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Maximum likelihood estimator
If x ~ Py with 6 € ©,

OMLE 2 Jro max P,
g max o(x)

Fundamental method of parameter
estimation with numerous success in:
@ statistics
@ signal processing
@ machine learning
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Maximum likelihood estimator
If x ~ Py with 6 € ©,

OMLE 2 Jro max P,
g max o(x)

Fundamental method of parameter
estimation with numerous success in:
@ statistics
@ signal processing
@ machine learning

“The appeal of maximum likelihood stems from its universal
applicability, good mathematical properties, ..., and generally good track
record as a tool in applied statistics, a record accumulated over fifty years of
heavy usage.”

—— [Efron, 1980]
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Suboptimality of MLE under group transformation

Theorem (Cai and Low, 2011)
For X ~ N (6, I,), it holds that
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Suboptimality of MLE under group transformation

Theorem (Cai and Low, 2011)
For X ~ N (6, I,), it holds that

. log log p

inf sup Eg|T(X)— 0] = p- —=5P,

T0) 6o <1 log p
sup  Egl[|6™-F[l1 — [160]11] < p.

[10]]co<1

Theorem (H., Jiao, and Weissman, 2018)

For X = (X1, -+, X,) with i.i.d. Xj ~ p=(p1, -, pk), it holds that
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Profile

A group action G on a set X partitions X’ into several equivalence classes:
for x,x' € X,

x~ex <= 3dgeG:gx=x

37



Profile

A group action G on a set X partitions X’ into several equivalence classes:
for x,x' € X,

x~ex <= 3dgeG:gx=x

Definition (Profile, Orlitsky et al. 2004)

For an observation x € X, its profile ¢ with respect to the group action G
is defined as the equivalence class of x in X

d(x)={x' € X : x' ~c x} = Gx.




Profile

A group action G on a set X partitions X’ into several equivalence classes:
for x,x' € X,

x~ex <= 3dgeG:gx=x

Definition (Profile, Orlitsky et al. 2004)

For an observation x € X, its profile ¢ with respect to the group action G
is defined as the equivalence class of x in X

d(x)={x' € X : x' ~c x} = Gx.

Lemma (Hajek, 1967)

If for all g € G, we have Pgy(gx) = Py(x) and L(6, T) = L(g8, T), then
¢(x) is “sufficient” for estimating € under loss L.
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Examples of profiles

Group action: throughout we consider the action of G = S, on RP, i.e. for
T € Spand x = (x1, -+ ,xp) € RP,

Example (permutation invariance)
- for a p-dim observation vector x = (xi,- - ,xp), the profile
P(x) = (X1)s X(2)> " - » X(p)) € RP is the order statistic
- if in addition x ~ Py, permutation invariance of the model requires
that Prg(mx) = Py(x)
- if in addition L(0, T) = L(w#, T), Hajek sufficiency implies that ¢(x)
is sufficient for estimating 6 under loss L



The Profile MLE

Likelihood of a profile: for x ~ Py,

x€X:p(x)=¢

Po(x)
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The Profile MLE
Likelihood of a profile: for x ~ Py,

P0,¢)= > Py(x)
x€X:p(x)=¢

Definition (Profile MLE, Orlitsky et al. 2004)

Given samples with profile ¢, the PMLE is defined as

PMLE _
67(¢) = argmaxP(6, ¢)




The Profile MLE
Likelihood of a profile: for x ~ Py,

P0,¢)= > Py(x)

x€X:p(x)=¢

Definition (Profile MLE, Orlitsky et al. 2004)

Given samples with profile ¢, the PMLE is defined as

PMLE _
67(¢) = argmaxP(6, ¢)

Example: if x ~ Py = Hle PG,-(XJ):

OPMLE — arg maxIP’(@ (X(1):X@2), "+ s X(p))) = arg max Z Hpa Xx(j))
meSy j=1



Questions

@ Is there an analogy between MLE and PMLE?

@ How to analyze the statistical property of PMLE, where both the
zeroth-order and first-order conditions look complicated?

@ For permutation-invariant models, is PMLE statistically optimal in
estimating permutation-invariant targets of 67
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Questions

Is there an analogy between MLE and PMLE?
Yes - MLE is rate-optimal in parameter estimation, and PMLE is
rate-optimal in parameter estimation up to permutation.

How to analyze the statistical property of PMLE, where both the
zeroth-order and first-order conditions look complicated?
Using competitive analysis.

For permutation-invariant models, is PMLE statistically optimal in
estimating permutation-invariant targets of 67
Universally true - when the target error is large.

Is PMLE subject to certain limitations as well?
Yes - when the target error is small.
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PMLE in discrete distribution model
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Discrete distribution model
ii.d.
o Xl?"' 7Xn ~ p:(plv apk)
- n: sample size
- k: support size
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Discrete distribution model

i.i.d.
° Xl?"' 7Xn ~ p:(plv apk)
- n: sample size
- k: support size

@ histogram h = (hy,- - , hg) ~ Multinomial(n; p) is sufficient, where
hj = 27:1 1(Xi :f)
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Discrete distribution model
i.i.d.
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@ histogram h = (hy,-- -, hx) ~ Multinomial(n; p) is sufficient, where
hj = 27:1 1(Xi =)
@ profile ¢ = {mh: 7 € Sx} could be represented by a vector
(¢17 T ¢n) with
¢; = # of domain elements appearing exactly i times
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- "histogram of the histogram” with h = (3,1,1)
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Discrete distribution model
iid.
o Xl?”' 7Xn ~ p= (plv"' 7pk)
- n: sample size
- k: support size
@ histogram h = (hy,-- -, hx) ~ Multinomial(n; p) is sufficient, where
hj = 27:1 1(Xi =)
@ profile ¢ = {mh: 7 € Sx} could be represented by a vector
(¢17 T ¢n) with
¢; = # of domain elements appearing exactly i times
- for example, if x" = “abaac”, then ¢ = (2,0,1,0,0)
- "histogram of the histogram” with h = (3,1,1)
@ since mh ~ Multinomial(n; wp), ¢ is sufficient in estimating the
sorted version of p and any symmetric functional Zj'le f(pj)

e PMLE: .
b
pPMLE _ 4re max Z Hpj 0)

P TESK j=1
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Some PMLE Examples

Example I: X" = aba with n=3 and k=2
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Some PMLE Examples

Example I: X" = aba with n=3 and k=2
o MLE: pMLE = (2/3,1/3)
o PMLE: pPMLE — (1/2,1/2)

Example [I: X" = abac with n=4 and k=5
o MLE: pMLE = (1/2,1/4,1/4,0,0)
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Some PMLE Examples

Example I: X" = aba with n=3 and k=2
o MLE: pMLE = (2/3,1/3)
o PMLE: pPMLE — (1/2,1/2)

Example [I: X" = abac with n=4 and k=5
o MLE: pMLE = (1/2,1/4,1/4,0,0)
o PMLE: pPMLE — (1/5,1/5,1/5,1/5,1/5)

10/37



Computational burden

pPMLE _ arg max Z Hpj ()

meSy j=1
@ non-concave, sum of exponentially many terms

@ very hard to compute or even approximate PMLE in general
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K
PMLE _ ha(j)
p = arg ml?x g H p;
TeS, j=1

@ non-concave, sum of exponentially many terms

@ very hard to compute or even approximate PMLE in general

Heuristic algorithms:
@ [Orlitsky et al., 2004]: EM-type algorithm
@ [Acharya et al., 2010]: symmetric polynomial evaluation
o [Vontobel, 2012, 2014]: Bethe/Sinkhorn approximation of permanent

e [Pavlichin, Jiao, and Weissman, 2019]: dynamic programming
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Computational burden

K
PMLE _ ha(j)
p = arg ml?x g H p;
TeS, j=1

@ non-concave, sum of exponentially many terms

@ very hard to compute or even approximate PMLE in general

Heuristic algorithms:
@ [Orlitsky et al., 2004]: EM-type algorithm
@ [Acharya et al., 2010]: symmetric polynomial evaluation
o [Vontobel, 2012, 2014]: Bethe/Sinkhorn approximation of permanent

e [Pavlichin, Jiao, and Weissman, 2019]: dynamic programming

Provable approximate algorithms: P(p, ¢) > 3 - P(p"MLE ¢)
o [Charikar, Shiragur, and Sidford, 2019]: 8 = exp(—n?®/3log n)
@ [Anari et al., 2020a, 2020b]: 3 = exp(— min{y/n, k} log n)

11/37



Statistical guarantee

Challenge: very few properties of PMLE could be said except for its
defining property
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Statistical guarantee

Challenge: very few properties of PMLE could be said except for its
defining property

A recent breakthrough:
Theorem (Acharya, Das, Orlitsky, and Suresh, 2017)

For any metric d and accuracy level € > 0,

sup P,(d(pPME, p) > 2¢) < e3Vn. inf sup P,(d(p,p) > ¢)
PEM p(¢) pEM

Corollary: as in many examples we have

inf sup Py(d(p,p) >¢) Sexp (—n(e —enk)i),
p(¢) peEM

if n is the minimax sample complexity of achieving accuracy €/2, the
PMLE attains the rate-optimal sample complexity if £ > n—1/4.

12 /37



Improving the exponent

@ [Charikar, Shiragur, and Sidford, 2019, Hao and Orlitsky, 2019]:
exponent polylog(n) for a (very) restricted class of d and modified
PMLE

@ [Hao and Orlitsky, 2020]: distribution-dependent exponent H,(p)
with sup, Hn(p) =< v/n
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Improving the exponent

@ [Charikar, Shiragur, and Sidford, 2019, Hao and Orlitsky, 2019]:
exponent polylog(n) for a (very) restricted class of d and modified
PMLE

@ [Hao and Orlitsky, 2020]: distribution-dependent exponent H,(p)
with sup, Hn(p) =< v/n

An open question

What is the tight exponent for the competitive analysis of the PMLE?

13 /37



Main results
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Result I: improved competitive analysis of PML

Theorem (H. and Shiragur, 2021)

For any metric d, accuracy level € > 0 and constant ¢ € (0, 1), we have

sup Pp(d(p"™F, p) > 2¢)
PEM

< exp (c'nl/sﬂ) -inf sup P,(d(p,p) > )¢,
P peM

for some constant ¢’ depending only on c.
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Result |: improved competitive analysis of PML

Theorem (H. and Shiragur, 2021)

For any metric d, accuracy level € > 0 and constant ¢ € (0, 1), we have

sup Pp(d(p"™F, p) > 2¢)
PEM

< exp (c'nl/”C) -inf sup P,(d(p,p) > )¢,
P peM

for some constant ¢’ depending only on c.

@ exponent improved from O(y/n) to O(n/3+¢)

o for any (B-approximate PMLE, the competitive factor becomes
eXp(C/nl/3+C)/,3

15 /37



Result Il: optimality of exponent

Theorem (H., 2021)

For any ¢, c’, c1, co > 0, there exists a metric d and accuracy level € > 0
such that

sup P,(d(p"ME, p) > cie)
pEMy

> exp (c/n1/5) inf sup By(d(p.p) > )"
P peM
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Result Il: optimality of exponent

Theorem (H., 2021)

For any ¢, c’, c1, co > 0, there exists a metric d and accuracy level € > 0
such that

sup P,(d(p"ME, p) > cie)
pEM

> exp (c/n1/5) inf sup By(d(p.p) > )"
P peM

@ the exponent O(n1/3_c) is not generically attainable for PMLE

o the competitive factor exp(O(n'/3)) is optimal and not superfluous

16 /37



Result IIl: PMLE estimates sorted distribution optimally

Theorem (H. and Shiragur, 2021)

The PMLE satisfies that

k ~ [ _ k
sup EPHPPML - p”l,sorted S +O|n 1/3 A\ \/j .
pEMy nlogn n
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Result IIl: PMLE estimates sorted distribution optimally

Theorem (H. and Shiragur, 2021)

The PMLE satisfies that

k ~ k
sup E,|p"Mt - pll1, S o +0 (n_1/3 A \/j> .
pEM gn n

@ minimax rate-optimal for estimating sorted distribution
1/3

@ attains optimal phase transition at k < n
@ [Acharya et al., 2012]: requires k = n

@ [Hao and Orlitsky, 2019]: requires k > n%8
@ [Hao and Orlitsky, 2020]: requires k > n%-7®

17 /37



Application in symmetric functional estimation
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Symmetric functional estimation

Problem: Given n i.i.d. observations Xi,--- , X, ~p=(p1,---,pk), aim
to estimate the quantity F(p) = 3.~ f(p;) for a given f
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Symmetric functional estimation

Problem: Given n i.i.d. observations Xi,--- , X, ~p=(p1,---,pk), aim
to estimate the quantity F(p) = 3.~ f(p;) for a given f

Example: Shannon entropy when f(x) = —xlog x, support size when

f(x) =1(x #0)

Applications: genetics, image processing, computer vision, secrecy,
ecology, physics...

Generalization: non-symmetric, multivariate and nonparametric functionals

19/37



Ad-hoc estimation

Plug-in of MLE: F = F(pMLE)
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20/37



Ad-hoc estimation

Plug-in of MLE: F = F(pMLE)

Effective sample size enlargement

Optimal estimator with n samples <= MLE with nlog n samples

Supported in lots of recent literature:
@ Shannon entropy (VV11a, VV11b, VV13, JVHW15, WY16)
@ Rényi entropy (AOST14, AOST17)
e distance to uniformity (VV13, JHW18)
e divergences (HJW16, JHW18, BZLV18)
@ nonparametrics (HJM17, HJWW17)
@ general 1-Lipschitz functional (HO19a, HO19b)
°
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Universal estimation

Find a single distribution estimator p such that the plugging p into the
functional is universally optimal for “many” functionals
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Find a single distribution estimator p such that the plugging p into the
functional is universally optimal for “many” functionals

F1(p)

X, X ﬁ< F2(p)

Fs(p)
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Universal estimation

Find a single distribution estimator p such that the plugging p into the
functional is universally optimal for “many” functionals

F1(p)

Xt X ﬁ/Fz(ﬁ)
T Fs(p)

Too good to be true? No!
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Result IV: universal optimality of PMLE

Theorem (H. and Shiragur, 2021)

For symmetric functionals including;:

@ Shannon entropy;

@ support size;

@ support coverage;

@ distance to uniformity and general 1-Lipschitz functionals,

the plug-in approach of the PMLE universally attains the optimal sample
complexity of achieving an accuracy level £ > n~1/3,
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Result IV: universal optimality of PMLE

Theorem (H. and Shiragur, 2021)

For symmetric functionals including;:

@ Shannon entropy;

@ support size;

@ support coverage;

@ distance to uniformity and general 1-Lipschitz functionals,

the plug-in approach of the PMLE universally attains the optimal sample
complexity of achieving an accuracy level £ > n~1/3,

@ Proof: choose d(p, q) = |F(p) — F(q)|, and construct minimax
rate-optimal estimator for F

22 /37



Result V: limitation of PMLE

Theorem (H., 2021)

There exists a 1-Lipschitz functional F such that

K . 1/3
~ToaT if k>n
sup E,|F(p™E) = F(p)| = {V G

peEM k if 1< k< nl/3

n
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Result V: limitation of PMLE

Theorem (H., 2021)

There exists a 1-Lipschitz functional F such that

kK 1/3
\/ 7o Ifk>n
sup E,|F(p"™™E) — F(p)| < Togn

PEM \/E if 1 < k< n'/3

In contrast, [Hao and Orlitsky, 2019] shows that for every 1-Lipschitz
functional F,

~ k
inf sup Ep|F(p) — F(p)| S , logn< k< nlogn
D et \/ nlogn

23 /37



Result V: limitation of PMLE

Theorem (H., 2021)

There exists a 1-Lipschitz functional F such that

kK 1/3
\/ 7o Ifk>n
sup E,|F(p"™™E) — F(p)| < Togn

PEM \/E if 1 < k< n'/3

In contrast, [Hao and Orlitsky, 2019] shows that for every 1-Lipschitz
functional F,

~ k
inf sup Ep|F(p) — F(p)| S , logn< k< nlogn
D et \/ nlogn

o PMLE fails to be optimal when k < n'/3, or equivalently, ¢ < n~1/3

23 /37



Result VI: optimality among universal approaches

Theorem (H., 2021)

. S 1/3
if k> n
inf sup sup EPF@)F(p)X{ .

P peMy FEF, % ifl<€ k< n1/3
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Result VI: optimality among universal approaches

Theorem (H., 2021)

k 3 1/3
if k>n
inf sup sup EP‘F(,”)‘)_ F(p)| = \ :logn
P peMFETLe \/; if 1 < k < nl/3

@ not only the limitation of PMLE, but also the limitation of all possible
universal approaches!
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Result VI: optimality among universal approaches

Theorem (H., 2021)

k 3 1/3
if k>n
inf sup sup EP‘F(,”)‘)_ F(p)| = \ :logn
P peMFETLe \/; if 1 < k < nl/3

@ not only the limitation of PMLE, but also the limitation of all possible
universal approaches!
@ a smaller quantity [Hao and Orlitsky, 2019]:

~ k
sup inf sup Ep|F(p) — F(p)| =< , logn<S kS nlogn
FeFLip P peMy nlogn

@ A larger quantity [H., Jiao, and Weissman, 2018]:

1/#“ |fk>>n1/3
h \/g if 1 < k< nt/3

24 /37

P peM FE}—Lip

inf sup E, [ sup |F(p) — F(p)|



Summary of approaches

ad-hoc LMM PMLE
optimality full: e>n~ Y2 [ife>n 3 [iffe > n /3
complexity almost linear polynomial polynomial*
functional independent X v v
asymmetric functional v X X
free parameter tuning X X v
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Summary of approaches

ad-hoc LMM PMLE
optimality full: e>n~ Y2 [ife>n 3 [iffe > n /3
complexity almost linear polynomial polynomial*
functional independent X v v
asymmetric functional v X X
free parameter tuning X X v

Tight statistical analysis of PML: optimality and limitation
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Proof sketch of improved competitive analysis
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Review: idea of [Acharya et al., 2017]

Notations:
o &, the set of all possible profiles with sample size n
@ ¢: a particular profile in &,
@ py: the PMLE associated with ¢
e P(p, ¢): probability of observing ¢ under the true distribution p
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Review: idea of [Acharya et al., 2017]

Notations:
o &, the set of all possible profiles with sample size n
@ ¢: a particular profile in &,
@ py: the PMLE associated with ¢
e P(p, ¢): probability of observing ¢ under the true distribution p

Technical goal: using only the defining property P(py, ¢) > P(p, ¢), find
an upper bound of

sup Pp(d(ps, p) > 2¢)
pPEM

given an estimator p(¢) with sup,caq, Pp(d(p; p) > ¢) < 0.

27 /37



Analysis in [Acharya et al., 2017]




Analysis in [Acharya et al., 2017]

Good profile:
G={¢pec®,:d(p(¢),p) <c}
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Analysis in [Acharya et al., 2017]

Good profile:
G={¢pec®,:d(p(¢),p) <c}

Clearly P(p, G) > 1 — 6.
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Analysis in [Acharya et al., 2017]
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For any ¢ € G satisfying P(ps, G) > ¢, we have d(pg, p) < 2e.

Proof: P(py, G) > 6 = d(p(¢'), py) < € for some ¢’ € G. Also,
definition of G = d(p(¢'), p) < e. O
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Analysis in [Acharya et al., 2017]

Po(d(py; p) > 2¢) <P(p, G) + Y P(p, ) 1(P(ps, G) < 6)
»eG

<6+ P(p,¢)1(P(p, ) < 3)

peG
< (14 [9,]) -6 < exp(3v/) -4,

for P(ps, G) > P(ps. ¢) = P(p. 6).
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Our proof idea

A potentially loose inequality: P(pg, G) > P(pg, @) for ¢ € G
@ could be tight when p, is essentially supported on ¢
e in that case, P(py, ) < P(pg, ®)
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Our proof idea

Q: What if we could have P(py, ¢) =~ P(py, ¢) for all ¢, ¢' € G?
A: Then we are in a great shape, for if P(py, G) < 0 for some ¢’ € G, then

0> P(py,G) =) Blpy.0) ~ Y _P(ps,0) 2 Y B(p.¢) = B(p, G),

e $EG $EG

a contradiction to P(p, G) > 1 — 6.
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Our proof idea

Improved bound if we could show certain “continuity” property of ¢ — py. \
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Key covering lemma

Covering lemma

Let 0 < s < r < 1/2 be any fixed constants. There exists a discrete set of
profiles & C ®,, such that:

o the new set ® has a smaller cardinality |®| < exp(n" log n);

@ every profile ¢ € ®, could be approximated by some profile ¢/ € ® in
the following sense: for all S C &,

]P’(p¢, 5) > ]P)(pd),’ 5)1/(1—n—5) - exp (_Cn1—2r+s) ,
P(py, S) > P(pg, S)YA") - exp (—cnt™2rte),

where ¢ = ¢(r,s) > 0.
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Key covering lemma

Covering lemma

Let 0 < s < r < 1/2 be any fixed constants. There exists a discrete set of
profiles & C ®,, such that:

o the new set ® has a smaller cardinality |®| < exp(n" log n);

@ every profile ¢ € ®, could be approximated by some profile ¢’ € ® in
the following sense: for all S C &,

P(py, S) > P(py, S) ") . exp (—cn =2+ |
P(py, S) > P(pg, S)YA") - exp (—cnt™2rte),

where ¢ = ¢(r,s) > 0.

A covering property of PML distributions {py : ¢ € ®,}
@ r 1. the cardinality 1, approximation exponent |

@ s T: probability exponent |, multiplicative exponent 1
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Applying the covering lemma with r =3/8,s =1/8
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Applying the covering lemma with r =3/8,s =1/8

If P(pg, G1) < 9, then

6 > P(pg, G1) > P(qu, G)Y ") L exp(—cn/?)
= P(q1,G1) < §l—o(®) . exp(cn3/8)
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If P(pg, G1) < 9, then

6 > P(pg, G1) > P(qu, G)Y ") L exp(—cn/?)
= P(q1,G1) < §l—o(®) . exp(cn3/8)
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Applying the covering lemma with r =3/8,s =1/8
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Applying the covering lemma with r =3/8,s =1/8

P(q1.G1) = 3 P(a1,6) > exp(—cn®/®) 37 B(py, )/

PeGL bEG
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Applying the covering lemma with r =3/8,s =1/8

—1/8)

P(q1, G1) = Y P(qu, ¢) > exp(—cn®®) > P(py, o)/ "
PEG bEG,
1/(1—n"1/8)

> exp(—cn”®) | 3 P(ps.9) G

PEG

—1/8/ —1/3)
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Applying the covering lemma with r =3/8,s =1/8

Plgr. G1) = Y P(q1.0) > exp(—cn®’®) S P(pg, ¢)/" ")
PEGL PEGL
1/(1—n"1/8)

> exp(—cn®/®) | Y P(py. 0) |Gy A
PEGy
> P(p, Gi)+°M - exp(—cn®/?)
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Applying the covering lemma with r =3/8,s =1/8

Plgr. G1) = Y P(q1.0) > exp(—cn®’®) S P(pg, ¢)/" ")
PEGL PEGL
1/(1—n"1/8)

> exp(—cn®/®) | Y B(ps, 0) |Gy A
PEGy

> B(p, Gy)+o) - exp(—cn¥/?)

“going-up” process
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Applying the covering lemma with r =3/8,s =1/8

Conclusion: if P(py, G1) < 0 for some ¢ € G, then

P(p, G1) < ' ~°W - exp(cn®'®).
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Applying the covering lemma with r =3/8,s =1/8

Conclusion: if P(py, G1) < 0 for some ¢ € G, then
B(p, Gy) < 620 . exp(cn®)
Using |®| < exp(n®/8log n), we have
Z P(p, $)1(P(py, G) < 6) < 6*7°W . exp(cn/® log n).

P€G
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Applying the covering lemma with r =3/8,s =1/8

Conclusion: if P(py, G1) < 0 for some ¢ € G, then
P(p, G1) < ' ~°W - exp(cn®'®).
Using |®| < exp(n®/8log n), we have

Z P(p, $)1(P(py, G) < 6) < 6*7°W . exp(cn/® log n).
$EG

Already improves over exp(3+/n)!
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General case: chaining

@ “going-down”: move along P(py, G1) — P(q2, G1) — P(q1, G1)
@ “going-up”: move along

P(qu. G1) = ) P(q2, GLa) = Y Y P(ps,0) = P(p, G1)

@ choice of parameters: choose (r1, 1), (r2,s2), -+ to obtain exponents
3 7 1 1
8 20 44 3
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Generalization to Gaussian location model
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PMLE in Gaussian location model

Theorem
For X ~ N (6, 1,), the PMLE satisfies

sup  Py(d(A°MLE 9) > 2¢)
[6lloo<M

0 o 1
<exp (O(p"3M?3)) - inf sup Py(d(8,6) >e)t oM 4
( ( )) 8(¢) 0lloc<M oAdt6,6) 2 €) poly(p)
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PMLE in Gaussian location model

Theorem
For X ~ N (6, 1,), the PMLE satisfies

sup  Py(d(A°MLE 9) > 2¢)
[6lloo<M

0 = 1
<exp (O(p/PM?3)) - inf sup Py(d(,0) > )t~ 4
( ( )) 0(¢) [|6]loo <M A= poly(p)

@ main technical challenge: continuous values of X
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Implication on sorted parameter estimation

It holds that

log log p
sup Il“—-1:9||‘9P'\/ILE —0 1,s0orted ~ P ° |—
0]l <1 ogp

@ matching the minimax risk obtained in [Niles-Weed and Rigollet,
2019]
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Concluding remarks

@ Is there an analogy between MLE and PMLE?
Yes - MLE is rate-optimal in parameter estimation, and PMLE is
rate-optimal in parameter estimation up to permutation.

@ How to analyze the statistical property of PMLE, where both the
zeroth-order and first-order conditions look complicated?
Using competitive analysis.

@ For permutation-invariant models, is PMLE statistically optimal in
estimating permutation-invariant targets of 67
Universally true - when the target error is large.

@ Is PMLE subject to certain limitations as well?
Yes - when the target error is small.
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Concluding remarks

@ Is there an analogy between MLE and PMLE?
Yes - MLE is rate-optimal in parameter estimation, and PMLE is
rate-optimal in parameter estimation up to permutation.

@ How to analyze the statistical property of PMLE, where both the
zeroth-order and first-order conditions look complicated?
Using competitive analysis.

@ For permutation-invariant models, is PMLE statistically optimal in
estimating permutation-invariant targets of 67
Universally true - when the target error is large.

@ Is PMLE subject to certain limitations as well?
Yes - when the target error is small.

Future directions:
@ tightness of exponent in Gaussian location model?
@ direct analysis of PMLE?
@ relationships to nonparametric MLE?
TNPMLE — arg max,: -7, log [ po(x;)m(d6)
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