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Assortment optimization

select a subset of substitutable items to maximize expected revenue

recommendation in online retailing
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Multinomial Logit model

mathematical model of assortment optimization:

N available items in the pool

each item has a revenue ri ∈ [0, 1], and a choice probability vi ∈ [0, 1]

seller offers an assortment S ⊆ [N] of size K

customer selects item i with probability

pi (S , v) =
vi

1︸︷︷︸
“no-purchase”

+
∑

j∈S vj

seller’s observation: the chosen item or “no-purchase”

seller’s expected revenue when offering assortment S :

R(S , v) =
∑
i∈S

pi (S , v)ri =

∑
j∈S rjvj

1 +
∑

j∈S vj
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Static vs. dynamic assortment optimization

regret in repeated assortment optimization:

E

[
max

S :|S |=K

T∑
t=1

R(S , vt)−
T∑
t=1

R(St , vt)

]

static model: vt ≡ v for all t ∈ [T ]

Õ(
√
NT ) regret achievable [Rusmevichientong et al. 2010, Agrawal

et al. 2019, ...]

dynamic model: vt may change across time

open question: is O(
√

poly(N,K )T ) regret still achievable under the
dynamic setting?
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A more general combinatorial bandit

adversarial combinatorial bandit:

time horizon T , number of arms N

at each time t ∈ [T ]:
a reward vector vt ∈ [0, 1]N is chosen
the learner chooses St ⊆ [N] of size K , and observes bandit feedback

rt ∼ Bernoulli (R(St , vt)) , where R(St , vt) = g

∑
j∈St

vt,j


g : R+ → [0, 1] is a known link function

learner’s regret:

E

[
max

S :|S|=K

T∑
t=1

R(S , vt)−
T∑
t=1

R(St , vt)

]

assortment optimization with unit revenue: g(x) = x/(1 + x)
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Main result

Theorem

For general adversarial combinatorial bandits, the optimal regrets are:

Θ̃g ,K (
√
TNd) if g is a polynomial of degree d ≤ K ;

Θ̃g ,K (
√
TNK ) if g is not a polynomial of degree ≤ K .

implications:

optimal regret crucially dictated by whether the link function is a
low-degree polynomial or not

since g(x) = x/(1 + x) is not a polynomial, O(
√

poly(N,K )T ) regret
is impossible in dynamic assortment selection
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Proof idea

consider assortment optimization with K = 2

vt drawn iid from the following distribution: choose (i?, j?) ∈
([N]

2

)
uniformly at random, and

vk ≡
1

2
, k /∈ {i?, j?}, (vi? , vj?) =


(1, 1) w.p. 1/4,

(0, 1) w.p. 3/8,

(1, 0) w.p. 3/8.

key property: the multinomial distribution

E
(

1

1 + vi + vj
,

vi
1 + vi + vj

,
vj

1 + vi + vj

)
is always (1/2, 1/4, 1/4) unless the precise pair (i?, j?) is chosen

this type of construction is possible whenever g is not a low-degree
polynomial, but requires involved real & functional analysis
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