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Problem setting

e For a discrete distribution P = (p1, p2,- -+, ps) with alphabet size S,

then given X1, X5, -+, X, id p

Optimal estimator for H(P) given n samples?

S
H(P) = Z —piIn p; (Shannon’48)
i=1

@ A natural answer: the empirical entropy (MLE) H(P,), where P, is
the empirical distribution



The decision theoretic framework

@ Denote by P a given collection of probability measure P

How to analyze:

Rmaximum(P; ’:I) = sup EP(H(P) - ’l:’)z
PeP
Rminimax(P) = mfA sup ]EP(H(P) - i_\l)z
all H PeP

@ Notations:

a,,xb,,,a,,z@(b,,)(z}O<c§?§C<oo

n

an<bn,an:O(bn)<:>%§C<oo

~
n



Existing literature

@ Choosing P = M, the collection of all distributions with support size
S, we have (J., Venkat, Han, Weissman'14, J., Han, Weissman'15)

Minimax L, rate

L> rate of MLE

H(P) =71 —pilnp; ﬁ Inzs % @
Fo(P) =37, p0,0 <a <1 (nlrfr21)2°‘ +57 | Em
Fo(P) = Ziszl Pl <a<3/2 m ,,2(0%71)
Fo(P) =37, 0,0 > 3/2 ; s
P, Q=7 (Vo — V&) | ot S
((P.Q) =7, |pi — ail T :

Effective Sample Enlargement
Minimax rate-optimal with n samples <= MLE with nln n samples
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The adaptive framework

@ Some statisticians raised interesting questions: “We may not use this
estimator unless you prove it is adaptive.”
@ Alleviate the pessimism of minimaxity: adaptive procedure
@ We want

N 2 N 2
sup  Ep (HO‘“S - H(P)) ~inf sup Ep (H - H(P))
PeMs(H) H PeMs(H)

where Mgs(H) = {P € Ms: H(P) < H}.
@ Is there an estimator satisfying all these requirements without knowing
S and H?



Starting from the MLE

@ We can decompose the mean squared error as
Mean Squared Error = Bias® + Variance
N 2 N 2 N2

Ep (H - H(P)) - (IEPH — H(P)) +Ep (H — IEPH>

e Consider the MLE H(P,)



Bounding the variance



Bounding the bias

e Given X ~ B(n,p),f € C[0,1], the bias of f(X/n) in estimating f(p)
is

B(f,p,n) =Epf(X/n) —f(p)
=§f (i) : (7>Pj(1—P)"j— f(p)

@ We need to bound B(f, p, n) for every f, p, n. Perhaps the first step
is to characterize

sup |B(f,p,n)|

pE€[0,1]



Relationships with positive linear operators

A A

@ Say we use F(6,) to estimate F(6). How to analyze EyF(0,) — F(0)?
We note that F(6,)

@ maps a continuous function F(6) to another cont. func. of §
@ is linearin F A
@ is positive (F(0) > 0= EqF(0,) > 0)

@ Hence,
Bias of F(0,) <= Approximation error of EgF(0,)

@ The answer given by approximation theory (Totik'94, Knoop and

Zhou'94)
sup |B(f.p,n)| < w?(f,n"?)
pe(0,1]

w?p: second—order Ditzian—Totik modulus of smoothness



Approximation using positive linear operators
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What do we know now?

@ Applying the Ditzian—Totik modulus of smoothness to
f(p) = —pInp, we have

sup |B(f,p,n)| S

1
pel0,1] n

@ However, a better pointwise bound can be obtained when p is small:

Theorem (Han, J., Weissman'15)
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Applying it to entropy estimation

Theorem (Han, J., Weissman'15)

sup  Ep|H(P,) — H(P)]?
PeMs(H)

B {@(1) [(5)7 + Hins] ifSInS < e2nH,

B [Ir:-IS In (2%2) + O (% + M)r otherwise.

e For e > % it requires ©(S* 7 - In5) samples to achieve Ly error ¢
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Turn to our minimax estimator

f(p)
unbiased estimate,
of best polynomiali
approximation of !
order Inn |
! - "(Pi)Pi(1—pi
: F(pi) — @ )129n( Pi)
“nonsmooth” 3 “smooth”
0 ln‘n 1 i

n
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Best polynomial approximation

@ Polynomial with degree < n can be estimated without bias: for
X ~ B(n,p),
X(X=1)---(X—=r+1)
Ep
n(n—=1)---(n—r+1)
@ Bias corresponds to the best polynomial approximation error

@ Advanced tools from approximation theory: for f € C|0,1],
@ norm bound (Ditzian and Totik'87, DeVore and Lorentz'93):

3pn, deg(pn) < n, [If — palloc S wi(Ff,n"7)

]:pr, 1<r<n

wi: second—order Ditzian—Totik modulus of smoothness

@ pointwise bound (Leviatan'86):

n

3pn, deg(pn) < n,|f(x) — pa(x)] S w2 (f, X(]'X)>

w?: second—order modulus of smoothness

14 /18



Refined pointwise bound

@ Applying the preceding result to f(p) = —pInp:

norm bound: 3p,,deg(p,) < n, ||f — palloc < N2

pointwise bound: Jp, deg(p) < n, [F(p) — pr p)r < /(L= p)/n

e Unsatisfactory for f(p) = —pIn p and its order-n best approximating
polynomial P,[f](p) (without constant)

Theorem (Han, J., Weissman'15)

£(p) — P[f](p)l{ —pin(m'p) +0(p) 0 ps o

< p2 n2<p<i
Moreover, there does not exist polynomial p, such that deg(p,) < n and

w(p) 0<p<n2
2<p§1

7(6) — polp) {i SR
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Applying it to the entropy function

Theorem (Han, J., Weissman'15)

inf sup Ep|H— H(P)?
H PeMs(H)

( |S ) 4 Hins ifSInS < e?nHInn,
- [%In(s )+O<%+M)r otherwise.

° Adaptivity of our estimator: it requires no knowledge of S or H

o Fore> 5 it requires @( ) samples to achieve L error €

@ n — nln n effective sample enlargement still holds!
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o Adaptive procedure
@ Refined pointwise bound in approximation theory

@ n — nln n effective sample enlargement
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