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Pattern Learning Problem

Given n i.i.d samples drawn from a discrete distribution
P = (p1, · · · , pS) with an unknown support size S , we would like
to learn the patterns of P, including:

I the distribution P itself

I some functional of P, e.g., the entropy H(P) =
∑S

i=1−pi ln pi
and the support size S(P) =

∑S
i=1 1(pi 6= 0)

Remark
Things get interesting when S is large.
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Our Problem

Target

Learn the “spectrum/histogram” of P, i.e., learn the distribution
vector P = (p1, · · · , pS) up to permutation.

Example

Suppose our observation for animals on an island is {mouse,
mouse, bird, dog, mouse, bird}, we would like to obtain:

bird mouse dog

=⇒

5 / 50
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Motivation

The spectrum contains some essential information of the
distribution:

I shape of the distribution: unimodal or not, light-tail or
heavy-tail, etc

I symmetric functional of the distribution: can be plugged into
general functionals of the form F (P) =

∑S
i=1 f (pi )

6 / 50
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Two-step Learning of Distribution

Suppose now we would like to estimate P without permutation.
We may decompose this process into two steps:

I Step 1: learn the distribution P without labeling (our target!)

I Step 2: assign labels to the unlabeled distribution obtained in
Step 1.

Question
Which step is more difficult?

7 / 50
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A Non-trivial Answer

Theorem (Valiant and Valiant’16)

Even for S = +∞, there is some estimator P̂ of P such that for
any discrete distribution P, and any oracle P̂∗ who observes the
same samples and knows P up to permutation,

EP‖P̂ − P‖1 ≤ EP‖P̂∗ − P‖1 + on(1).

It seems that labeling is a hard task even if we knew the
distribution...

8 / 50
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Combining the Two Steps

Let MS be the class of all probability distributions supported on at
most S elements.

Theorem (Optimal Learning of Labeled Distribution,
H.–Jiao–Weissman’15, Kamath et al.’15)

The minimax `1 risk of distribution learning is

inf
P̂

sup
P∈MS

EP‖P̂ − P‖1 �
√

S

n

and the upper bound is attained by the natural estimator.

Corollary

Labeled distribution learning is possible if and only if n� S.

9 / 50
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Proof of Upper Bound

By definition, we have np̂i ∼ B(n, pi ).

Hence,

E|p̂i − pi | ≤
√
E(p̂i − pi )2

=

√
pi (1− pi )

n

≤
√

pi
n
.

Summing up:

EP‖P̂ − P‖1 ≤
S∑

i=1

√
pi
n
≤
√

S

n
.
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Proof of Lower Bound

Simple Fact

When η �
√

S
n , the distributions B(n, 1−η

S ) and B(n, 1+η
S ) are

indistinguishable using n samples.

symbol 1 symbol 2

1−η
S

1+η
S

symbol 1 symbol 2

1−η
S

1+η
S

or ?

Implication

Each symbol contributes error η
S , and thus η �

√
S
n error in total.

11 / 50
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Loss Criterion for Our Problem

Let P< = (p(1), p(2), · · · , p(S)) with p(1) < p(2) < · · · < p(S) be the
sorted version of P. We would like to minimize the sorted `1 loss:

Minimax Sorted `1 Risk

inf
P̂

sup
P∈MS

EP‖P̂ − P<‖1

12 / 50
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Main Result
Theorem (Optimal Learning of Unlabeled Distribution,
H.–Jiao–Weissman’17)

The minimax sorted `1 risk of learning unlabeled distribution is

inf
P̂

sup
P∈MS

EP‖P̂ − P<‖1 �
√

S

n ln n
+ Θ̃

(
n−

1
3 ∧
√

S

n

)

where Θ̃(·) neglects o(poly(n)) factors, and our estimator (to be
presented) attains the upper bound.

Corollary

Unlabeled distribution learning is possible if and only if n� S
lnS .

Alert
Uniform improvements over the natural estimator is possible only

when S � Θ̃(n
1
3 ).

13 / 50
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First Let’s Make Everything Simple...

Let’s assume:

I support size S is known;

I each pi is small; more specifically, pi ∈ [0, ln n
n ]

A thought experiment

We have

unlabeled distribution =⇒ symmetric functional.

How about the opposite direction?

15 / 50
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Idea: Moment Matching
Suppose we could find some Q = (q1, · · · , qS) such that
q1, · · · , qS ∈ [0, ln n

n ], and

q0
1 + q0

2 + · · ·+ q0
S = p0

1 + p0
2 + · · ·+ p0

S

q1
1 + q1

2 + · · ·+ q1
S = p1

1 + p1
2 + · · ·+ p1

S

q2
1 + q2

2 + · · ·+ q2
S = p2

1 + p2
2 + · · ·+ p2

S

· · · · · ·
qK1 + qK2 + · · ·+ qKS = pK1 + pK2 + · · ·+ pKS

for some K .

How about using Q< as an estimate of P<?

Goal
Show that

moment matching =⇒ distribution closeness.

16 / 50
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Wasserstein Distance

Definition (Wasserstein Distance)

Let (S , d) be a separable metric space, and P,Q be two
probability measures on S . The Wasserstein Distance between P
and Q is defined as

W (P,Q) , inf
L(X )=P,L(Y )=Q

Ed(X ,Y )

where X ,Y are random variables taking values in S .

Theorem (Dual Representation, Kantorovich–Rubinstein’58)

Define the Lipschitz norm in (S , d) as ‖f ‖Lip , supx 6=y
|f (x)−f (y)|

d(x ,y) ,
then

W (P,Q) = sup
f :‖f ‖Lip≤1

EP f − EQ f .

17 / 50
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Rearrangement Inequality
Let µP be the uniform distribution on the multiset {p1, · · · , pS},
and similarly for µQ .

Lemma (Rearrangement Inequality)

For (S , d) = ([0, 1], | · |), we have

‖P< − Q<‖1 = S · inf
L(X )=µP ,L(Y )=µQ

E|X − Y |

= S ·W (µP , µQ).

Example

X Y

18 / 50
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Using Moment Matching

‖P< − Q<‖1 = S ·W (µP , µQ)

= S · sup
f :‖f ‖Lip≤1

EµP f − EµQ f [dual representation]

= sup
f :‖f ‖Lip≤1

S∑
i=1

f (pi )− f (qi ) [by definition of µP , µQ ]

= sup
f :‖f ‖Lip≤1

inf
deg P≤K

S∑
i=1

(f (pi )− P(pi ))− (f (qi )− P(qi ))

[moment matching up to order K ]

≤ sup
f :‖f ‖Lip≤1

inf
deg P≤K

S∑
i=1

|f (pi )− P(pi )|+ |f (qi )− P(qi )|

[triangle inequality]
19 / 50
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Polynomial Approximation of Lipschitz Function

Theorem (Jackson’s Inequality, Devore’76)

Let f be any 1-Lipschitz function on [a, b]. There exists a
degree-K polynomial P such that for any x ∈ (a, b),

|f (x)− P(x)| .
√

(b − a)(x − a)

K
.

Choosing [a, b] = [0, ln n
n ],K � ln n, we have

‖P< − Q<‖1 .
S∑

i=1

√
pi

n ln n
+

√
qi

n ln n
.

√
S

n ln n
.

20 / 50
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Implication

Implication

For unlabeled distribution learning, it suffices to match moments
up to order ln n.

Questions

I What to do since we do not know the true moments
∑S

i=1 p
k
i ?

I How to match moments and solve for Q efficiently? What if
there is no solution?

I What if not all pi lie in the interval [0, ln n
n ]?

I What if the support size S is unknown?

21 / 50
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Q1: How to Know the True Moments
∑S

i=1 p
k
i ?

Answer
Apply an unbiased estimator of the moments.

Fact
For X ∼ B(n, p), we have

Ep

[
X (X − 1) · · · (X − k + 1)

n(n − 1) · · · (n − k + 1)

]
= pk , 1 ≤ k ≤ n.

Just use the support size S for k = 0.

Alert
If the plug-in idea

∑S
i=1 p̂

k
i were used, the moment matching

process would return the empirical distribution!

22 / 50
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process would return the empirical distribution!
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Q1: How Much Do We Lose?

Instead of exact moment matching, now we have:

E

∣∣∣∣∣
S∑

i=1

qki −
S∑

i=1

pki

∣∣∣∣∣ . Õ(
1

nk−
1
2

)

Tracing back to the proof, this incurs a negligible additional error

Õ(n−
1
2 ) to the original problem.

Remark
The unbiased estimator is used to avoid bias accumulation (where
the variance cancels out).
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Q2: How to Implement Efficient Moment Matching?

Answer
Compute a continuous density µQ instead of a discrete vector Q.

Algorithm

Solve the following feasibility problem: check whether the system∣∣∣∣∣S ·
∫ ln n

n

0
xkµQ(dx)−

S∑
i=1

np̂i (np̂i − 1) · · · (np̂i − k + 1)

n(n − 1) · · · (n − k + 1)

∣∣∣∣∣ . Õ(
1

nk−
1
2

)

for all k = 1, · · · ,K contains a feasible probability measure µQ .
Choose any one if there are multiple solutions.
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Q2: Analysis of the Algorithm

∣∣∣∣∣S ·
∫ ln n

n

0
xkµQ(dx)−

S∑
i=1

np̂i (np̂i − 1) · · · (np̂i − k + 1)

n(n − 1) · · · (n − k + 1)

∣∣∣∣∣ . Õ(
1

nk−
1
2

)

Key Observation

There is a feasible solution with overwhelming probability since µP
is!

Implementation

I A linear program in µQ , but infinite dimensional

I Can transform into a finite-dimensional LP by quantizing µQ
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1

nk−
1
2

)

Key Observation

There is a feasible solution with overwhelming probability since µP
is!

Implementation

I A linear program in µQ , but infinite dimensional

I Can transform into a finite-dimensional LP by quantizing µQ

25 / 50



Optimal Learning of Patterns from Discrete Samples

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

Q2: Analysis of the Algorithm

∣∣∣∣∣S ·
∫ ln n

n

0
xkµQ(dx)−

S∑
i=1

np̂i (np̂i − 1) · · · (np̂i − k + 1)

n(n − 1) · · · (n − k + 1)

∣∣∣∣∣ . Õ(
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Q2: From Continuous µQ to Discrete Q
Proof via figure:

W (µP , µQ) = yellow area = EW (µP , µ
′
Q)

0

µQ

µP

µ′Q
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Q3: Not All Rare Symbols

Answer
Generalize polynomial approximation idea to other intervals.

Fact
The same technique applies to the case where all pi lie in

Ip , [p −
√

p ln n
n , p +

√
p ln n
n ] for any p:

‖Q< − P<‖1 . S · sup
f :‖f ‖Lip≤1

inf
deg P≤K

‖f − P‖∞,Ip

. S · |Ip|
K

[Jackson’s Inequality]

. S ·
√

p

n ln n
[K � ln n]

.

√
S

n ln n
[pS � 1]

27 / 50



Optimal Learning of Patterns from Discrete Samples

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

Q3: Not All Rare Symbols

Answer
Generalize polynomial approximation idea to other intervals.

Fact
The same technique applies to the case where all pi lie in

Ip , [p −
√

p ln n
n , p +

√
p ln n
n ] for any p:

‖Q< − P<‖1 . S · sup
f :‖f ‖Lip≤1

inf
deg P≤K

‖f − P‖∞,Ip

. S · |Ip|
K

[Jackson’s Inequality]

. S ·
√

p

n ln n
[K � ln n]

.

√
S

n ln n
[pS � 1]

27 / 50



Optimal Learning of Patterns from Discrete Samples

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

Q3: Partitioning and Moment Matching

Idea
Partitioning the whole interval [0, 1] into sub-intervals of the
previous form, and match moments separately in each sub-interval.

Resulting Partition

Let ηn = c ln n
n with a suitable parameter c , the partition is

[0, ηn], [ηn, 4ηn], [4ηn, 9ηn], · · · .

0 1ηn 4ηn 9ηn · · ·

New Difficulty

Need to know which interval each probability mass pi belongs to,
which we actually do not know.
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Q3: Confidence Set

Definition (Confidence set)

Consider a statistical model (Pθ)θ∈Θ and an estimator θ̂ ∈ Θ̂ of θ,
where Θ ⊂ Θ̂. A confidence set of significant level r ∈ [0, 1], or an
r -confidence set, is a collection of sets {U(x)}x∈Θ̂, where

U(x) ⊂ Θ for any x ∈ Θ̂, and

sup
θ∈Θ

Pθ(θ /∈ U(θ̂)) ≤ r .

I Confidence set always exists, but we seek for a small one

I Choice of significance: r � n−A
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Q3: Confidence Set in Binomial Model

Example

0 1
Θ̂ = Θ = [0, 1]
np̂ ∼ B(n, p)

ln n
n

p̂ < ln n
n

U(p̂)

∼ ln n
n

p̂ > ln n
n

U(p̂)

∼
√

p̂ ln n
n

Remark
Each set in the partition is exactly a confidence set!
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Q3: Sample Splitting via Confidence Set

Sample Splitting Algorithm

Split the samples X1, · · · ,Xn
i .i .d∼ P into two halves:

I For each symbol i , use the empirical distribution of the first
half to classify the partition set it belongs to;

I Match moments in each (slightly enlarged) partition set based
on the classification in the first step.

0 1ηn 4ηn 9ηn · · ·

Intuition
Since each partition set is also a confidence set, with overwhelming
probability the true mass pi lies in (an enlarged version of) the
“told” region.
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Q3: Additional Loss

Observation
In each set of the partition, there is some loss due to the imperfect
knowledge of the moments of µP .

Proposition

The loss incurred in the set Aj is given by

Õ

√∑pi∈Aj
pi

n


which gives the second term Θ̃

(
n−

1
3 ∧
√

S
n

)
in the main theorem.

Intuition
More improvements are possible if more symbols are grouped
together.
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Q4: Unknown Support Size S

Answer
Does not matter at all!

Why?

I Support size has been made “known” by sample splitting

I Autofill zero in computing ‖P̂ − P<‖1 if of different lengths
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Summary of the Estimator

I Choose suitable constant c1, c2 > 0, and let ηn = c1 ln n
n ,

K = c2 ln n;

I Partition [0, 1] into ∪Rr=0Ar with Ar = [r2ηn, (r + 1)2ηn];

I Split samples and use the first half to classify the location of
each symbol in the partition;

I Use the second half samples to compute the unbiased
estimator of the k-moments in each partition set for
k = 1, 2, · · · ,K ;

I Match moments by solving the LP separately in each partition
set;

I Return the overall probability distribution.
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Problem Setup

Construction of Optimal Estimator
General Idea
Delving into the Details

Lower Bound

Applications in Functional Estimation
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When S Is Small
For small S , wish to prove:

inf
P̂

sup
P∈MS

EP‖P̂ − P<‖1 &

√
S

n

Observation
Worst case occurs when each set in the partition contains at most
one probability mass

I labeling step becomes easy

I essentially as hard as labeled distribution learning

I in this case, S cannot be too large

0 1ηn 4ηn 9ηn · · ·

36 / 50



Optimal Learning of Patterns from Discrete Samples

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

When S Is Small
For small S , wish to prove:

inf
P̂

sup
P∈MS

EP‖P̂ − P<‖1 &

√
S

n

Observation
Worst case occurs when each set in the partition contains at most
one probability mass

I labeling step becomes easy

I essentially as hard as labeled distribution learning

I in this case, S cannot be too large

0 1ηn 4ηn 9ηn · · ·

36 / 50



Optimal Learning of Patterns from Discrete Samples

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

When S Is Small
For small S , wish to prove:

inf
P̂

sup
P∈MS

EP‖P̂ − P<‖1 &

√
S

n

Observation
Worst case occurs when each set in the partition contains at most
one probability mass

I labeling step becomes easy

I essentially as hard as labeled distribution learning

I in this case, S cannot be too large

0 1ηn 4ηn 9ηn · · ·

36 / 50



Optimal Learning of Patterns from Discrete Samples

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

When S Is Large

For large S , wish to prove:

inf
P̂

sup
P∈MS

EP‖P̂ − P<‖1 &

√
S

n ln n

Idea: Hypothesis Testing (Le Cam’s Two Point Method)

Suffice to find P,Q ∈MS such that:

I ‖P< − Q<‖1 is large

I we cannot distinguish P,Q from observations X1,X2, · · · ,Xn
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Fuzzy Hypothesis Testing

Generalized Le Cam’s Method
Wish to find µP , µQ ∈ P(MS) such that:

I for P ∼ µP ,Q ∼ µQ , ‖P< − Q<‖1 is probably large

I we cannot distinguish P ∼ µP ,Q ∼ µQ from observations
X1,X2, · · · ,Xn

Try µP = µ⊗S1 , µQ = µ⊗S2 , where µ1, µ2 are both probability
measures on [0, 1]:

Lemma (Wu–Yang’14, Jiao–H.–Weissman’17)

We cannot distinguish P ∼ µ⊗S1 ,Q ∼ µ⊗S2 from observations
X1,X2, · · · ,Xn if both µ1, µ2 are supported on

[p −
√

p ln n
n , p +

√
p ln n
n ] for some p ≥ ln n

n , and

Eµ1X
j = Eµ2X

j , j = 0, 1, · · · ,K � ln n.
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How Large Can the Difference Be?

Key Observation

By concentration of measure, for P ∼ µ⊗S1 ,Q ∼ µ⊗S2 , ‖P< −Q<‖1

is close to the scaled Wasserstein distance S ·W (µ1, µ2).

Duality

Wasserstein duality

W (µ1, µ2) = sup
f :‖f ‖Lip≤1

Eµ1f − Eµ2f .

Implication: it suffices to find a suitable f with ‖f ‖Lip ≤ 1.
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Moment Matching and Another Duality

Moment Matching

For any f and two probability measures µ1, µ2 supported on [a, b]
with first K matching moments,

Eµ1f − Eµ2f = inf
deg P≤K

Eµ1(f − P)− Eµ2(f − P)

≤ 2 · inf
deg P≤K

‖f − P‖∞,[a,b]

Lemma (Another Duality, Cai–Low’11)

There exist two probability measures µ∗1, µ
∗
2 supported on [a, b]

with first K matching moments such that

Eµ∗1 f − Eµ∗2 f = 2 · inf
deg P≤K

‖f − P‖∞,[a,b].
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Another Viewpoint

Idea
Relate the unlabeled distribution learning problem to the functional
estimation problem

∑S
i=1 f (pi ) with ‖f ‖Lip ≤ 1.

Observation
Functional estimation is easier than unlabeled distribution learning.

I By definition of Lipschitz property,∣∣∣∣∣
S∑

i=1

f (pi )− f (qi )

∣∣∣∣∣ ≤ ‖P< − Q<‖1.
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Problem Setup

Construction of Optimal Estimator
General Idea
Delving into the Details

Lower Bound

Applications in Functional Estimation
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Functional Estimation Problem

Given n i.i.d samples drawn from a discrete distribution
P = (p1, · · · , pS) with an unknown support size S , we would like
to estimate the functional of P of the form

F (P) =
S∑

i=1

f (pi ).

I Shannon entropy H(P) =
∑S

i=1−pi ln pi

I power sum function Fα(P) =
∑S

i=1 p
α
i

I support size S(P) =
∑S

i=1 1(pi 6= 0)

43 / 50



Optimal Learning of Patterns from Discrete Samples

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

Functional Estimation Problem

Given n i.i.d samples drawn from a discrete distribution
P = (p1, · · · , pS) with an unknown support size S , we would like
to estimate the functional of P of the form

F (P) =
S∑

i=1

f (pi ).

I Shannon entropy H(P) =
∑S

i=1−pi ln pi

I power sum function Fα(P) =
∑S

i=1 p
α
i

I support size S(P) =
∑S

i=1 1(pi 6= 0)

43 / 50



Optimal Learning of Patterns from Discrete Samples

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

Recent Breakthroughs
(Jiao–Venkat–H.–Weissman’14, Wu–Yang’14, Jiao–H.–
Weissman’15, Wu–Yang’15)

Minimax L2 rate L2 rate of MLE

H(P) =
∑S

i=1−pi ln pi
S2

(n ln n)2 + ln2 S
n

S2

n2 + ln2 S
n

Fα(P) =
∑S

i=1 p
α
i , 0 < α < 1/2 S2

(n ln n)2α
S2

n2α

Fα(P) =
∑S

i=1 p
α
i , 1/2 ≤ α < 1 S2

(n ln n)2α + S2−2α

n
S2

n2α + S2−2α

n

Fα(P) =
∑S

i=1 p
α
i , 1 < α < 3/2 1

(n ln n)2(α−1)
1

n2(α−1)

S(P) = #{pi 6= 0}, pi ∈ {0} ∪ [ 1
S , 1] e

−Θ(
√

n ln n
S
∨ n

S
)

e−Θ(
√

n
S ln S
∨ n

S
)

Similar results also hold for Rényi entropy estimation (Acharya–
Orlitsky–Suresh–Tyagi’14), KL, Hellinger and χ2-divergence
estimation (H.–Jiao–Weissman’16), Lr norm estimation under
Gaussian white noise model (H.–Jiao–Mukherjee–Weissman’16),
L1 distance estimation (Jiao–H.–Weissman’17)
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Optimal estimator for
∑S

i=1 f (pi)

0
1

unbiased estimate

of best polynomial

approximation of

order c2 ln n

c1 ln n
n

“nonsmooth” “smooth”

f (p̂i )− f ′′(p̂i )p̂i (1−p̂i )
2n

pi

f (pi ) = −pi ln pi or pαi
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Past Insights

I Bias dominates in functional estimation

I Bias corresponds to polynomial approximation error

I Need to use the best polynomial approximation where the
functional is non-smooth

I Plug-in approach is strictly sub-optimal
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Main Results

Let P̂∗ = (p̂∗1 , · · · , p̂∗S) be our optimal estimator for unlabeled
distribution learning.

Theorem (H.–Jiao–Weissman’17)

For the Shannon entropy H(P), the power sum function Fα(P)
with α ∈ (0, 1), and the support size function S(P), the plug-in
approach F (P̂∗) attains the optimal sample complexity (with
F = H,Fα,S respectively).
Note that for the support size function S(P), when forming P̂∗ we
should require that µQ((0, 1

S )) = 0 in our LP.

Plug-in becomes optimal!
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Implicit Polynomial Approximation

Why New Plug-in Estimator Works

Suppose all pi ∈ [0, ln n
n ]. We have E

∑S
i=1(p̂∗i )k ≈

∑S
i=1 p

k
i for

k = 0, 1, · · · ,K by construction, and thus

E
S∑

i=1

f (p̂∗i )− f (pi ) ≈ inf
deg P≤K

E
S∑

i=1

(f (p̂∗i )− P(p̂∗i ))− (f (pi )− P(pi ))

yields to polynomial approximation

Properties

I Implicit polynomial approximation: we did not construct any
explicit polynomial in our estimator

I Universal estimation: a single estimator works for multiple
functionals

I Too good to be true!?
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Open Questions

I How “universal” is our estimator for general functionals?

I Can our estimator be applied to 2D functionals, e.g., the `1

distance ‖P − Q‖1 and the KL divergence D(P‖Q)?

I Why are polynomials so special in the unlabeled distribution
learning problem? Can we match other symmetric functionals
instead of moments?
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Concluding Remarks

I It requires n� S
lnS samples for unlabeled distribution

learning, while n� S samples are required for the labeled one

I The natural estimator (MLE) is strictly suboptimal
I Beautiful duality

I moment matching in both upper and lower bounds
I Wasserstein distance argument in both upper and lower bounds

I The plug-in approach of the previous estimator is universal for
functional estimation
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