Adaptive Estimation of Shannon Entropy

Yanjun Han*, <u>Jiantao Jiao</u>†, Tsachy Weissman†

* Department of Electronic Engineering, Tsinghua University
† Department of Electrical Engineering, Stanford University

{yjhan, jiantao, tsachy}@stanford.edu

ISIT2015

June 16, 2015

Problem setting

• For a discrete distribution $P = (p_1, p_2, \dots, p_S)$ with alphabet size S, then given $X_1, X_2, \dots, X_n \stackrel{\text{i.i.d}}{\sim} P$

Question

Optimal estimator for H(P) given n samples?

$$H(P) = \sum_{i=1}^{S} -p_i \ln p_i \text{ (Shannon'48)}$$

• A natural answer: the empirical entropy (MLE) $H(P_n)$, where P_n is the empirical distribution

The decision theoretic framework

ullet Denote by ${\mathcal P}$ a given collection of probability measure P

Question

How to analyze:

$$\begin{split} R_{maximum}(\mathcal{P}; \hat{H}) &= \sup_{P \in \mathcal{P}} \mathbb{E}_{P}(H(P) - \hat{H})^{2} \\ R_{minimax}(\mathcal{P}) &= \inf_{\text{all } \hat{H}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P}(H(P) - \hat{H})^{2} \end{split}$$

Notations:

$$a_n \times b_n, a_n = \Theta(b_n) \Longleftrightarrow 0 < c \le \frac{a_n}{b_n} \le C < \infty$$

 $a_n \lesssim b_n, a_n = O(b_n) \Longleftrightarrow \frac{a_n}{b_n} \le C < \infty$

Existing literature

• Choosing $\mathcal{P}=\mathcal{M}_S$, the collection of all distributions with support size S, we have (J., Venkat, Han, Weissman'14, J., Han, Weissman'15)

	Minimax L_2 rate	L_2 rate of MLE
$H(P) = \sum_{i=1}^{S} -p_i \ln p_i$	$\frac{S^2}{(n\ln n)^2} + \frac{\ln^2 S}{n}$	$\frac{S^2}{n^2} + \frac{\ln^2 S}{n}$
$F_{\alpha}(P) = \sum_{i=1}^{S} p_i^{\alpha}, 0 < \alpha \le 1$	$\frac{S^2}{(n \ln n)^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$	$\frac{S^2}{n^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$
$F_{\alpha}(P) = \sum_{i=1}^{S} p_i^{\alpha}, 1 < \alpha < 3/2$	$\frac{1}{(n \ln n)^{2(\alpha-1)}}$	$\frac{1}{n^{2(\alpha-1)}}$
$F_{\alpha}(P) = \sum_{i=1}^{S} p_i^{\alpha}, \alpha \geq 3/2$	$\frac{1}{n}$	$\frac{1}{n}$
$\ell_H(P,Q) = \sum_{i=1}^{S} \left(\sqrt{p_i} - \sqrt{q_i}\right)^2$	$\frac{S}{n \ln n} + \frac{\sqrt{S}}{n}$	<u>S</u>
$\ell_1(P,Q) = \sum_{i=1}^{S} p_i - q_i $	$\frac{S}{n \ln n}$	$\frac{S}{n}$

Effective Sample Enlargement

Minimax rate-optimal with n samples \iff MLE with $n \ln n$ samples

The adaptive framework

- Some statisticians raised interesting questions: "We may not use this estimator unless you prove it is adaptive."
- Alleviate the pessimism of minimaxity: adaptive procedure
 - We want

$$\sup_{P \in \mathcal{M}_{\mathcal{S}}(H)} \mathbb{E}_{P} \left(\hat{H}^{\mathrm{Ours}} - H(P) \right)^{2} \asymp \inf_{\hat{H}} \sup_{P \in \mathcal{M}_{\mathcal{S}}(H)} \mathbb{E}_{P} \left(\hat{H} - H(P) \right)^{2}$$

where
$$\mathcal{M}_{S}(H) = \{P \in \mathcal{M}_{S} : H(P) \leq H\}.$$

2 Is there an estimator satisfying all these requirements without knowing S and H?

Starting from the MLE

We can decompose the mean squared error as

Mean Squared Error =
$$\operatorname{Bias}^2 + \operatorname{Variance}$$

$$\mathbb{E}_P \left(\hat{H} - H(P) \right)^2 = \left(\mathbb{E}_P \hat{H} - H(P) \right)^2 + \mathbb{E}_P \left(\hat{H} - \mathbb{E}_P \hat{H} \right)^2$$

• Consider the MLE $H(P_n)$

Bounding the variance

Bounding the bias

• Given $X \sim B(n, p), f \in C[0, 1]$, the bias of f(X/n) in estimating f(p) is

$$B(f, p, n) = \mathbb{E}_{p} f(X/n) - f(p)$$

$$= \sum_{j=0}^{n} f\left(\frac{j}{n}\right) \cdot \binom{n}{j} p^{j} (1-p)^{n-j} - f(p)$$

• We need to bound B(f, p, n) for every f, p, n. Perhaps the first step is to characterize

$$\sup_{p\in[0,1]}|B(f,p,n)|$$

Relationships with positive linear operators

- Say we use $F(\hat{\theta}_n)$ to estimate $F(\theta)$. How to analyze $\mathbb{E}_{\theta}F(\hat{\theta}_n) F(\theta)$? We note that $F(\hat{\theta}_n)$
 - **1** maps a continuous function $F(\theta)$ to another cont. func. of θ
 - 2 is linear in F
 - lacksquare is positive $(F(\theta) \geq 0 \Longrightarrow \mathbb{E}_{\theta} F(\hat{\theta}_n) \geq 0)$
- Hence,

Bias of
$$F(\hat{\theta}_n) \iff$$
 Approximation error of $\mathbb{E}_{\theta} F(\hat{\theta}_n)$

 The answer given by approximation theory (Totik'94, Knoop and Zhou'94)

$$\sup_{p\in[0,1]}|B(f,p,n)| \simeq \omega_{\varphi}^2(f,n^{-\frac{1}{2}})$$

 ω_{φ}^2 : second–order Ditzian–Totik modulus of smoothness

Approximation using positive linear operators

What do we know now?

• Applying the Ditzian–Totik modulus of smoothness to $f(p) = -p \ln p$, we have

$$\sup_{p\in[0,1]}|B(f,p,n)|\lesssim\frac{1}{n}$$

ullet However, a better pointwise bound can be obtained when p is small:

Theorem (Han, J., Weissman'15)

$$|B(f,p,n)| = egin{cases} -p\ln(np) + \Theta(1)np^2 & p < 1/n \ \Theta(1)rac{1-p}{n} & 1/n \le p < 1 \end{cases}$$

Applying it to entropy estimation

Theorem (Han, J., Weissman'15)

$$\sup_{P \in \mathcal{M}_{S}(H)} \mathbb{E}_{P} |H(P_{n}) - H(P)|^{2}$$

$$= \begin{cases} \Theta(1) \left[\left(\frac{S}{n} \right)^{2} + \frac{H \ln S}{n} \right] & \text{if } S \ln S \leq e^{2} nH, \\ \left[\frac{H}{\ln S} \ln \left(\frac{S \ln S}{nH} \right) + O\left(\frac{H}{\ln S} + \frac{(\ln n)^{2}}{n} \right) \right]^{2} & \text{otherwise.} \end{cases}$$

• For $\epsilon>\frac{H}{\ln S}$, it requires $\Theta(S^{1-\frac{\epsilon}{H}}\cdot \frac{\ln S}{H})$ samples to achieve L_1 error ϵ

Turn to our minimax estimator

Best polynomial approximation

• Polynomial with degree $\leq n$ can be estimated without bias: for $X \sim B(n, p)$,

$$\mathbb{E}_{p}\left[\frac{X(X-1)\cdots(X-r+1)}{n(n-1)\cdots(n-r+1)}\right]=p^{r},\quad 1\leq r\leq n$$

- Bias corresponds to the best polynomial approximation error
- Advanced tools from approximation theory: for $f \in C[0,1]$,
 - 1 norm bound (Ditzian and Totik'87, DeVore and Lorentz'93):

$$\exists p_n, \deg(p_n) \leq n, \|f - p_n\|_{\infty} \lesssim \omega_{\varphi}^2(f, n^{-1})$$

 ω_{ω}^2 : second–order Ditzian–Totik modulus of smoothness

2 pointwise bound (Leviatan'86):

$$\exists p_n, \deg(p_n) \leq n, |f(x) - p_n(x)| \lesssim \omega^2 \left(f, \frac{\sqrt{x(1-x)}}{n}\right)$$

 ω^2 : second–order modulus of smoothness

Refined pointwise bound

- Applying the preceding result to $f(p) = -p \ln p$: norm bound: $\exists p_n, \deg(p_n) \leq n, \|f-p_n\|_{\infty} \lesssim n^{-2}$ pointwise bound: $\exists p_n, \deg(p_n) \leq n, |f(p)-p_n(p)| \lesssim \sqrt{p(1-p)}/n$
- Unsatisfactory for $f(p) = -p \ln p$ and its order-n best approximating polynomial $P_n[f](p)$ (without constant)

Theorem (Han, J., Weissman'15)

$$|f(p) - P_n[f](p)| \begin{cases} = -p \ln(n^2 p) + O(p) & 0 \le p \le n^{-2} \\ \lesssim n^{-2} & n^{-2}$$

Moreover, there does not exist polynomial p_n such that $deg(p_n) \le n$ and

$$|f(p) - p_n(p)| \begin{cases} \leq -p \ln(n^2 p) - \omega(p) & 0 \leq p \leq n^{-2} \\ \lesssim n^{-2} & n^{-2}$$

Applying it to the entropy function

Theorem (Han, J., Weissman'15)

$$\begin{split} \inf_{\hat{H}} \sup_{P \in \mathcal{M}_S(H)} \mathbb{E}_P |\hat{H} - H(P)|^2 \\ & \asymp \left\{ \frac{\left(\frac{S}{n \ln n}\right)^2 + \frac{H \ln S}{n}}{\left[\frac{H}{\ln S} \ln \left(\frac{S \ln S}{n H \ln n}\right) + O\left(\frac{H}{\ln S} + \frac{(\ln n)^2}{n}\right)\right]^2 \quad \text{otherwise.} \end{split}$$

- Adaptivity of our estimator: it requires no knowledge of S or H
- For $\epsilon > \frac{H}{\ln S}$, it requires $\Theta(\frac{S^{1-\frac{\epsilon}{H}}}{H})$ samples to achieve L_1 error ϵ
- $n \rightarrow n \ln n$ effective sample enlargement still holds!

Summary

- Adaptive procedure
- Refined pointwise bound in approximation theory
- $n \rightarrow n \ln n$ effective sample enlargement

Related work

- Y. Han, J. Jiao, T. Weissman, "Adaptive estimation of Shannon entropy", available on arXiv
- J. Jiao, K. Venkat, Y. Han, T. Weissman, "Minimax estimation of functionals of discrete distributions," IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2835–2885, 2015
- J. Jiao, K. Venkat, Y. Han, T. Weissman, "Maximum likelihood estimation of functionals of discrete distributrions", available on arXiv
- Y. Han, J. Jiao, T. Weissman, "Is the usual pointwise bound in approximation theory optimal?", in preparation
- J. Jiao, Y. Han, T. Weissman, "Minimax estimation of divergence functions", in preparation

Thank you!