policy f3

X X X X · · · X

policy f4

X X X X · · · X

· · ·

· · · · · · · · · · · · · · · · · ·

policy fK

X X X X · · · X

Optimal regret relative to the best fixed expert is Θ(
√
T logK ).
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An independent set of experts

all possible expert policies FLip

f1 f2 f3 f4 f5 f6 · · · fK

bidder

√
T logK

T/ logK

Optimal expert size K = exp(T 1/3), achieving regret T 2/3
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A hierarchical chaining of experts

all possible expert policies FLip

f1 f2 f3 f4 f5 f6 · · · fK3

manager1 manager2 · · · managerK2

director1 directorK1

bidder (boss)

√
T logK3

√
T logK2

√
T logK1

T/ logK3

34 / 46



A hierarchical chaining of experts

all possible expert policies FLip

f1 f2 f3 f4 f5 f6 · · · fK3

manager1 manager2 · · · managerK2

director1 directorK1

bidder (boss)

√
T logK3

√
T logK2

√
T logK1

T/ logK3

34 / 46



A hierarchical chaining of experts

all possible expert policies FLip

f1 f2 f3 f4 f5 f6 · · · fK3

manager1 manager2 · · · managerK2

director1 directorK1

bidder (boss)

√
T logK3

√
T logK2

√
T logK1

T/ logK3

34 / 46



A hierarchical chaining of experts

all possible expert policies FLip

f1 f2 f3 f4 f5 f6 · · · fK3

manager1 manager2 · · · managerK2

director1 directorK1

bidder (boss)

√
T logK3

√
T logK2

√
T logK1

T/ logK3

34 / 46



A hierarchical chaining of experts

all possible expert policies FLip

f1 f2 f3 f4 f5 f6 · · · fK3

manager1 manager2 · · · managerK2

director1 directorK1

bidder (boss)

√
T logK3

√
T logK2

√
T logK1

T/ logK3

34 / 46



Help from a good expert

note that the reward b 7→ (v − b)1(b ≥ m) is discontinuous

need a good notion of similarity

Definition (Good Expert)

In prediction with expert advice, an expert is ∆-good if at each time, the
reward of that expert is ∆-close to the reward of the best expert.

Theorem (Optimal Regret with Good Expert)

For ∆ ∈ [T−1 logK , 1], the optimal regret in prediction with expert advice
and a ∆-good expert is Θ(

√
T∆ logK ).
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Improve regrets in the chain

all possible expert policies FLip

f1 f2 f3 f4 f5 f6 · · · fK3

manager1 manager2 · · · managerK2

director1 directorK1

bidder (boss)

√
T∆3 logK3

√
T∆2 logK2

√
T∆1 logK1

T/ logK3
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Computational efficiency

A modified policy: successive exponential weighting (SEW)

private value

bid

1

1

0

private value

bid

Different layers of experts correspond to different resolutions.
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Regret guarantee

Theorem (Adversarial Auction with Full Information)

The SEW policy takes O(T ) space and O(T 1.5) time, and satisfies

regret of πSEW .
√
T logT .
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Real-data Experiments
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Real data experiments

Datasets:

three real datasets from Verizon Media

each consists of two sequences {vt} and {mt}
duration: from June 8, 2020 to July 6, 2020

sample size: 0.70M, 1.34M, and 1.53M

Competing policies:

linear bid-shading: bt = θ · vt
non-linear bid-shading: bt = f (vt ; θ) with non-linear f

context-based prediction: estimate mt based on side information
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Experimental results
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Adaptation to different data nature

Visualization of Dataset A:
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Adaptation to different data nature (cont.)

Visualization of Dataset C:
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Online experiments

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

opt
qfwfm

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

opt
qfwfm

A B

Bid price

Pr
ob

ab
ili

ty
 o

f w
in

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

opt
EW

D

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

opt
EW

C

Comparisons of distributions of bt and mt

Reference: Zhang et al. “MEOW: A Space-Efficient Non-Parametric Bid Shading
Algorithm.” KDD 2021. 44 / 46



Summary of Part II

all possible expert policies FLip

f1 f2 f3 f4 f5 f6 · · · fK3

manager1 manager2 · · · managerK2

director1 directorK1

bidder (boss)

√
T∆3 logK3

√
T∆2 logK2

√
T∆1 logK1

T/ logK3
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Concluding remarks

Optimal regret efficiently achievable for a single bidder in various scenarios
with different assumptions on:

characteristics of the other bidders’ bids

characteristics of the bidder’s private valuation

feedback structure of the auction

reference policies with which our bidder competes

Future directions:

additional contexts (hints, semiparametric model, etc.)

budget constraints (model return instead of revenue)

joint value estimation and bidding

equilibrium theory for multiple bidders/sellers

Thank You!
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