On the tight statistical analysis of a maximum likelihood estimator based on profiles

Yanjun Han (Berkeley Simons)

Acknowledgements:

Jayadev Acharya	Cornell ECE
Moses Charikar	Stanford CS
Jiantao Jiao	Berkeley EECS
Kirankumar Shiragur	Stanford MS&E
Aaron Sidford	Stanford MS&E
Tsachy Weissman	Stanford EE
Yihong Wu	Yale Stats

MAD+ Seminar, Center for Data Science and Courant Institute, NYU

Maximum likelihood estimator

If
$$x \sim P_{\theta}$$
 with $\theta \in \Theta$,
$$\theta^{\mathsf{MLE}} \triangleq \arg\max_{\theta \in \Theta} P_{\theta}(x)$$

Fundamental method of parameter estimation with numerous success in:

- statistics
- signal processing
- machine learning
- ...

Maximum likelihood estimator

If
$$x \sim P_{\theta}$$
 with $\theta \in \Theta$,

$$\theta^{\mathsf{MLE}} \triangleq \arg\max_{\theta \in \Theta} P_{\theta}(x)$$

Fundamental method of parameter estimation with numerous success in:

- statistics
- signal processing
- machine learning
- ...

"The appeal of maximum likelihood stems from its universal applicability, good mathematical properties, ..., and generally good track record as a tool in applied statistics, a record accumulated over fifty years of heavy usage."

—— [Efron, 1980]

Suboptimality of MLE under group transformation

Theorem (Cai and Low, 2011)

For $X \sim \mathcal{N}(\theta, I_p)$, it holds that

$$egin{aligned} &\inf_{T(\cdot)} \sup_{\| heta\|_{\infty} \leq 1} \mathbb{E}_{ heta} |T(X) - \| heta\|_1| symp p \cdot rac{\log\log p}{\log p}, \ &\sup_{\| heta\|_{\infty} \leq 1} \mathbb{E}_{ heta} |\| heta^{\mathsf{MLE}}\|_1 - \| heta\|_1| symp p. \end{aligned}$$

Suboptimality of MLE under group transformation

Theorem (Cai and Low, 2011)

For $X \sim \mathcal{N}(\theta, I_p)$, it holds that

$$egin{aligned} &\inf_{T(\cdot)} \sup_{\| heta\|_{\infty} \leq 1} \mathbb{E}_{ heta} |T(X) - \| heta\|_1| symp p \cdot rac{\log\log p}{\log p}, \ &\sup_{\| heta\|_{\infty} \leq 1} \mathbb{E}_{ heta} |\| heta^{\mathsf{MLE}}\|_1 - \| heta\|_1| symp p. \end{aligned}$$

Theorem (H., Jiao, and Weissman, 2018)

For $X=(X_1,\cdots,X_n)$ with i.i.d. $X_i\sim p=(p_1,\cdots,p_k)$, it holds that

$$\begin{split} &\inf_{\widehat{\rho}} \sup_{p} \mathbb{E}_{\rho} \| \widehat{\rho} - p \|_{1, \text{sorted}} \asymp \sqrt{\frac{k}{n \log n}} + \min \left\{ \sqrt{\frac{k}{n}}, n^{-1/3} \right\}, \\ &\sup_{p} \mathbb{E}_{p} \| p^{\text{MLE}} - p \|_{1, \text{sorted}} \asymp \sqrt{\frac{k}{n}}. \end{split}$$

Profile

A group action G on a set $\mathcal X$ partitions $\mathcal X$ into several equivalence classes: for $x,x'\in\mathcal X$,

$$x \sim_G x' \iff \exists g \in G : gx = x'$$

Profile

A group action G on a set $\mathcal X$ partitions $\mathcal X$ into several equivalence classes: for $x,x'\in\mathcal X$,

$$x \sim_G x' \iff \exists g \in G : gx = x'$$

Definition (Profile, Orlitsky et al. 2004)

For an observation $x \in \mathcal{X}$, its profile ϕ with respect to the group action G is defined as the equivalence class of x in \mathcal{X} :

$$\phi(x) = \{x' \in \mathcal{X} : x' \sim_{G} x\} = Gx.$$

Profile

A group action G on a set $\mathcal X$ partitions $\mathcal X$ into several equivalence classes: for $x,x'\in\mathcal X$,

$$x \sim_G x' \Longleftrightarrow \exists g \in G : gx = x'$$

Definition (Profile, Orlitsky et al. 2004)

For an observation $x \in \mathcal{X}$, its profile ϕ with respect to the group action G is defined as the equivalence class of x in \mathcal{X} :

$$\phi(x) = \{x' \in \mathcal{X} : x' \sim_G x\} = Gx.$$

Lemma (Hájek, 1967)

If for all $g \in G$, we have $P_{g\theta}(gx) = P_{\theta}(x)$ and $L(\theta, T) = L(g\theta, T)$, then $\phi(x)$ is "sufficient" for estimating θ under loss L.

Group action: throughout we consider the action of $G=S_p$ on \mathbb{R}^p , i.e. for $\pi\in S_p$ and $x=(x_1,\cdots,x_p)\in\mathbb{R}^p$,

$$\pi x \triangleq (x_{\pi(1)}, \cdots, x_{\pi(p)}).$$

Group action: throughout we consider the action of $G = S_p$ on \mathbb{R}^p , i.e. for $\pi \in S_p$ and $x = (x_1, \dots, x_p) \in \mathbb{R}^p$,

$$\pi x \triangleq (x_{\pi(1)}, \cdots, x_{\pi(p)}).$$

Example (permutation invariance)

- for a *p*-dim observation vector $x=(x_1,\cdots,x_p)$, the profile $\phi(x)=(x_{(1)},x_{(2)},\cdots,x_{(p)})\in\mathbb{R}^p$ is the order statistic

Group action: throughout we consider the action of $G = S_p$ on \mathbb{R}^p , i.e. for $\pi \in S_p$ and $x = (x_1, \dots, x_p) \in \mathbb{R}^p$,

$$\pi x \triangleq (x_{\pi(1)}, \cdots, x_{\pi(p)}).$$

Example (permutation invariance)

- for a *p*-dim observation vector $x=(x_1,\cdots,x_p)$, the profile $\phi(x)=(x_{(1)},x_{(2)},\cdots,x_{(p)})\in\mathbb{R}^p$ is the order statistic
- if in addition $x \sim P_{\theta}$, permutation invariance of the model requires that $P_{\pi\theta}(\pi x) = P_{\theta}(x)$

Group action: throughout we consider the action of $G=S_p$ on \mathbb{R}^p , i.e. for $\pi\in S_p$ and $x=(x_1,\cdots,x_p)\in\mathbb{R}^p$,

$$\pi x \triangleq (x_{\pi(1)}, \cdots, x_{\pi(p)}).$$

Example (permutation invariance)

- for a *p*-dim observation vector $x=(x_1,\cdots,x_p)$, the profile $\phi(x)=(x_{(1)},x_{(2)},\cdots,x_{(p)})\in\mathbb{R}^p$ is the order statistic
- if in addition $x \sim P_{\theta}$, permutation invariance of the model requires that $P_{\pi\theta}(\pi x) = P_{\theta}(x)$
- if in addition $L(\theta, T) = L(\pi\theta, T)$, Hájek sufficiency implies that $\phi(x)$ is sufficient for estimating θ under loss L

The Profile MLE

Likelihood of a profile: for $x \sim P_{\theta}$,

$$\mathbb{P}(\theta,\phi) = \sum_{x \in \mathcal{X}: \phi(x) = \phi} P_{\theta}(x)$$

The Profile MLE

Likelihood of a profile: for $x \sim P_{\theta}$,

$$\mathbb{P}(\theta,\phi) = \sum_{x \in \mathcal{X}: \phi(x) = \phi} P_{\theta}(x)$$

Definition (Profile MLE, Orlitsky et al. 2004)

Given samples with profile ϕ , the PMLE is defined as

$$\theta^{\mathsf{PMLE}}(\phi) = \arg\max_{\theta \in \Theta} \mathbb{P}(\theta, \phi)$$

The Profile MLE

Likelihood of a profile: for $x \sim P_{\theta}$,

$$\mathbb{P}(\theta,\phi) = \sum_{x \in \mathcal{X}: \phi(x) = \phi} P_{\theta}(x)$$

Definition (Profile MLE, Orlitsky et al. 2004)

Given samples with profile ϕ , the PMLE is defined as

$$\theta^{\mathsf{PMLE}}(\phi) = \arg\max_{\theta \in \Theta} \mathbb{P}(\theta, \phi)$$

Example: if $x \sim P_{\theta} = \prod_{j=1}^{p} p_{\theta_j}(x_j)$:

$$\theta^{\mathsf{PMLE}} = \arg\max_{\theta} \mathbb{P}(\theta, (x_{(1)}, x_{(2)}, \cdots, x_{(p)})) = \arg\max_{\theta} \sum_{\pi \in S_{\tau}} \prod_{i=1}^{p} p_{\theta_{i}}(x_{\pi(i)})$$

• Is there an analogy between MLE and PMLE?

- How to analyze the statistical property of PMLE, where both the zeroth-order and first-order conditions look complicated?
- For permutation-invariant models, is PMLE statistically optimal in estimating permutation-invariant targets of θ ?
- Is PMLE subject to certain limitations as well?

- Is there an analogy between MLE and PMLE?
 Yes MLE is rate-optimal in parameter estimation, and PMLE is rate-optimal in parameter estimation up to permutation.
- How to analyze the statistical property of PMLE, where both the zeroth-order and first-order conditions look complicated?
- For permutation-invariant models, is PMLE statistically optimal in estimating permutation-invariant targets of θ ?
- Is PMLE subject to certain limitations as well?

- Is there an analogy between MLE and PMLE?
 Yes MLE is rate-optimal in parameter estimation, and PMLE is rate-optimal in parameter estimation up to permutation.
- How to analyze the statistical property of PMLE, where both the zeroth-order and first-order conditions look complicated?
 Using competitive analysis.
- For permutation-invariant models, is PMLE statistically optimal in estimating permutation-invariant targets of θ ?
- Is PMLE subject to certain limitations as well?

- Is there an analogy between MLE and PMLE?
 Yes MLE is rate-optimal in parameter estimation, and PMLE is rate-optimal in parameter estimation up to permutation.
- How to analyze the statistical property of PMLE, where both the zeroth-order and first-order conditions look complicated?
 Using competitive analysis.
- For permutation-invariant models, is PMLE statistically optimal in estimating permutation-invariant targets of θ ?

 Universally true when the target error is large.
- Is PMLE subject to certain limitations as well?

- Is there an analogy between MLE and PMLE?
 Yes MLE is rate-optimal in parameter estimation, and PMLE is rate-optimal in parameter estimation up to permutation.
- How to analyze the statistical property of PMLE, where both the zeroth-order and first-order conditions look complicated?
 Using competitive analysis.
- For permutation-invariant models, is PMLE statistically optimal in estimating permutation-invariant targets of θ ?

 Universally true when the target error is large.
- Is PMLE subject to certain limitations as well?
 Yes when the target error is small.

PMLE in discrete distribution model

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} p = (p_1, \dots, p_k)$
 - n: sample size
 - k: support size

- $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} p = (p_1, \dots, p_k)$
 - n: sample size
 - k: support size
- histogram $h = (h_1, \dots, h_k) \sim \text{Multinomial}(n; p)$ is sufficient, where $h_j = \sum_{i=1}^n 1(X_i = j)$

- $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} p = (p_1, \dots, p_k)$
 - n: sample size
 - k: support size
- histogram $h = (h_1, \dots, h_k) \sim \text{Multinomial}(n; p)$ is sufficient, where $h_j = \sum_{i=1}^n 1(X_i = j)$
- profile $\phi=\{\pi h:\pi\in S_k\}$ could be represented by a vector (ϕ_1,\cdots,ϕ_n) with

$$\phi_i = \#$$
 of domain elements appearing exactly i times

- for example, if $x^n = "abaac"$, then $\phi = (2,0,1,0,0)$
- "histogram of the histogram" with h = (3, 1, 1)

- $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} p = (p_1, \dots, p_k)$
 - n: sample size
 - k: support size
- histogram $h = (h_1, \dots, h_k) \sim \text{Multinomial}(n; p)$ is sufficient, where $h_j = \sum_{i=1}^n 1(X_i = j)$
- profile $\phi = \{\pi h : \pi \in S_k\}$ could be represented by a vector (ϕ_1, \cdots, ϕ_n) with
 - $\phi_i = \#$ of domain elements appearing exactly i times
 - for example, if $x^n =$ "abaac", then $\phi = (2,0,1,0,0)$
 - "histogram of the histogram" with h = (3, 1, 1)
- since $\pi h \sim \text{Multinomial}(n; \pi p)$, ϕ is sufficient in estimating the sorted version of p and any symmetric functional $\sum_{j=1}^{k} f(p_j)$

- $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} p = (p_1, \dots, p_k)$
 - n: sample size
 - k: support size
- histogram $h = (h_1, \dots, h_k) \sim \text{Multinomial}(n; p)$ is sufficient, where $h_j = \sum_{i=1}^n 1(X_i = j)$
- profile $\phi = \{\pi h : \pi \in S_k\}$ could be represented by a vector (ϕ_1, \cdots, ϕ_n) with
 - $\phi_i = \#$ of domain elements appearing exactly i times
 - for example, if $x^n = "abaac"$, then $\phi = (2,0,1,0,0)$
 - "histogram of the histogram" with h = (3, 1, 1)
- since $\pi h \sim \text{Multinomial}(n; \pi p)$, ϕ is sufficient in estimating the sorted version of p and any symmetric functional $\sum_{j=1}^{k} f(p_j)$
- PMLE:

$$p^{\mathsf{PMLE}} = \operatorname{arg\,max}_{p} \sum_{\pi \in S_k} \prod_{j=1}^k p_j^{h_{\pi(j)}}$$

Example I: $X^n = aba$ with n = 3 and k = 2

Example I:
$$X^n = aba$$
 with $n = 3$ and $k = 2$

• MLE: $p^{\text{MLE}} = (2/3, 1/3)$

```
Example I: X^n = aba with n = 3 and k = 2
```

- MLE: $p^{\text{MLE}} = (2/3, 1/3)$
- PMLE: $p^{\text{PMLE}} = (1/2, 1/2)$

Example I: $X^n = aba$ with n = 3 and k = 2

- MLE: $p^{\text{MLE}} = (2/3, 1/3)$
- PMLE: $p^{\text{PMLE}} = (1/2, 1/2)$

Example II: $X^n = abac$ with n = 4 and k = 5

Example I: $X^n = aba$ with n = 3 and k = 2

- MLE: $p^{\text{MLE}} = (2/3, 1/3)$
- PMLE: $p^{\text{PMLE}} = (1/2, 1/2)$

Example II: $X^n = abac$ with n = 4 and k = 5

• MLE: $p^{\text{MLE}} = (1/2, 1/4, 1/4, 0, 0)$

Example I: $X^n = aba$ with n = 3 and k = 2

- MLE: $p^{\text{MLE}} = (2/3, 1/3)$
- PMLE: $p^{\text{PMLE}} = (1/2, 1/2)$

Example II: $X^n = abac$ with n = 4 and k = 5

- MLE: $p^{\text{MLE}} = (1/2, 1/4, 1/4, 0, 0)$
- PMLE: $p^{\text{PMLE}} = (1/5, 1/5, 1/5, 1/5, 1/5)$

Computational burden

$$p^{\mathsf{PMLE}} = rg \max_{p} \sum_{\pi \in S_k} \prod_{j=1}^k p_j^{h_{\pi(j)}}$$

- non-concave, sum of exponentially many terms
- very hard to compute or even approximate PMLE in general

Computational burden

$$p^{\mathsf{PMLE}} = rg \max_{p} \sum_{\pi \in S_k} \prod_{j=1}^k p_j^{h_{\pi(j)}}$$

- non-concave, sum of exponentially many terms
- very hard to compute or even approximate PMLE in general

Heuristic algorithms:

- [Orlitsky et al., 2004]: EM-type algorithm
- [Acharya et al., 2010]: symmetric polynomial evaluation
- [Vontobel, 2012, 2014]: Bethe/Sinkhorn approximation of permanent
- [Pavlichin, Jiao, and Weissman, 2019]: dynamic programming

Computational burden

$$p^{\mathsf{PMLE}} = \operatorname{arg\,max}_p \sum_{\pi \in S_k} \prod_{j=1}^k p_j^{h_{\pi(j)}}$$

- non-concave, sum of exponentially many terms
- very hard to compute or even approximate PMLE in general

Heuristic algorithms:

- [Orlitsky et al., 2004]: EM-type algorithm
- [Acharya et al., 2010]: symmetric polynomial evaluation
- [Vontobel, 2012, 2014]: Bethe/Sinkhorn approximation of permanent
- [Pavlichin, Jiao, and Weissman, 2019]: dynamic programming

Provable approximate algorithms: $\mathbb{P}(\hat{p}, \phi) \geq \beta \cdot \mathbb{P}(p^{\mathsf{PMLE}}, \phi)$

- [Charikar, Shiragur, and Sidford, 2019]: $\beta = \exp(-n^{2/3} \log n)$
- [Anari et al., 2020a, 2020b]: $\beta = \exp(-\min\{\sqrt{n}, k\} \log n)$

Statistical guarantee

Challenge: very few properties of PMLE could be said except for its defining property

Statistical guarantee

Challenge: very few properties of PMLE could be said except for its defining property

A recent breakthrough:

Theorem (Acharya, Das, Orlitsky, and Suresh, 2017)

For any metric d and accuracy level $\varepsilon > 0$,

$$\sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(p^{\mathsf{PMLE}}, p) > 2\varepsilon) \leq e^{3\sqrt{n}} \cdot \inf_{\widehat{p}(\phi)} \sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(\widehat{p}, p) > \varepsilon)$$

Statistical guarantee

Challenge: very few properties of PMLE could be said except for its defining property

A recent breakthrough:

Theorem (Acharya, Das, Orlitsky, and Suresh, 2017)

For any metric d and accuracy level $\varepsilon > 0$,

$$\sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(p^{\mathsf{PMLE}}, p) > 2\varepsilon) \leq e^{3\sqrt{n}} \cdot \inf_{\widehat{p}(\phi)} \sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(\widehat{p}, p) > \varepsilon)$$

Corollary: as in many examples we have

$$\inf_{\widehat{p}(\phi)} \sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(\widehat{p}, p) > \varepsilon) \lesssim \exp\left(-n(\varepsilon - \varepsilon_{n,k})_+^2\right),$$

if n is the minimax sample complexity of achieving accuracy $\varepsilon/2$, the PMLE attains the rate-optimal sample complexity if $\varepsilon \gg n^{-1/4}$.

Improving the exponent

- [Charikar, Shiragur, and Sidford, 2019, Hao and Orlitsky, 2019]:
 exponent polylog(n) for a (very) restricted class of d and modified PMLE
- [Hao and Orlitsky, 2020]: distribution-dependent exponent $H_n(p)$ with $\sup_p H_n(p) \simeq \sqrt{n}$

Improving the exponent

- [Charikar, Shiragur, and Sidford, 2019, Hao and Orlitsky, 2019]:
 exponent polylog(n) for a (very) restricted class of d and modified PMLE
- [Hao and Orlitsky, 2020]: distribution-dependent exponent $H_n(p)$ with $\sup_p H_n(p) \simeq \sqrt{n}$

An open question

What is the tight exponent for the competitive analysis of the PMLE?

Main results

Result I: improved competitive analysis of PML

Theorem (H. and Shiragur, 2021)

For any metric d, accuracy level $\varepsilon>0$ and constant $c\in(0,1)$, we have

$$\sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(p^{\mathsf{PMLE}}, p) > 2\varepsilon)$$

$$\leq \exp\left(c' n^{1/3 + c}\right) \cdot \inf_{\widehat{p}} \sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(\widehat{p}, p) > \varepsilon)^{1 - c},$$

for some constant c' depending only on c.

Result I: improved competitive analysis of PML

Theorem (H. and Shiragur, 2021)

For any metric d, accuracy level $\varepsilon>0$ and constant $c\in(0,1)$, we have

$$\begin{split} &\sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(p^{\mathsf{PMLE}}, p) > 2\varepsilon) \\ &\leq \exp\left(c' \frac{n^{1/3 + c}}{p}\right) \cdot \inf_{\widehat{p}} \sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(\widehat{p}, p) > \varepsilon)^{1 - c}, \end{split}$$

for some constant c' depending only on c.

- exponent improved from $O(\sqrt{n})$ to $O(n^{1/3+c})$
- for any β -approximate PMLE, the competitive factor becomes $\exp(c'n^{1/3+c})/\beta$

Result II: optimality of exponent

Theorem (H., 2021)

For any $c,c',c_1,c_2>0$, there exists a metric d and accuracy level $\varepsilon>0$ such that

$$\begin{split} &\sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(p^{\mathsf{PMLE}}, p) > c_1 \varepsilon) \\ &\gg \exp\left(c' n^{1/3 - c}\right) \cdot \inf_{\widehat{p}} \sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(\widehat{p}, p) > \varepsilon)^{1 - c_2}. \end{split}$$

Result II: optimality of exponent

Theorem (H., 2021)

For any $c,c',c_1,c_2>0$, there exists a metric d and accuracy level $\varepsilon>0$ such that

$$\sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(p^{\mathsf{PMLE}}, p) > c_1 \varepsilon)$$

$$\gg \exp\left(c' n^{1/3 - c}\right) \cdot \inf_{\widehat{p}} \sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(\widehat{p}, p) > \varepsilon)^{1 - c_2}.$$

- the exponent $O(n^{1/3-c})$ is not generically attainable for PMLE
- the competitive factor $\exp(O(n^{1/3}))$ is optimal and not superfluous

Result III: PMLE estimates sorted distribution optimally

Theorem (H. and Shiragur, 2021)

The PMLE satisfies that

$$\sup_{p \in \mathcal{M}_k} \mathbb{E}_p \| p^{\mathsf{PML}} - p \|_{1,\mathsf{sorted}} \lesssim \sqrt{\frac{k}{n \log n}} + \widetilde{O}\left(n^{-1/3} \wedge \sqrt{\frac{k}{n}}\right).$$

Result III: PMLE estimates sorted distribution optimally

Theorem (H. and Shiragur, 2021)

The PMLE satisfies that

$$\sup_{p \in \mathcal{M}_k} \mathbb{E}_p \| p^{\mathsf{PML}} - p \|_{1,\mathsf{sorted}} \lesssim \sqrt{\frac{k}{n \log n}} + \widetilde{O}\left(n^{-1/3} \wedge \sqrt{\frac{k}{n}}\right).$$

- minimax rate-optimal for estimating sorted distribution
- attains optimal phase transition at $k \approx n^{1/3}$
- [Acharya et al., 2012]: requires $k \gtrsim n$
- [Hao and Orlitsky, 2019]: requires $k \gtrsim n^{0.8}$
- [Hao and Orlitsky, 2020]: requires $k \gtrsim n^{0.75}$

Application in symmetric functional estimation

Problem: Given n i.i.d. observations $X_1, \dots, X_n \sim p = (p_1, \dots, p_k)$, aim to estimate the quantity $F(p) = \sum_{i=1}^k f(p_i)$ for a given f

Problem: Given n i.i.d. observations $X_1, \dots, X_n \sim p = (p_1, \dots, p_k)$, aim to estimate the quantity $F(p) = \sum_{i=1}^k f(p_i)$ for a given f

Example: Shannon entropy when $f(x) = -x \log x$, support size when $f(x) = \mathbb{1}(x \neq 0)$

Problem: Given n i.i.d. observations $X_1, \dots, X_n \sim p = (p_1, \dots, p_k)$, aim to estimate the quantity $F(p) = \sum_{i=1}^k f(p_i)$ for a given f

Example: Shannon entropy when $f(x) = -x \log x$, support size when $f(x) = \mathbb{1}(x \neq 0)$

Applications: genetics, image processing, computer vision, secrecy, ecology, physics...

Problem: Given n i.i.d. observations $X_1, \dots, X_n \sim p = (p_1, \dots, p_k)$, aim to estimate the quantity $F(p) = \sum_{i=1}^k f(p_i)$ for a given f

Example: Shannon entropy when $f(x) = -x \log x$, support size when $f(x) = \mathbb{1}(x \neq 0)$

Applications: genetics, image processing, computer vision, secrecy, ecology, physics...

Generalization: non-symmetric, multivariate and nonparametric functionals

Ad-hoc estimation

Plug-in of MLE: $\hat{F} = F(p^{\text{MLE}})$

Ad-hoc estimation

Plug-in of MLE: $\hat{F} = F(p^{\text{MLE}})$

Effective sample size enlargement

Optimal estimator with n samples \iff MLE with $n \log n$ samples

Ad-hoc estimation

Plug-in of MLE: $\hat{F} = F(p^{\text{MLE}})$

Effective sample size enlargement

Optimal estimator with n samples \iff MLE with $n \log n$ samples

Supported in lots of recent literature:

- Shannon entropy (VV11a, VV11b, VV13, JVHW15, WY16)
 - Rényi entropy (AOST14, AOST17)
 - distance to uniformity (VV13, JHW18)
 - divergences (HJW16, JHW18, BZLV18)
 - nonparametrics (HJM17, HJWW17)
 - general 1-Lipschitz functional (HO19a, HO19b)
 - ..

Target

Find a single distribution estimator \widehat{p} such that the plugging \widehat{p} into the functional is universally optimal for "many" functionals

Target

Find a single distribution estimator \hat{p} such that the plugging \hat{p} into the functional is universally optimal for "many" functionals

$$X_1, \cdots, X_n$$

Target

Find a single distribution estimator \hat{p} such that the plugging \hat{p} into the functional is universally optimal for "many" functionals

$$X_1, \cdots, X_n \longrightarrow \widehat{p}$$

Target

Find a single distribution estimator \hat{p} such that the plugging \hat{p} into the functional is universally optimal for "many" functionals

Target

Find a single distribution estimator \hat{p} such that the plugging \hat{p} into the functional is universally optimal for "many" functionals

Too good to be true?

Target

Find a single distribution estimator \hat{p} such that the plugging \hat{p} into the functional is universally optimal for "many" functionals

Too good to be true? No!

Result IV: universal optimality of PMLE

Theorem (H. and Shiragur, 2021)

For symmetric functionals including:

- Shannon entropy;
- support size;
- support coverage;
- distance to uniformity and general 1-Lipschitz functionals,

the plug-in approach of the PMLE universally attains the optimal sample complexity of achieving an accuracy level $\varepsilon\gg n^{-1/3}$.

Result IV: universal optimality of PMLE

Theorem (H. and Shiragur, 2021)

For symmetric functionals including:

- Shannon entropy;
- support size;
- support coverage;
- distance to uniformity and general 1-Lipschitz functionals, the plug-in approach of the PMLE universally attains the optimal sample complexity of achieving an accuracy level $\varepsilon \gg n^{-1/3}$.
 - Proof: choose d(p,q) = |F(p) F(q)|, and construct minimax rate-optimal estimator for F

Result V: limitation of PMLE

Theorem (H., 2021)

There exists a 1-Lipschitz functional F such that

$$\sup_{p \in \mathcal{M}_k} \mathbb{E}_p |F(p^{\mathsf{PMLE}}) - F(p)| \asymp \begin{cases} \sqrt{\frac{k}{n \log n}} & \text{if } k \gg n^{1/3} \\ \sqrt{\frac{k}{n}} & \text{if } 1 \ll k \ll n^{1/3} \end{cases}$$

Result V: limitation of PMLE

Theorem (H., 2021)

There exists a 1-Lipschitz functional F such that

$$\sup_{p \in \mathcal{M}_k} \mathbb{E}_p |F(p^{\mathsf{PMLE}}) - F(p)| \asymp \begin{cases} \sqrt{\frac{k}{n \log n}} & \text{if } k \gg n^{1/3} \\ \sqrt{\frac{k}{n}} & \text{if } 1 \ll k \ll n^{1/3} \end{cases}$$

In contrast, [Hao and Orlitsky, 2019] shows that for every 1-Lipschitz functional F,

$$\inf_{\widehat{\rho}} \sup_{p \in \mathcal{M}_k} \mathbb{E}_p |F(\widehat{\rho}) - F(p)| \lesssim \sqrt{\frac{k}{n \log n}}, \quad \log n \lesssim k \lesssim n \log n$$

Result V: limitation of PMLE

Theorem (H., 2021)

There exists a 1-Lipschitz functional F such that

$$\sup_{p \in \mathcal{M}_k} \mathbb{E}_p |F(p^{\mathsf{PMLE}}) - F(p)| \asymp \begin{cases} \sqrt{\frac{k}{n \log n}} & \text{if } k \gg n^{1/3} \\ \sqrt{\frac{k}{n}} & \text{if } 1 \ll k \ll n^{1/3} \end{cases}$$

In contrast, [Hao and Orlitsky, 2019] shows that for every 1-Lipschitz functional F,

$$\inf_{\widehat{\rho}} \sup_{p \in \mathcal{M}_k} \mathbb{E}_p |F(\widehat{\rho}) - F(p)| \lesssim \sqrt{\frac{k}{n \log n}}, \quad \log n \lesssim k \lesssim n \log n$$

• PMLE fails to be optimal when $k \ll n^{1/3}$, or equivalently, $\varepsilon \ll n^{-1/3}$

Theorem (H., 2021)

$$\inf_{\widehat{p}} \sup_{p \in \mathcal{M}_k} \sup_{F \in \mathcal{F}_{\mathsf{Lip}}} \mathbb{E}_p |F(\widehat{p}) - F(p)| \asymp \begin{cases} \sqrt{\frac{k}{n \log n}} & \text{if } k \gg n^{1/3} \\ \sqrt{\frac{k}{n}} & \text{if } 1 \ll k \ll n^{1/3} \end{cases}$$

Theorem (H., 2021)

$$\inf_{\widehat{\rho}} \sup_{p \in \mathcal{M}_k} \sup_{F \in \mathcal{F}_{\mathsf{Lip}}} \mathbb{E}_p |F(\widehat{\rho}) - F(p)| \asymp \begin{cases} \sqrt{\frac{k}{n \log n}} & \text{if } k \gg n^{1/3} \\ \sqrt{\frac{k}{n}} & \text{if } 1 \ll k \ll n^{1/3} \end{cases}$$

• not only the limitation of PMLE, but also the limitation of all possible universal approaches!

Theorem (H., 2021)

$$\inf_{\widehat{\rho}} \sup_{p \in \mathcal{M}_k} \sup_{F \in \mathcal{F}_{\mathsf{Lip}}} \mathbb{E}_p |F(\widehat{\rho}) - F(p)| \asymp \begin{cases} \sqrt{\frac{k}{n \log n}} & \text{if } k \gg n^{1/3} \\ \sqrt{\frac{k}{n}} & \text{if } 1 \ll k \ll n^{1/3} \end{cases}$$

- not only the limitation of PMLE, but also the limitation of all possible universal approaches!
- a smaller quantity [Hao and Orlitsky, 2019]:

$$\sup_{F \in \mathcal{F}_{\mathsf{Lip}}} \inf_{\widehat{p}} \sup_{p \in \mathcal{M}_k} \mathbb{E}_p |F(\widehat{p}) - F(p)| \asymp \sqrt{\frac{k}{n \log n}}, \quad \log n \lesssim k \lesssim n \log n$$

Theorem (H., 2021)

$$\inf_{\widehat{\rho}} \sup_{p \in \mathcal{M}_k} \sup_{F \in \mathcal{F}_{\text{Lip}}} \mathbb{E}_p |F(\widehat{\rho}) - F(p)| \asymp \begin{cases} \sqrt{\frac{k}{n \log n}} & \text{if } k \gg n^{1/3} \\ \sqrt{\frac{k}{n}} & \text{if } 1 \ll k \ll n^{1/3} \end{cases}$$

- not only the limitation of PMLE, but also the limitation of all possible universal approaches!
- a smaller quantity [Hao and Orlitsky, 2019]:

$$\sup_{F \in \mathcal{F}_{\text{Lip}}} \inf_{\widehat{p}} \sup_{p \in \mathcal{M}_k} \mathbb{E}_p |F(\widehat{p}) - F(p)| \asymp \sqrt{\frac{k}{n \log n}}, \quad \log n \lesssim k \lesssim n \log n$$

• A larger quantity [H., Jiao, and Weissman, 2018]:

$$\inf_{\widehat{p}} \sup_{p \in \mathcal{M}_k} \mathbb{E}_p \left[\sup_{F \in \mathcal{F}_{\mathsf{Lip}}} |F(\widehat{p}) - F(p)| \right] \asymp \begin{cases} \sqrt{\frac{k}{n \log n}} & \text{if } k \gg n^{1/3} \\ \sqrt{\frac{k}{n}} & \text{if } 1 \ll k \ll n^{1/3} \end{cases}$$

Summary of approaches

	ad-hoc	LMM	PMLE
optimality	full: $\varepsilon \gg n^{-1/2}$	if $\varepsilon \gg n^{-1/3}$	iff $\varepsilon \gg n^{-1/3}$
complexity	almost linear	polynomial	polynomial*
functional independent	Х	✓	✓
asymmetric functional	✓	Х	Х
free parameter tuning	Х	Х	✓

Summary of approaches

	ad-hoc	LMM	PMLE
optimality	full: $\varepsilon \gg n^{-1/2}$	if $\varepsilon \gg n^{-1/3}$	iff $\varepsilon\gg n^{-1/3}$
complexity	almost linear	polynomial	polynomial*
functional independent	Х	✓	✓
asymmetric functional	✓	Х	Х
free parameter tuning	Х	Х	✓

Tight statistical analysis of PML: optimality and limitation

Proof sketch of improved competitive analysis

Review: idea of [Acharya et al., 2017]

Notations:

- Φ_n : the set of all possible profiles with sample size n
- ϕ : a particular profile in Φ_n
- p_{ϕ} : the PMLE associated with ϕ
- $\mathbb{P}(p,\phi)$: probability of observing ϕ under the true distribution p

Review: idea of [Acharya et al., 2017]

Notations:

- Φ_n : the set of all possible profiles with sample size n
- ϕ : a particular profile in Φ_n
- p_{ϕ} : the PMLE associated with ϕ
- $\mathbb{P}(p,\phi)$: probability of observing ϕ under the true distribution p

Technical goal: using only the defining property $\mathbb{P}(p_{\phi}, \phi) \geq \mathbb{P}(p, \phi)$, find an upper bound of

$$\sup_{p\in\mathcal{M}_k}\mathbb{P}_p(d(p_\phi,p)>2\varepsilon)$$

given an estimator $\widehat{p}(\phi)$ with $\sup_{p \in \mathcal{M}_k} \mathbb{P}_p(d(\widehat{p}, p) > \varepsilon) \leq \delta$.

Good profile:

$$G = \{ \phi \in \Phi_n : d(\widehat{p}(\phi), p) \le \varepsilon \}$$

Good profile:

$$G = \{ \phi \in \Phi_n : d(\widehat{p}(\phi), p) \le \varepsilon \}$$

Clearly $\mathbb{P}(p,G) \geq 1 - \delta$.

Lemma

For any $\phi \in G$ satisfying $\mathbb{P}(p_{\phi}, G) > \delta$, we have $d(p_{\phi}, p) \leq 2\varepsilon$.

Lemma

For any $\phi \in G$ satisfying $\mathbb{P}(p_{\phi}, G) > \delta$, we have $d(p_{\phi}, p) \leq 2\varepsilon$.

Proof: $\mathbb{P}(p_{\phi}, G) > \delta \Longrightarrow d(\widehat{p}(\phi'), p_{\phi}) \leq \varepsilon$ for some $\phi' \in G$. Also, definition of $G \Longrightarrow d(\widehat{p}(\phi'), p) \leq \varepsilon$.

$$\mathbb{P}_p(d(p_\phi,p)>2\varepsilon)$$

$$\mathbb{P}_p(d(p_\phi, p) > 2\varepsilon) \leq \mathbb{P}(p, G^c)$$

$$\mathbb{P}_p(d(p_{\phi},p) > 2\varepsilon) \leq \mathbb{P}(p,G^c) + \sum_{\phi \in G} \mathbb{P}(p,\phi)\mathbb{1}(\mathbb{P}(p_{\phi},G) \leq \delta)$$

$$\begin{split} \mathbb{P}_{\rho}(d(p_{\phi}, p) > 2\varepsilon) &\leq \mathbb{P}(p, G^{c}) + \sum_{\phi \in G} \mathbb{P}(p, \phi) \mathbb{1}(\mathbb{P}(p_{\phi}, G) \leq \delta) \\ &\leq \delta + \sum_{\phi \in G} \mathbb{P}(p, \phi) \mathbb{1}(\mathbb{P}(p, \phi) \leq \delta) \end{split}$$

for $\mathbb{P}(p_{\phi},G) \geq \mathbb{P}(p_{\phi},\phi) \geq \mathbb{P}(p,\phi)$.

$$\begin{split} \mathbb{P}_{p}(d(p_{\phi},p) > 2\varepsilon) &\leq \mathbb{P}(p,G^{c}) + \sum_{\phi \in G} \mathbb{P}(p,\phi)\mathbb{1}(\mathbb{P}(p_{\phi},G) \leq \delta) \\ &\leq \delta + \sum_{\phi \in G} \mathbb{P}(p,\phi)\mathbb{1}(\mathbb{P}(p,\phi) \leq \delta) \\ &\leq (1 + |\Phi_{n}|) \cdot \delta \end{split}$$

for $\mathbb{P}(p_{\phi}, G) \geq \mathbb{P}(p_{\phi}, \phi) \geq \mathbb{P}(p, \phi)$.

$$\begin{split} \mathbb{P}_{p}(d(p_{\phi},p) > 2\varepsilon) &\leq \mathbb{P}(p,G^{c}) + \sum_{\phi \in G} \mathbb{P}(p,\phi)\mathbb{1}(\mathbb{P}(p_{\phi},G) \leq \delta) \\ &\leq \delta + \sum_{\phi \in G} \mathbb{P}(p,\phi)\mathbb{1}(\mathbb{P}(p,\phi) \leq \delta) \\ &\leq (1 + |\Phi_{n}|) \cdot \delta \leq \exp(3\sqrt{n}) \cdot \delta, \end{split}$$

for $\mathbb{P}(p_{\phi}, G) \geq \mathbb{P}(p_{\phi}, \phi) \geq \mathbb{P}(p, \phi)$.

A potentially loose inequality: $\mathbb{P}(p_\phi,G) \geq \mathbb{P}(p_\phi,\phi)$ for $\phi \in G$

A potentially loose inequality: $\mathbb{P}(p_\phi,G) \geq \mathbb{P}(p_\phi,\phi)$ for $\phi \in G$

ullet could be tight when p_ϕ is essentially supported on ϕ

A potentially loose inequality: $\mathbb{P}(p_{\phi}, G) \geq \mathbb{P}(p_{\phi}, \phi)$ for $\phi \in G$

- ullet could be tight when p_ϕ is essentially supported on ϕ
- ullet in that case, $\mathbb{P}(p_{\phi'},\phi) \ll \mathbb{P}(p_{\phi},\phi)$

Q: What if we could have $\mathbb{P}(p_{\phi}, \phi) \approx \mathbb{P}(p_{\phi'}, \phi)$ for all $\phi, \phi' \in G$?

Q: What if we could have $\mathbb{P}(p_{\phi}, \phi) \approx \mathbb{P}(p_{\phi'}, \phi)$ for all $\phi, \phi' \in G$? A: Then we are in a great shape, for if $\mathbb{P}(p_{\phi'}, G) < \delta$ for some $\phi' \in G$, then

$$\delta > \mathbb{P}(\pmb{p}_{\phi'}, \pmb{G}) = \sum_{\phi \in \pmb{G}} \mathbb{P}(\pmb{p}_{\phi'}, \phi) pprox \sum_{\phi \in \pmb{G}} \mathbb{P}(\pmb{p}_{\phi}, \phi) \geq \sum_{\phi \in \pmb{G}} \mathbb{P}(\pmb{p}, \phi) = \mathbb{P}(\pmb{p}, \pmb{G}),$$

a contradiction to $\mathbb{P}(p, G) \geq 1 - \delta$.

Idea

Improved bound if we could show certain "continuity" property of $\phi\mapsto p_\phi.$

Key covering lemma

Covering lemma

Let 0 < s < r < 1/2 be any fixed constants. There exists a discrete set of profiles $\Phi \subseteq \Phi_n$ such that:

- the new set Φ has a smaller cardinality $|\Phi| \leq \exp(n^r \log n)$;
- every profile $\phi \in \Phi_n$ could be approximated by some profile $\phi' \in \Phi$ in the following sense: for all $S \subseteq \Phi_n$,

$$\mathbb{P}(p_{\phi},S) \geq \mathbb{P}(p_{\phi'},S)^{1/(1-n^{-s})} \cdot \exp\left(-cn^{1-2r+s}\right),$$

$$\mathbb{P}(p_{\phi'},S) \geq \mathbb{P}(p_{\phi},S)^{1/(1-n^{-s})} \cdot \exp\left(-cn^{1-2r+s}\right),$$

where c = c(r, s) > 0.

Key covering lemma

Covering lemma

Let 0 < s < r < 1/2 be any fixed constants. There exists a discrete set of profiles $\Phi \subseteq \Phi_n$ such that:

- the new set Φ has a smaller cardinality $|\Phi| \leq \exp(n^r \log n)$;
- every profile $\phi \in \Phi_n$ could be approximated by some profile $\phi' \in \Phi$ in the following sense: for all $S \subseteq \Phi_n$,

$$\mathbb{P}(p_{\phi}, S) \ge \mathbb{P}(p_{\phi'}, S)^{1/(1-n^{-s})} \cdot \exp\left(-cn^{1-2r+s}\right),$$

$$\mathbb{P}(p_{\phi'}, S) \ge \mathbb{P}(p_{\phi}, S)^{1/(1-n^{-s})} \cdot \exp\left(-cn^{1-2r+s}\right),$$

where c = c(r, s) > 0.

A covering property of PML distributions $\{p_{\phi}: \phi \in \Phi_n\}$

- $r \uparrow$: the cardinality \uparrow , approximation exponent \downarrow
- $s \uparrow$: probability exponent \downarrow , multiplicative exponent \uparrow

If
$$\mathbb{P}(p_{\phi}, G_1) \leq \delta$$
, then

$$\delta \geq \mathbb{P}(p_{\phi}, G_1) \geq \mathbb{P}(q_1, G_1)^{1/(1-n^{-1/8})} \cdot \exp(-cn^{3/8})$$

$$\Longrightarrow \mathbb{P}(q_1, G_1) \leq \delta^{1-o(1)} \cdot \exp(cn^{3/8})$$

If
$$\mathbb{P}(p_\phi, G_1) \leq \delta$$
, then

$$\delta \geq \mathbb{P}(p_{\phi}, G_1) \geq \mathbb{P}(q_1, G_1)^{1/(1-n^{-1/8})} \cdot \exp(-cn^{3/8})$$

$$\Longrightarrow \mathbb{P}(q_1, G_1) \leq \delta^{1-o(1)} \cdot \exp(cn^{3/8})$$

"going-down process"

 $\mathbb{P}(q_1,G_1)$

$$\mathbb{P}(q_1,\mathit{G}_1) = \sum_{\phi \in \mathit{G}_1} \mathbb{P}(q_1,\phi)$$

$$\mathbb{P}(q_1, \mathit{G}_1) = \sum_{\phi \in \mathit{G}_1} \mathbb{P}(q_1, \phi) \geq \exp(-\mathit{cn}^{3/8}) \sum_{\phi \in \mathit{G}_1} \mathbb{P}(p_\phi, \phi)^{1/(1 - \mathit{n}^{-1/8})}$$

$$\begin{split} \mathbb{P}(q_1,G_1) &= \sum_{\phi \in G_1} \mathbb{P}(q_1,\phi) \geq \exp(-cn^{3/8}) \sum_{\phi \in G_1} \mathbb{P}(p_\phi,\phi)^{1/(1-n^{-1/8})} \\ &\geq \exp(-cn^{3/8}) \left(\sum_{\phi \in G_1} \mathbb{P}(p_\phi,\phi) \right)^{1/(1-n^{-1/8})} \cdot |G_1|^{-n^{-1/8}/(1-n^{-1/8})} \end{split}$$

$$\begin{split} \mathbb{P}(q_1,G_1) &= \sum_{\phi \in G_1} \mathbb{P}(q_1,\phi) \geq \exp(-cn^{3/8}) \sum_{\phi \in G_1} \mathbb{P}(p_\phi,\phi)^{1/(1-n^{-1/8})} \\ &\geq \exp(-cn^{3/8}) \left(\sum_{\phi \in G_1} \mathbb{P}(p_\phi,\phi) \right)^{1/(1-n^{-1/8})} \cdot |G_1|^{-n^{-1/8}/(1-n^{-1/8})} \\ &\geq \mathbb{P}(p,G_1)^{1+o(1)} \cdot \exp(-cn^{3/8}) \end{split}$$

$$\begin{split} \mathbb{P}(q_1,G_1) &= \sum_{\phi \in G_1} \mathbb{P}(q_1,\phi) \geq \exp(-cn^{3/8}) \sum_{\phi \in G_1} \mathbb{P}(p_\phi,\phi)^{1/(1-n^{-1/8})} \\ &\geq \exp(-cn^{3/8}) \left(\sum_{\phi \in G_1} \mathbb{P}(p_\phi,\phi) \right)^{1/(1-n^{-1/8})} \cdot |G_1|^{-n^{-1/8}/(1-n^{-1/8})} \\ &\geq \mathbb{P}(p,G_1)^{1+o(1)} \cdot \exp(-cn^{3/8}) \end{split}$$

"going-up" process

Conclusion: if
$$\mathbb{P}(p_\phi,G_1)\leq \delta$$
 for some $\phi\in G_1$, then
$$\mathbb{P}(p,G_1)\leq \delta^{1-o(1)}\cdot \exp(cn^{3/8}).$$

Conclusion: if $\mathbb{P}(p_{\phi}, G_1) \leq \delta$ for some $\phi \in G_1$, then

$$\mathbb{P}(p, G_1) \leq \delta^{1-o(1)} \cdot \exp(cn^{3/8}).$$

Using $|\Phi| \le \exp(n^{3/8} \log n)$, we have

$$\sum_{\phi \in G} \mathbb{P}(p,\phi) \mathbb{1}(\mathbb{P}(p_{\phi},G) \leq \delta) \leq \delta^{1-o(1)} \cdot \exp(cn^{3/8} \log n).$$

Conclusion: if $\mathbb{P}(p_{\phi}, G_1) \leq \delta$ for some $\phi \in G_1$, then

$$\mathbb{P}(p,G_1) \leq \delta^{1-o(1)} \cdot \exp(cn^{3/8}).$$

Using $|\Phi| \le \exp(n^{3/8} \log n)$, we have

$$\sum_{\phi \in G} \mathbb{P}(\rho, \phi) \mathbb{1}(\mathbb{P}(\rho_{\phi}, G) \leq \delta) \leq \delta^{1 - o(1)} \cdot \exp(cn^{3/8} \log n).$$

Already improves over $\exp(3\sqrt{n})!$

• "going-down": move along $\mathbb{P}(p_\phi, G_1) o \mathbb{P}(q_2, G_1) o \mathbb{P}(q_1, G_1)$

- "going-down": move along $\mathbb{P}(p_{\phi}, G_1) \to \mathbb{P}(q_2, G_1) \to \mathbb{P}(q_1, G_1)$
- "going-up": move along

$$\mathbb{P}(q_1, G_1)
ightarrow \sum \mathbb{P}(q_2, G_{1,1})
ightarrow \sum \sum \mathbb{P}(p_{\phi}, \phi)
ightarrow \mathbb{P}(p, G_1)$$

- "going-down": move along $\mathbb{P}(p_{\phi}, G_1) \to \mathbb{P}(q_2, G_1) \to \mathbb{P}(q_1, G_1)$
- "going-up": move along

$$\mathbb{P}(q_1, G_1)
ightarrow \sum \mathbb{P}(q_2, G_{1,1})
ightarrow \sum \sum \mathbb{P}(p_\phi, \phi)
ightarrow \mathbb{P}(p, G_1)$$

• choice of parameters: choose $(r_1, s_1), (r_2, s_2), \cdots$ to obtain exponents

$$\frac{3}{8} \rightarrow \frac{7}{20} \rightarrow \frac{15}{44} \rightarrow \cdots \rightarrow \frac{1}{3}$$

Generalization to Gaussian location model

PMLE in Gaussian location model

Theorem

For $X \sim \mathcal{N}(\theta, I_p)$, the PMLE satisfies

$$\begin{split} &\sup_{\|\theta\|_{\infty} \leq M} \mathbb{P}_{\theta}(d(\theta^{\mathsf{PMLE}}, \theta) \geq 2\varepsilon) \\ &\leq \exp\left(\widetilde{O}(p^{1/3} M^{2/3})\right) \cdot \inf_{\widehat{\theta}(\phi)} \sup_{\|\theta\|_{\infty} \leq M} \mathbb{P}_{\theta}(d(\widehat{\theta}, \theta) \geq \varepsilon)^{1 - o(1)} + \frac{1}{\operatorname{poly}(p)} \end{split}$$

PMLE in Gaussian location model

Theorem

For
$$X \sim \mathcal{N}(\theta, I_p)$$
, the PMLE satisfies

$$\begin{split} &\sup_{\|\theta\|_{\infty} \leq M} \mathbb{P}_{\theta}(d(\theta^{\mathsf{PMLE}}, \theta) \geq 2\varepsilon) \\ &\leq \exp\left(\widetilde{O}(p^{1/3} M^{2/3})\right) \cdot \inf_{\widehat{\theta}(\phi)} \sup_{\|\theta\|_{\infty} \leq M} \mathbb{P}_{\theta}(d(\widehat{\theta}, \theta) \geq \varepsilon)^{1 - o(1)} + \frac{1}{\operatorname{poly}(p)} \end{split}$$

• main technical challenge: continuous values of X

Implication on sorted parameter estimation

Corollary

It holds that

$$\sup_{\|\theta\|_{\infty} \leq 1} \mathbb{E}_{\theta} \|\theta^{\mathsf{PMLE}} - \theta\|_{1,\mathsf{sorted}} \lesssim p \cdot \frac{\log\log p}{\log p}$$

 matching the minimax risk obtained in [Niles-Weed and Rigollet, 2019]

Concluding remarks

- Is there an analogy between MLE and PMLE?
 Yes MLE is rate-optimal in parameter estimation, and PMLE is rate-optimal in parameter estimation up to permutation.
- How to analyze the statistical property of PMLE, where both the zeroth-order and first-order conditions look complicated?
 Using competitive analysis.
- For permutation-invariant models, is PMLE statistically optimal in estimating permutation-invariant targets of θ ?

 Universally true when the target error is large.
- Is PMLE subject to certain limitations as well?
 Yes when the target error is small.

Concluding remarks

- Is there an analogy between MLE and PMLE?
 Yes MLE is rate-optimal in parameter estimation, and PMLE is rate-optimal in parameter estimation up to permutation.
- How to analyze the statistical property of PMLE, where both the zeroth-order and first-order conditions look complicated?
 Using competitive analysis.
- For permutation-invariant models, is PMLE statistically optimal in estimating permutation-invariant targets of θ ?

 Universally true when the target error is large.
- Is PMLE subject to certain limitations as well?
 Yes when the target error is small.

Future directions:

- tightness of exponent in Gaussian location model?
- direct analysis of PMLE?
- relationships to nonparametric MLE? $\pi^{\text{NPMLE}} = \arg\max_{\pi} \sum_{i=1}^{n} \log \int p_{\theta}(x_i) \pi(d\theta)$

References

- Y. Han, J. Jiao, and T. Weissman. "Local moment matching: a unified methodology for symmetric functional estimation and distribution estimation under Wasserstein distance." Conference on Learning Theory (COLT), 2018.
- Y. Han and K. Shiragur. "On the competitive analysis and high-accuracy optimality of profile maximum likelihood." Symposium on Discrete Algorithms (SODA), 2021.
- Y. Han. "On the high-accuracy limitation of adaptive property estimation." International Conference on Artificial Intelligence and Statistics (AISTATS), 2021.

Thank you!