Optimal Learning of Patterns from Discrete Samples

Yanjun Han (Stanford EE)

Joint work with:

Jiantao Jiao Tsachy Weissman Stanford EE Stanford EE

July 7th, 2017

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Outline

Problem Setup

Construction of Optimal Estimator

General Idea Delving into the Details

Lower Bound

Applications in Functional Estimation

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator 0000000 00000000000	Lower Bound	Applications in Functional Estimation	

Construction of Optimal Estimator

General Idea Delving into the Details

Lower Bound

Applications in Functional Estimation

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation

Pattern Learning Problem

Given *n* i.i.d samples drawn from a discrete distribution $P = (p_1, \dots, p_S)$ with an *unknown* support size *S*, we would like to learn the patterns of *P*, including:

- ▶ the distribution *P* itself
- ▶ some functional of *P*, e.g., the entropy $H(P) = \sum_{i=1}^{S} -p_i \ln p_i$ and the support size $S(P) = \sum_{i=1}^{S} \mathbb{1}(p_i \neq 0)$

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation

Pattern Learning Problem

Given *n* i.i.d samples drawn from a discrete distribution $P = (p_1, \dots, p_S)$ with an *unknown* support size *S*, we would like to learn the patterns of *P*, including:

- ▶ the distribution *P* itself
- ▶ some functional of *P*, e.g., the entropy $H(P) = \sum_{i=1}^{S} -p_i \ln p_i$ and the support size $S(P) = \sum_{i=1}^{S} \mathbb{1}(p_i \neq 0)$

Remark

Things get interesting when S is large.

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

Our Problem

Target

Learn the "spectrum/histogram" of P, i.e., learn the distribution vector $P = (p_1, \dots, p_S)$ up to permutation.

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation

Our Problem

Target

```
Learn the "spectrum/histogram" of P, i.e., learn the distribution vector P = (p_1, \dots, p_S) up to permutation.
```

Example

Suppose our observation for animals on an island is {mouse, mouse, bird, dog, mouse, bird}, we would like to obtain:

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Our Problem

Target

```
Learn the "spectrum/histogram" of P, i.e., learn the distribution vector P = (p_1, \dots, p_S) up to permutation.
```

Example

Suppose our observation for animals on an island is {mouse, mouse, bird, dog, mouse, bird}, we would like to obtain:

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator 0000000 00000000000	Lower Bound	Applications in Functional Estimation

Motivation

The spectrum contains some essential information of the distribution:

- shape of the distribution: unimodal or not, light-tail or heavy-tail, etc
- Symmetric functional of the distribution: can be plugged into general functionals of the form F(P) = ∑^S_{i=1} f(p_i)

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Two-step Learning of Distribution

Suppose now we would like to estimate P without permutation. We may decompose this process into two steps:

- Step 1: learn the distribution P without labeling (our target!)
- Step 2: assign labels to the unlabeled distribution obtained in Step 1.

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Two-step Learning of Distribution

Suppose now we would like to estimate P without permutation. We may decompose this process into two steps:

- Step 1: learn the distribution P without labeling (our target!)
- Step 2: assign labels to the unlabeled distribution obtained in Step 1.

Question

Which step is more difficult?

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

A Non-trivial Answer

Theorem (Valiant and Valiant'16)

Even for $S = +\infty$, there is some estimator \hat{P} of P such that for any discrete distribution P, and any oracle \hat{P}^* who observes the same samples and knows P up to permutation,

$$\mathbb{E}_{P} \| \hat{P} - P \|_{1} \leq \mathbb{E}_{P} \| \hat{P}^{*} - P \|_{1} + o_{n}(1).$$

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

A Non-trivial Answer

Theorem (Valiant and Valiant'16)

Even for $S = +\infty$, there is some estimator \hat{P} of P such that for any discrete distribution P, and any oracle \hat{P}^* who observes the same samples and knows P up to permutation,

$$\mathbb{E}_{P} \| \hat{P} - P \|_{1} \leq \mathbb{E}_{P} \| \hat{P}^{*} - P \|_{1} + o_{n}(1).$$

It seems that labeling is a hard task even if we knew the distribution...

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Combining the Two Steps

Let \mathcal{M}_S be the class of all probability distributions supported on at most S elements.

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation	

Combining the Two Steps

Let $\mathcal{M}_{\mathcal{S}}$ be the class of all probability distributions supported on at most \mathcal{S} elements.

Theorem (Optimal Learning of Labeled Distribution, H.–Jiao–Weissman'15, Kamath et al.'15)

The minimax ℓ_1 risk of distribution learning is

$$\inf_{\hat{P}} \sup_{P \in \mathcal{M}_{S}} \mathbb{E}_{P} \| \hat{P} - P \|_{1} \asymp \sqrt{\frac{S}{n}}$$

and the upper bound is attained by the natural estimator.

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation	

Combining the Two Steps

Let \mathcal{M}_S be the class of all probability distributions supported on at most S elements.

Theorem (Optimal Learning of Labeled Distribution, H.–Jiao–Weissman'15, Kamath et al.'15)

The minimax ℓ_1 risk of distribution learning is

$$\inf_{\hat{P}} \sup_{P \in \mathcal{M}_{S}} \mathbb{E}_{P} \| \hat{P} - P \|_{1} \asymp \sqrt{\frac{S}{n}}$$

and the upper bound is attained by the natural estimator.

Corollary

Labeled distribution learning is possible if and only if $n \gg S$.

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation	

Proof of Upper Bound

By definition, we have $n\hat{p}_i \sim B(n, p_i)$.

Construction of Optimal Estimator 0000000 00000000000 Lower Bound

Applications in Functional Estimation

Proof of Upper Bound

By definition, we have $n\hat{p}_i \sim B(n, p_i)$. Hence,

$$egin{aligned} \mathbb{E}|\hat{p}_i - p_i| &\leq \sqrt{\mathbb{E}(\hat{p}_i - p_i)^2} \ &= \sqrt{rac{p_i(1-p_i)}{n}} \ &\leq \sqrt{rac{p_i}{n}}. \end{aligned}$$

Optimal Learning of Patterns from Discrete Sampl
--

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Proof of Upper Bound

By definition, we have $n\hat{p}_i \sim B(n, p_i)$. Hence,

$$egin{aligned} \mathbb{E}|\hat{
ho}_i -
ho_i| &\leq \sqrt{\mathbb{E}(\hat{
ho}_i -
ho_i)^2} \ &= \sqrt{rac{p_i(1-p_i)}{n}} \ &\leq \sqrt{rac{p_i}{n}}. \end{aligned}$$

Summing up:

$$\mathbb{E}_{P} \| \hat{P} - P \|_{1} \leq \sum_{i=1}^{S} \sqrt{\frac{p_{i}}{n}} \leq \sqrt{\frac{S}{n}}$$

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Proof of Lower Bound

Simple Fact

When $\eta \asymp \sqrt{\frac{s}{n}}$, the distributions $B(n, \frac{1-\eta}{s})$ and $B(n, \frac{1+\eta}{s})$ are indistinguishable using *n* samples.

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

Proof of Lower Bound

Simple Fact

When $\eta \simeq \sqrt{\frac{S}{n}}$, the distributions $B(n, \frac{1-\eta}{S})$ and $B(n, \frac{1+\eta}{S})$ are indistinguishable using *n* samples.

Implication

Each symbol contributes error $\frac{\eta}{S}$, and thus $\eta \asymp \sqrt{\frac{S}{n}}$ error in total.

Optimal	Learning	of	Patterns	from	Discrete	Samples
---------	----------	----	----------	------	----------	---------

Problem Setup Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Loss Criterion for Our Problem

Let $P_{<} = (p_{(1)}, p_{(2)}, \dots, p_{(S)})$ with $p_{(1)} < p_{(2)} < \dots < p_{(S)}$ be the sorted version of P. We would like to minimize the sorted ℓ_1 loss: Minimax Sorted ℓ_1 Risk

$$\inf_{\hat{P}} \sup_{P \in \mathcal{M}_{S}} \mathbb{E}_{P} \| \hat{P} - \frac{P_{<}}{\|_{1}} \|_{1}$$

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation

Main Result

Theorem (Optimal Learning of Unlabeled Distribution, H.–Jiao–Weissman'17)

The minimax sorted ℓ_1 risk of learning unlabeled distribution is

$$\inf_{\hat{P}} \sup_{P \in \mathcal{M}_{S}} \mathbb{E}_{P} \| \hat{P} - P_{<} \|_{1} \asymp \sqrt{\frac{S}{n \ln n}} + \tilde{\Theta} \left(n^{-\frac{1}{3}} \wedge \sqrt{\frac{S}{n}} \right)$$

where $\tilde{\Theta}(\cdot)$ neglects o(poly(n)) factors, and our estimator (to be presented) attains the upper bound.

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Main Result

Theorem (Optimal Learning of Unlabeled Distribution, H.–Jiao–Weissman'17)

The minimax sorted ℓ_1 risk of learning unlabeled distribution is

$$\inf_{\hat{P}} \sup_{P \in \mathcal{M}_{S}} \mathbb{E}_{P} \| \hat{P} - P_{<} \|_{1} \asymp \sqrt{\frac{S}{n \ln n}} + \tilde{\Theta} \left(n^{-\frac{1}{3}} \wedge \sqrt{\frac{S}{n}} \right)$$

where $\tilde{\Theta}(\cdot)$ neglects o(poly(n)) factors, and our estimator (to be presented) attains the upper bound.

Corollary

Unlabeled distribution learning is possible if and only if $n \gg \frac{S}{\ln S}$.

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation	Optimal Learning of Patterns from Discrete Samples			
	Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation

Main Result

Theorem (Optimal Learning of Unlabeled Distribution, H.–Jiao–Weissman'17)

The minimax sorted ℓ_1 risk of learning unlabeled distribution is

$$\inf_{\hat{P}} \sup_{P \in \mathcal{M}_{S}} \mathbb{E}_{P} \| \hat{P} - P_{<} \|_{1} \asymp \sqrt{\frac{S}{n \ln n}} + \tilde{\Theta} \left(n^{-\frac{1}{3}} \wedge \sqrt{\frac{S}{n}} \right)$$

where $\tilde{\Theta}(\cdot)$ neglects o(poly(n)) factors, and our estimator (to be presented) attains the upper bound.

Corollary

Unlabeled distribution learning is possible if and only if $n \gg \frac{S}{\ln S}$.

Alert

Uniform improvements over the natural estimator is possible only when $S\gg \tilde{\Theta}(n^{\frac{1}{3}}).$

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation	Optimal Learning of Patterns from Discrete Samples			
	Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Construction of Optimal Estimator

General Idea Delving into the Details

Lower Bound

Applications in Functional Estimation

Lower Bound

Applications in Functional Estimation

First Let's Make Everything Simple...

Let's assume:

- support size S is known;
- each p_i is small; more specifically, $p_i \in [0, \frac{\ln n}{n}]$

Lower Bound

Applications in Functional Estimation

First Let's Make Everything Simple...

Let's assume:

- support size S is known;
- each p_i is small; more specifically, $p_i \in [0, \frac{\ln n}{n}]$

A thought experiment

We have

unlabeled distribution \implies symmetric functional.

How about the opposite direction?

Optimal Learning of Patterns from Discrete Samples

Problem Setup	Construction of Optimal Estimator 000000 00000000000	Lower Bound	Applications in Functional Estimation

Idea: Moment Matching

Suppose we could find some $Q=(q_1,\cdots,q_S)$ such that $q_1,\cdots,q_S\in [0,rac{\ln n}{n}]$, and

$$q_{1}^{0} + q_{2}^{0} + \dots + q_{S}^{0} = p_{1}^{0} + p_{2}^{0} + \dots + p_{S}^{0}$$

$$q_{1}^{1} + q_{2}^{1} + \dots + q_{S}^{1} = p_{1}^{1} + p_{2}^{1} + \dots + p_{S}^{1}$$

$$q_{1}^{2} + q_{2}^{2} + \dots + q_{S}^{2} = p_{1}^{2} + p_{2}^{2} + \dots + p_{S}^{2}$$

$$\dots$$

$$q_{1}^{K} + q_{2}^{K} + \dots + q_{S}^{K} = p_{1}^{K} + p_{2}^{K} + \dots + p_{S}^{K}$$

for some *K*.

Optimal Learning of Patterns from Discrete Samples

Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Idea: Moment Matching

Suppose we could find some $Q=(q_1,\cdots,q_S)$ such that $q_1,\cdots,q_S\in [0,rac{\ln n}{n}]$, and

$$q_1^0 + q_2^0 + \dots + q_S^0 = p_1^0 + p_2^0 + \dots + p_S^0$$

$$q_1^1 + q_2^1 + \dots + q_S^1 = p_1^1 + p_2^1 + \dots + p_S^1$$

$$q_1^2 + q_2^2 + \dots + q_S^2 = p_1^2 + p_2^2 + \dots + p_S^2$$

$$\dots$$

$$q_1^K + q_2^K + \dots + q_S^K = p_1^K + p_2^K + \dots + p_S^K$$

for some K. How about using $Q_{<}$ as an estimate of $P_{<}$?

Optimal Learning of Patterns from Discrete Samples

Problem Setup	Construction of Optimal Estimator 000000 0000000000	Lower Bound	Applications in Functional Estimation

Idea: Moment Matching

Suppose we could find some $Q=(q_1,\cdots,q_S)$ such that $q_1,\cdots,q_S\in [0,rac{\ln n}{n}]$, and

$$q_1^0 + q_2^0 + \dots + q_S^0 = p_1^0 + p_2^0 + \dots + p_S^0$$

$$q_1^1 + q_2^1 + \dots + q_S^1 = p_1^1 + p_2^1 + \dots + p_S^1$$

$$q_1^2 + q_2^2 + \dots + q_S^2 = p_1^2 + p_2^2 + \dots + p_S^2$$

.....

$$q_1^K + q_2^K + \dots + q_S^K = p_1^K + p_2^K + \dots + p_S^K$$

for some K. How about using $Q_{<}$ as an estimate of $P_{<}?$ Goal Show that

moment matching \Longrightarrow distribution closeness.

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

Wasserstein Distance

Definition (Wasserstein Distance)

Let (S, d) be a separable metric space, and P, Q be two probability measures on S. The Wasserstein Distance between Pand Q is defined as

$$W(P,Q) \triangleq \inf_{\mathcal{L}(X)=P,\mathcal{L}(Y)=Q} \mathbb{E}d(X,Y)$$

where X, Y are random variables taking values in S.

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Wasserstein Distance

Definition (Wasserstein Distance)

Let (S, d) be a separable metric space, and P, Q be two probability measures on S. The Wasserstein Distance between Pand Q is defined as

$$W(P,Q) \triangleq \inf_{\mathcal{L}(X)=P,\mathcal{L}(Y)=Q} \mathbb{E}d(X,Y)$$

where X, Y are random variables taking values in S.

Theorem (Dual Representation, Kantorovich–Rubinstein'58) Define the Lipschitz norm in (S, d) as $||f||_{Lip} \triangleq \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x,y)}$, then

$$W(P,Q) = \sup_{f:\|f\|_{Lip} \leq 1} \mathbb{E}_P f - \mathbb{E}_Q f.$$

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

Rearrangement Inequality

Let μ_P be the uniform distribution on the multiset $\{p_1, \dots, p_S\}$, and similarly for μ_Q .

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Rearrangement Inequality

Let μ_P be the uniform distribution on the multiset $\{p_1, \dots, p_S\}$, and similarly for μ_Q .

Lemma (Rearrangement Inequality)

For $(S, d) = ([0, 1], |\cdot|)$, we have

$$\begin{aligned} \|P_{<} - Q_{<}\|_{1} &= S \cdot \inf_{\mathcal{L}(X) = \mu_{P}, \mathcal{L}(Y) = \mu_{Q}} \mathbb{E}|X - Y| \\ &= S \cdot W(\mu_{P}, \mu_{Q}). \end{aligned}$$

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Rearrangement Inequality

Let μ_P be the uniform distribution on the multiset $\{p_1, \dots, p_S\}$, and similarly for μ_Q .

Lemma (Rearrangement Inequality) For $(S, d) = ([0, 1], |\cdot|)$, we have

$$\begin{split} \|P_{<} - Q_{<}\|_{1} &= S \cdot \inf_{\mathcal{L}(X) = \mu_{P}, \mathcal{L}(Y) = \mu_{Q}} \mathbb{E}|X - Y| \\ &= S \cdot W(\mu_{P}, \mu_{Q}). \end{split}$$

Example

Optimal Learning o	Optimal Learning of Patterns from Discrete Samples					
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation			

Rearrangement Inequality

Let μ_P be the uniform distribution on the multiset $\{p_1, \dots, p_S\}$, and similarly for μ_Q .

Lemma (Rearrangement Inequality) For (S, d) = ([0, 1] | .]) we have

For $(S, d) = ([0, 1], |\cdot|)$, we have

$$\begin{aligned} \|P_{<} - Q_{<}\|_{1} &= S \cdot \inf_{\mathcal{L}(X) = \mu_{P}, \mathcal{L}(Y) = \mu_{Q}} \mathbb{E}|X - Y| \\ &= S \cdot W(\mu_{P}, \mu_{Q}). \end{aligned}$$

Example

Optimal	Learning	of	Patterns	from	Discrete	Samples
---------	----------	----	----------	------	----------	---------

Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation
	000000000000000000000000000000000000000		

Using Moment Matching

Construction of Optimal Estimator

Lower Bound

Polynomial Approximation of Lipschitz Function

Theorem (Jackson's Inequality, Devore'76) Let f be any 1-Lipschitz function on [a, b]. There exists a degree-K polynomial P such that for any $x \in (a, b)$,

$$|f(x) - P(x)| \lesssim rac{\sqrt{(b-a)(x-a)}}{K}$$

Problem Setup Construction of Optimal Estimator

Lower Bound

Polynomial Approximation of Lipschitz Function

Theorem (Jackson's Inequality, Devore'76) Let f be any 1-Lipschitz function on [a, b]. There exists a degree-K polynomial P such that for any $x \in (a, b)$,

$$|f(x) - P(x)| \lesssim rac{\sqrt{(b-a)(x-a)}}{K}$$

Choosing $[a, b] = [0, \frac{\ln n}{n}], K \asymp \ln n$, we have

$$\|P_{<}-Q_{<}\|_{1}\lesssim\sum_{i=1}^{S}\sqrt{\frac{p_{i}}{n\ln n}}+\sqrt{\frac{q_{i}}{n\ln n}}\lesssim\sqrt{\frac{S}{n\ln n}}.$$

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator 000000● 00000000000000000000000000000	Lower Bound	Applications in Functional Estimation	

Implication

For unlabeled distribution learning, it suffices to match moments up to order $\ln n$.

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator 000000● 00000000000000000000000000000	Lower Bound	Applications in Functional Estimation	

Implication

For unlabeled distribution learning, it suffices to match moments up to order $\ln n$.

Questions

• What to do since we do not know the true moments $\sum_{i=1}^{S} p_i^k$?

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator 000000● 00000000000000000000000000000	Lower Bound	Applications in Functional Estimation	

Implication

For unlabeled distribution learning, it suffices to match moments up to order $\ln n$.

Questions

- What to do since we do not know the true moments $\sum_{i=1}^{S} p_i^k$?
- ► How to match moments and solve for *Q* efficiently? What if there is no solution?

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

Implication

For unlabeled distribution learning, it suffices to match moments up to order $\ln n$.

Questions

- What to do since we do not know the true moments $\sum_{i=1}^{S} p_i^k$?
- ► How to match moments and solve for *Q* efficiently? What if there is no solution?
- What if not all p_i lie in the interval $[0, \frac{\ln n}{n}]$?

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator ○○○○○○ ○○○○○○○○○○○	Lower Bound	Applications in Functional Estimation	

Implication

For unlabeled distribution learning, it suffices to match moments up to order $\ln n$.

Questions

- What to do since we do not know the true moments $\sum_{i=1}^{S} p_i^k$?
- ► How to match moments and solve for *Q* efficiently? What if there is no solution?
- What if not all p_i lie in the interval $[0, \frac{\ln n}{n}]$?
- What if the support size S is unknown?

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Q1: How to Know the True Moments $\sum_{i=1}^{S} p_i^k$?

Answer

Apply an unbiased estimator of the moments.

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Q1: How to Know the True Moments $\sum_{i=1}^{S} p_i^k$?

Answer

Apply an unbiased estimator of the moments.

Fact

For $X \sim B(n, p)$, we have

$$\mathbb{E}_p\left[\frac{X(X-1)\cdots(X-k+1)}{n(n-1)\cdots(n-k+1)}\right] = p^k, \qquad 1 \le k \le n.$$

Just use the support size *S* for k = 0.

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Q1: How to Know the True Moments $\sum_{i=1}^{S} p_i^k$?

Answer

Apply an unbiased estimator of the moments.

Fact

For $X \sim B(n, p)$, we have

$$\mathbb{E}_p\left[\frac{X(X-1)\cdots(X-k+1)}{n(n-1)\cdots(n-k+1)}\right] = p^k, \qquad 1 \le k \le n.$$

Just use the support size S for k = 0.

Alert

If the plug-in idea $\sum_{i=1}^{S} \hat{p}_i^k$ were used, the moment matching process would return the empirical distribution!

Optimal Learning o	Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation		

Q1: How Much Do We Lose?

Instead of exact moment matching, now we have:

$$\mathbb{E}\left|\sum_{i=1}^{S} q_i^k - \sum_{i=1}^{S} p_i^k\right| \lesssim \tilde{\mathcal{O}}(\frac{1}{n^{k-\frac{1}{2}}})$$

Tracing back to the proof, this incurs a negligible additional error $\tilde{O}(n^{-\frac{1}{2}})$ to the original problem.

Remark

The unbiased estimator is used to avoid bias accumulation (where the variance cancels out).

Problem Setup Constr 0000

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Q2: How to Implement Efficient Moment Matching?

Answer

Compute a continuous density μ_Q instead of a discrete vector Q.

Construction of Optimal Estimator

Lower Bound

Q2: How to Implement Efficient Moment Matching?

Answer

Problem Setup

Compute a continuous density μ_Q instead of a discrete vector Q.

Algorithm

Solve the following feasibility problem: check whether the system

$$\left|S \cdot \int_0^{\frac{\ln n}{n}} x^k \mu_Q(dx) - \sum_{i=1}^{S} \frac{n\hat{p}_i(n\hat{p}_i - 1) \cdots (n\hat{p}_i - k + 1)}{n(n-1) \cdots (n-k+1)}\right| \lesssim \tilde{\mathcal{O}}(\frac{1}{n^{k-\frac{1}{2}}})$$

for all $k = 1, \dots, K$ contains a feasible probability measure μ_Q . Choose any one if there are multiple solutions.

Optimal L	earning o	of Patterns	from	Discrete	Samples
-----------	-----------	-------------	------	----------	---------

Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Q2: Analysis of the Algorithm

$$\left|S \cdot \int_0^{\frac{\ln n}{n}} x^k \mu_Q(dx) - \sum_{i=1}^{S} \frac{n\hat{p}_i(n\hat{p}_i - 1) \cdots (n\hat{p}_i - k + 1)}{n(n-1) \cdots (n-k+1)}\right| \lesssim \tilde{\mathcal{O}}(\frac{1}{n^{k-\frac{1}{2}}})$$

Optimal	Learning	of	Patterns	from	Discrete	Samples	
---------	----------	----	----------	------	----------	---------	--

Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Q2: Analysis of the Algorithm

$$\left|S\cdot\int_0^{\frac{\ln n}{n}}x^k\mu_Q(dx)-\sum_{i=1}^S\frac{n\hat{p}_i(n\hat{p}_i-1)\cdots(n\hat{p}_i-k+1)}{n(n-1)\cdots(n-k+1)}\right|\lesssim \tilde{\mathcal{O}}(\frac{1}{n^{k-\frac{1}{2}}})$$

Key Observation

There is a feasible solution with overwhelming probability since μ_P is!

Optimal L	earning o	of Patterns	from	Discrete	Samples
-----------	-----------	-------------	------	----------	---------

Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Q2: Analysis of the Algorithm

$$\left|S \cdot \int_0^{\frac{\ln n}{n}} x^k \mu_Q(dx) - \sum_{i=1}^{S} \frac{n \hat{p}_i(n \hat{p}_i - 1) \cdots (n \hat{p}_i - k + 1)}{n(n-1) \cdots (n-k+1)}\right| \lesssim \tilde{\mathcal{O}}(\frac{1}{n^{k-\frac{1}{2}}})$$

Key Observation

There is a feasible solution with overwhelming probability since μ_P is!

Implementation

- A linear program in μ_Q , but infinite dimensional
- Can transform into a finite-dimensional LP by quantizing μ_Q

Optimal Learning of Patterns from Discrete Samples

Problem Setup

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Q2: From Continuous μ_Q to Discrete QProof via figure:

$$W(\mu_P, \mu_Q) =$$
yellow area $= \mathbb{E}W(\mu_P, \mu'_Q)$

Optimal Learning of Patterns from Discrete Samples

Problem Setup

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Q2: From Continuous μ_Q to Discrete Q

Proof via figure:

$$W(\mu_P, \mu_Q) =$$
yellow area $= \mathbb{E}W(\mu_P, \mu_Q')$

Optimal Learning of Patterns from Disc	crete Samples
--	---------------

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Q2: From Continuous μ_Q to Discrete Q

Proof via figure:

$$W(\mu_P, \mu_Q) =$$
yellow area $= \mathbb{E}W(\mu_P, \mu'_Q)$

Optimal Learning of Patterns from Discrete Samples

Problem Setup

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Q2: From Continuous μ_Q to Discrete QProof via figure:

oor via figure.

$$W(\mu_P, \mu_Q) =$$
 yellow area $= \mathbb{E}W(\mu_P, \mu_Q')$

Optimal Learning of Patterns from Disc	rete Samples
--	--------------

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Q2: From Continuous μ_Q to Discrete QProof via figure:

 $W(\mu_P, \mu_Q) =$ yellow area $= \mathbb{E}W(\mu_P, \mu'_Q)$

Optimal Learning of Patterns from Discrete Samples					
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation		

Q3: Not All Rare Symbols

Answer

Generalize polynomial approximation idea to other intervals.

Optimal Learning of Patterns from Discrete Samples					
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation		

Q3: Not All Rare Symbols

Answer

Generalize polynomial approximation idea to other intervals.

Fact

The same technique applies to the case where all p_i lie in

$$I_{p} \triangleq [p - \sqrt{\frac{p \ln n}{n}}, p + \sqrt{\frac{p \ln n}{n}}] \text{ for any } p:$$

$$\|Q_{<} - P_{<}\|_{1} \lesssim S \cdot \sup_{\substack{f: \|f\|_{\text{Lip}} \leq 1} \deg P \leq K} \|f - P\|_{\infty, I_{p}}$$

$$\lesssim S \cdot \frac{|I_{p}|}{K} \quad \text{[Jackson's Inequality]}$$

$$\lesssim S \cdot \sqrt{\frac{p}{n \ln n}} \quad [K \asymp \ln n]$$

$$\lesssim \sqrt{\frac{S}{n \ln n}} \quad [pS \asymp 1]$$

Optimal Learning	of Patterns	from Discrete	Samples
------------------	-------------	---------------	---------

Problem Setup
Construction of Optimal Estimator
Common Lower Bound
Common Common Common Lower Bound
Common Common

Q3: Partitioning and Moment Matching

Idea

Partitioning the whole interval [0, 1] into sub-intervals of the previous form, and match moments separately in each sub-interval.

Optimal Le	arning of	Patterns	from	Discrete	Samples
------------	-----------	----------	------	----------	---------

Q3: Partitioning and Moment Matching

Idea

Partitioning the whole interval [0, 1] into sub-intervals of the previous form, and match moments separately in each sub-interval.

Resulting Partition

Let $\eta_n = \frac{c \ln n}{n}$ with a suitable parameter *c*, the partition is

$$[0, \eta_n], [\eta_n, 4\eta_n], [4\eta_n, 9\eta_n], \cdots$$

New Difficulty

Need to know which interval each probability mass p_i belongs to, which we actually do not know.

Optimal Le	earning of	Patterns	from	Discrete	Samples
------------	------------	----------	------	----------	---------

Lower Bound

Q3: Partitioning and Moment Matching

Construction of Optimal Estimator

Idea

Problem Setup

Partitioning the whole interval [0, 1] into sub-intervals of the previous form, and match moments separately in each sub-interval.

Resulting Partition

Let $\eta_n = \frac{c \ln n}{n}$ with a suitable parameter *c*, the partition is

$$[0, \eta_n], [\eta_n, 4\eta_n], [4\eta_n, 9\eta_n], \cdots$$
.

$$0 \quad \eta_n \quad 4\eta_n \qquad \qquad 9\eta_n \cdots 1$$

New Difficulty

Need to know which interval each probability mass p_i belongs to, which we actually do not know.

Optimal Learning of Patterns from Discrete Samples					
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation		

Q3: Confidence Set

Definition (Confidence set)

Consider a statistical model $(P_{\theta})_{\theta \in \Theta}$ and an estimator $\hat{\theta} \in \hat{\Theta}$ of θ , where $\Theta \subset \hat{\Theta}$. A confidence set of significant level $r \in [0, 1]$, or an *r*-confidence set, is a collection of sets $\{U(x)\}_{x \in \hat{\Theta}}$, where $U(x) \subset \Theta$ for any $x \in \hat{\Theta}$, and

 $\sup_{\theta\in\Theta}\mathbb{P}_{\theta}(\theta\notin U(\hat{\theta}))\leq r.$

Optimal Learning of Patterns from Discrete Samples					
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation		

Q3: Confidence Set

Definition (Confidence set)

Consider a statistical model $(P_{\theta})_{\theta \in \Theta}$ and an estimator $\hat{\theta} \in \hat{\Theta}$ of θ , where $\Theta \subset \hat{\Theta}$. A confidence set of significant level $r \in [0,1]$, or an *r*-confidence set, is a collection of sets $\{U(x)\}_{x \in \hat{\Theta}}$, where $U(x) \subset \Theta$ for any $x \in \hat{\Theta}$, and

$$\sup_{\theta\in\Theta}\mathbb{P}_{\theta}(\theta\notin U(\hat{\theta}))\leq r.$$

- Confidence set always exists, but we seek for a small one
- Choice of significance: $r \simeq n^{-A}$

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	

Applications in Functional Estimation

Q3: Confidence Set in Binomial Model

000000000000000

Example

Remark

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Example

Remark

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Example

Remark

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Example

Remark

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation	Optimal Learning of Patterns from Discrete Samples			
	Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Example

Remark

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Example

Remark
Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator ○○○○○○ ○○○○○○○●○○○	Lower Bound	Applications in Functional Estimation	

Sample Splitting Algorithm Split the samples $X_1, \dots, X_n \stackrel{i.i.d}{\sim} P$ into two halves:

- For each symbol *i*, use the empirical distribution of the first half to classify the partition set it belongs to;
- Match moments in each (slightly enlarged) partition set based on the classification in the first step.

$$0 \quad \eta_n \quad 4\eta_n \qquad 9\eta_n \cdots 1$$

Intuition

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator ○○○○○○ ○○○○○○○●○○○	Lower Bound	Applications in Functional Estimation	

Sample Splitting Algorithm Split the samples $X_1, \dots, X_n \stackrel{i.i.d}{\sim} P$ into two halves:

- For each symbol *i*, use the empirical distribution of the first half to classify the partition set it belongs to;
- Match moments in each (slightly enlarged) partition set based on the classification in the first step.

$$0 \quad \eta_n \quad 4\eta_n \qquad 9\eta_n \cdots 1$$

Intuition

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator ○○○○○○ ○○○○○○○●○○○	Lower Bound	Applications in Functional Estimation	

Sample Splitting Algorithm Split the samples $X_1, \dots, X_n \stackrel{i.i.d}{\sim} P$ into two halves:

- For each symbol *i*, use the empirical distribution of the first half to classify the partition set it belongs to;
- Match moments in each (slightly enlarged) partition set based on the classification in the first step.

Intuition

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

Sample Splitting Algorithm Split the samples $X_1, \dots, X_n \stackrel{i.i.d}{\sim} P$ into two halves:

- For each symbol *i*, use the empirical distribution of the first half to classify the partition set it belongs to;
- Match moments in each (slightly enlarged) partition set based on the classification in the first step.

Intuition

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	
00.00				

Q3: Additional Loss

Observation

In each set of the partition, there is some loss due to the imperfect knowledge of the moments of μ_P .

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

Q3: Additional Loss

Observation

In each set of the partition, there is some loss due to the imperfect knowledge of the moments of μ_P .

Proposition

The loss incurred in the set A_i is given by

$$\tilde{\mathcal{O}}\left(\sqrt{\frac{\sum_{p_i \in A_j} p_i}{n}}\right)$$

which gives the second term $\tilde{\Theta}\left(n^{-\frac{1}{3}} \wedge \sqrt{\frac{s}{n}}\right)$ in the main theorem.

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

Q3: Additional Loss

Observation

In each set of the partition, there is some loss due to the imperfect knowledge of the moments of μ_P .

Proposition

The loss incurred in the set A_j is given by

$$\tilde{\mathcal{O}}\left(\sqrt{\frac{\sum_{p_i \in A_j} p_i}{n}}\right)$$

which gives the second term $\tilde{\Theta}\left(n^{-\frac{1}{3}} \wedge \sqrt{\frac{s}{n}}\right)$ in the main theorem.

Intuition

More improvements are possible if more symbols are grouped together.

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator ○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Lower Bound	Applications in Functional Estimation	

Q4: Unknown Support Size S

Answer

Does not matter at all!

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator ○○○○○○○ ○○○○○○○○○○●○	Lower Bound	Applications in Functional Estimation	

Q4: Unknown Support Size S

Answer

Does not matter at all!

Why?

- Support size has been made "known" by sample splitting
- Autofill zero in computing $\|\hat{P} P_{<}\|_{1}$ if of different lengths

Optimal Learning of Patterns from Discrete Samples					
Problem Setup	Construction of Optimal Estimator ○○○○○○○ ○○○○○○○○○○●	Lower Bound	Applications in Functional Estimation		
Summary	of the Estimator				

• Choose suitable constant $c_1, c_2 > 0$, and let $\eta_n = \frac{c_1 \ln n}{n}$, $K = c_2 \ln n$;

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

- Choose suitable constant c₁, c₂ > 0, and let η_n = c₁ ln n/n, K = c₂ ln n;
- ▶ Partition [0,1] into $\cup_{r=0}^{R} A_r$ with $A_r = [r^2 \eta_n, (r+1)^2 \eta_n]$;

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

- Choose suitable constant c₁, c₂ > 0, and let η_n = c₁ ln n/n, K = c₂ ln n;
- Partition [0, 1] into $\cup_{r=0}^{R} A_r$ with $A_r = [r^2 \eta_n, (r+1)^2 \eta_n];$
- Split samples and use the first half to classify the location of each symbol in the partition;

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator ○○○○○○○ ○○○○○○○○○○●	Lower Bound	Applications in Functional Estimation

- ► Choose suitable constant c₁, c₂ > 0, and let η_n = c₁ ln n/n, K = c₂ ln n;
- Partition [0,1] into $\cup_{r=0}^{R} A_r$ with $A_r = [r^2 \eta_n, (r+1)^2 \eta_n];$
- Split samples and use the first half to classify the location of each symbol in the partition;
- Use the second half samples to compute the unbiased estimator of the k-moments in each partition set for k = 1, 2, ··· , K;

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator ○○○○○○ ○○○○○○○○○●	Lower Bound	Applications in Functional Estimation

- ► Choose suitable constant c₁, c₂ > 0, and let η_n = c₁ ln n, K = c₂ ln n;
- Partition [0, 1] into $\cup_{r=0}^{R} A_r$ with $A_r = [r^2 \eta_n, (r+1)^2 \eta_n];$
- Split samples and use the first half to classify the location of each symbol in the partition;
- Use the second half samples to compute the unbiased estimator of the k-moments in each partition set for k = 1, 2, ··· , K;
- Match moments by solving the LP separately in each partition set;

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator ○○○○○○ ○○○○○○○○○●	Lower Bound	Applications in Functional Estimation

- ► Choose suitable constant c₁, c₂ > 0, and let η_n = c₁ ln n, K = c₂ ln n;
- Partition [0, 1] into $\cup_{r=0}^{R} A_r$ with $A_r = [r^2 \eta_n, (r+1)^2 \eta_n];$
- Split samples and use the first half to classify the location of each symbol in the partition;
- Use the second half samples to compute the unbiased estimator of the k-moments in each partition set for k = 1, 2, ··· , K;
- Match moments by solving the LP separately in each partition set;
- Return the overall probability distribution.

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation

Construction of Optimal Estimator

General Idea Delving into the Details

Lower Bound

Applications in Functional Estimation

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

When S Is Small

For small *S*, wish to prove:

$$\inf_{\hat{P}} \sup_{P \in \mathcal{M}_{S}} \mathbb{E}_{P} \| \hat{P} - P_{\leq} \|_{1} \gtrsim \sqrt{\frac{S}{n}}$$

Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation
	0000000 00000000000		

When S Is Small

For small S, wish to prove:

$$\inf_{\hat{P}} \sup_{P \in \mathcal{M}_{S}} \mathbb{E}_{P} \| \hat{P} - P_{<} \|_{1} \gtrsim \sqrt{\frac{S}{n}}$$

Observation

Worst case occurs when each set in the partition contains at most one probability mass

- labeling step becomes easy
- essentially as hard as labeled distribution learning
- ▶ in this case, S cannot be too large

$$0 \quad \eta_n \quad 4\eta_n \qquad 9\eta_n \cdots 1$$

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

When *S* Is Small

For small S, wish to prove:

$$\inf_{\hat{P}} \sup_{P \in \mathcal{M}_{S}} \mathbb{E}_{P} \| \hat{P} - P_{<} \|_{1} \gtrsim \sqrt{\frac{S}{n}}$$

Observation

Worst case occurs when each set in the partition contains at most one probability mass

- labeling step becomes easy
- essentially as hard as labeled distribution learning
- ▶ in this case, S cannot be too large

$$0 \eta_n 4\eta_n 9\eta_n \cdots 1$$

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

When S Is Large

For large S, wish to prove:

$$\inf_{\hat{P}} \sup_{P \in \mathcal{M}_{S}} \mathbb{E}_{P} \| \hat{P} - P_{<} \|_{1} \gtrsim \sqrt{\frac{S}{n \ln n}}$$

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

When *S* Is Large

For large S, wish to prove:

$$\inf_{\hat{P}} \sup_{P \in \mathcal{M}_{S}} \mathbb{E}_{P} \| \hat{P} - P_{<} \|_{1} \gtrsim \sqrt{\frac{S}{n \ln n}}$$

Idea: Hypothesis Testing (Le Cam's Two Point Method) Suffice to find $P, Q \in M_S$ such that:

- $||P_{<} Q_{<}||_{1}$ is large
- we cannot distinguish P, Q from observations X_1, X_2, \cdots, X_n

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator 0000000 00000000000	Lower Bound	Applications in Functional Estimation

Fuzzy Hypothesis Testing

Generalized Le Cam's Method Wish to find $\mu_P, \mu_Q \in \mathcal{P}(\mathcal{M}_S)$ such that:

▶ for $P \sim \mu_P, Q \sim \mu_Q$, $\|P_< - Q_<\|_1$ is probably large

▶ we cannot distinguish $P \sim \mu_P, Q \sim \mu_Q$ from observations X_1, X_2, \cdots, X_n

Optimal Learning of Patterns from Discrete Samples			
Problem Setup	Construction of Optimal Estimator 0000000 00000000000	Lower Bound	Applications in Functional Estimation

Fuzzy Hypothesis Testing

Generalized Le Cam's Method Wish to find $\mu_P, \mu_Q \in \mathcal{P}(\mathcal{M}_S)$ such that:

▶ for $P \sim \mu_P, Q \sim \mu_Q$, $\|P_< - Q_<\|_1$ is probably large

▶ we cannot distinguish $P \sim \mu_P, Q \sim \mu_Q$ from observations X_1, X_2, \cdots, X_n

Try $\mu_P = \mu_1^{\otimes S}, \mu_Q = \mu_2^{\otimes S}$, where μ_1, μ_2 are both probability measures on [0, 1]:

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation	

Fuzzy Hypothesis Testing

Generalized Le Cam's Method Wish to find $\mu_P, \mu_Q \in \mathcal{P}(\mathcal{M}_S)$ such that:

- ▶ for $P \sim \mu_P, Q \sim \mu_Q$, $\|P_< Q_<\|_1$ is probably large
- ▶ we cannot distinguish $P \sim \mu_P, Q \sim \mu_Q$ from observations X_1, X_2, \cdots, X_n

Try $\mu_P = \mu_1^{\otimes S}, \mu_Q = \mu_2^{\otimes S}$, where μ_1, μ_2 are both probability measures on [0, 1]:

Lemma (Wu–Yang'14, Jiao–H.–Weissman'17) We cannot distinguish $P \sim \mu_1^{\otimes S}$, $Q \sim \mu_2^{\otimes S}$ from observations X_1, X_2, \dots, X_n if both μ_1, μ_2 are supported on $[p - \sqrt{\frac{p \ln n}{n}}, p + \sqrt{\frac{p \ln n}{n}}]$ for some $p \geq \frac{\ln n}{n}$, and

$$\mathbb{E}_{\mu_1}X^j = \mathbb{E}_{\mu_2}X^j, \qquad j = 0, 1, \cdots, K \asymp \ln n.$$

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

How Large Can the Difference Be?

Key Observation

By concentration of measure, for $P \sim \mu_1^{\otimes S}$, $Q \sim \mu_2^{\otimes S}$, $||P_{<} - Q_{<}||_1$ is close to the scaled Wasserstein distance $S \cdot W(\mu_1, \mu_2)$.

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

How Large Can the Difference Be?

Key Observation

By concentration of measure, for $P \sim \mu_1^{\otimes S}$, $Q \sim \mu_2^{\otimes S}$, $\|P_{<} - Q_{<}\|_1$ is close to the scaled Wasserstein distance $S \cdot W(\mu_1, \mu_2)$.

Duality

Wasserstein duality

$$W(\mu_1,\mu_2) = \sup_{f:\|f\|_{\mathsf{Lip}}\leq 1} \mathbb{E}_{\mu_1}f - \mathbb{E}_{\mu_2}f.$$

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

How Large Can the Difference Be?

Key Observation

By concentration of measure, for $P \sim \mu_1^{\otimes S}$, $Q \sim \mu_2^{\otimes S}$, $||P_{<} - Q_{<}||_1$ is close to the scaled Wasserstein distance $S \cdot W(\mu_1, \mu_2)$.

Duality

Wasserstein duality

$$W(\mu_1,\mu_2) = \sup_{f:\|f\|_{\mathsf{Lip}} \leq 1} \mathbb{E}_{\mu_1}f - \mathbb{E}_{\mu_2}f.$$

Implication: it suffices to find a suitable f with $||f||_{Lip} \leq 1$.

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

Moment Matching and Another Duality

Moment Matching

For any f and two probability measures μ_1, μ_2 supported on [a, b] with first K matching moments,

$$\mathbb{E}_{\mu_1} f - \mathbb{E}_{\mu_2} f = \inf_{\substack{\deg P \leq K}} \mathbb{E}_{\mu_1} (f - P) - \mathbb{E}_{\mu_2} (f - P)$$
$$\leq 2 \cdot \inf_{\substack{\deg P \leq K}} \|f - P\|_{\infty, [a, b]}$$

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

Moment Matching and Another Duality

Moment Matching

For any f and two probability measures μ_1, μ_2 supported on [a, b] with first K matching moments,

$$\mathbb{E}_{\mu_1} f - \mathbb{E}_{\mu_2} f = \inf_{\substack{\deg P \leq K}} \mathbb{E}_{\mu_1} (f - P) - \mathbb{E}_{\mu_2} (f - P)$$
$$\leq 2 \cdot \inf_{\substack{\deg P \leq K}} \|f - P\|_{\infty, [a, b]}$$

Lemma (Another Duality, Cai-Low'11)

There exist two probability measures μ_1^*, μ_2^* supported on [a, b] with first K matching moments such that

$$\mathbb{E}_{\mu_1^*}f - \mathbb{E}_{\mu_2^*}f = 2 \cdot \inf_{\deg P \leq K} \|f - P\|_{\infty, [a,b]}.$$

Optimal Learning of Patterns from Discrete Samples					
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation		

Another Viewpoint

Idea

Relate the unlabeled distribution learning problem to the functional estimation problem $\sum_{i=1}^{S} f(p_i)$ with $||f||_{\text{Lip}} \leq 1$.

Optimal Learning of Patterns from Discrete Samples					
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation		

Another Viewpoint

Idea

Relate the unlabeled distribution learning problem to the functional estimation problem $\sum_{i=1}^{S} f(p_i)$ with $||f||_{\text{Lip}} \leq 1$.

Observation

Functional estimation is easier than unlabeled distribution learning.

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation	

Another Viewpoint

Idea

Relate the unlabeled distribution learning problem to the functional estimation problem $\sum_{i=1}^{S} f(p_i)$ with $||f||_{\text{Lip}} \leq 1$.

Observation

Functional estimation is easier than unlabeled distribution learning.

By definition of Lipschitz property,

$$\left|\sum_{i=1}^{S} f(p_i) - f(q_i)\right| \le \|P_{<} - Q_{<}\|_1.$$

Optimal Learning of Patterns from Discrete Samples					
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation		

C D ...

Construction of Optimal Estimator

D.

General Idea Delving into the Details

Lower Bound

Applications in Functional Estimation

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation	

Functional Estimation Problem

Given *n* i.i.d samples drawn from a discrete distribution $P = (p_1, \dots, p_S)$ with an *unknown* support size *S*, we would like to estimate the functional of *P* of the form

$$F(P) = \sum_{i=1}^{S} f(p_i).$$

Optimal Learning of Patterns from Discrete Samples				
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation	

Functional Estimation Problem

Given *n* i.i.d samples drawn from a discrete distribution $P = (p_1, \dots, p_S)$ with an *unknown* support size *S*, we would like to estimate the functional of *P* of the form

$$F(P) = \sum_{i=1}^{S} f(p_i).$$

- Shannon entropy $H(P) = \sum_{i=1}^{S} -p_i \ln p_i$
- power sum function $F_{\alpha}(P) = \sum_{i=1}^{S} p_i^{\alpha}$
- support size $S(P) = \sum_{i=1}^{S} \mathbb{1}(p_i \neq 0)$

Optimal	Learning	of	Patterns	from	Discrete	Samples
---------	----------	----	----------	------	----------	---------

Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation
	000000000000000000000000000000000000000		

Recent Breakthroughs

(Jiao-Venkat-H.-Weissman'14, Wu-Yang'14, Jiao-H.-Weissman'15, Wu-Yang'15)

	Minimax L ₂ rate	L_2 rate of MLE				
$H(P) = \sum_{i=1}^{S} -p_i \ln p_i$	$\frac{S^2}{(n \ln n)^2} + \frac{\ln^2 S}{n}$	$\frac{S^2}{n^2} + \frac{\ln^2 S}{n}$				
$F_{lpha}(P) = \sum_{i=1}^{S} p_i^{lpha}, 0 < lpha < 1/2$	$\frac{S^2}{(n \ln n)^{2\alpha}}$	$\frac{S^2}{n^{2\alpha}}$				
$F_{lpha}(P) = \sum_{i=1}^{S} p_i^{lpha}, 1/2 \le lpha < 1$	$\frac{S^2}{(n \ln n)^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$	$\frac{S^2}{n^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$				
$F_{lpha}(P) = \sum_{i=1}^{S} p_i^{lpha}, 1 < lpha < 3/2$	$\frac{1}{(n \ln n)^{2(\alpha-1)}}$	$\frac{1}{n^{2(\alpha-1)}}$				
$S(P) = \#\{p_i \neq 0\}, p_i \in \{0\} \cup [\frac{1}{S}, 1]$	$e^{-\Theta(\sqrt{\frac{n\ln n}{S}}\vee \frac{n}{S})}$	$e^{-\Theta(\sqrt{\frac{n}{5\ln 5}}\vee \frac{n}{5})}$				
Optimal	Learning	of	Patterns	from	Discrete	Samples
---------	----------	----	----------	------	----------	---------
---------	----------	----	----------	------	----------	---------

Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation

Recent Breakthroughs

(Jiao-Venkat-H.-Weissman'14, Wu-Yang'14, Jiao-H.-Weissman'15, Wu-Yang'15)

	Minimax L ₂ rate	L_2 rate of MLE
$H(P) = \sum_{i=1}^{S} -p_i \ln p_i$	$\frac{S^2}{(n \ln n)^2} + \frac{\ln^2 S}{n}$	$\frac{S^2}{n^2} + \frac{\ln^2 S}{n}$
$F_{lpha}(P) = \sum_{i=1}^{S} p_i^{lpha}, 0 < lpha < 1/2$	$\frac{S^2}{(n \ln n)^{2\alpha}}$	$\frac{S^2}{n^{2\alpha}}$
$F_{\alpha}(P) = \sum_{i=1}^{S} p_i^{\alpha}, 1/2 \le \alpha < 1$	$\frac{S^2}{(n \ln n)^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$	$\frac{S^2}{n^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$
$F_{lpha}(P) = \sum_{i=1}^{S} p_i^{lpha}, 1 < lpha < 3/2$	$\frac{1}{(n \ln n)^{2(\alpha-1)}}$	$\frac{1}{n^{2(\alpha-1)}}$
$S(P) = \#\{p_i \neq 0\}, p_i \in \{0\} \cup [\frac{1}{5}, 1]$	$e^{-\Theta(\sqrt{\frac{n\ln n}{5}}\vee \frac{n}{5})}$	$e^{-\Theta(\sqrt{\frac{n}{5\ln 5}}\vee\frac{n}{5})}$

Similar results also hold for Rényi entropy estimation (Acharya– Orlitsky–Suresh–Tyagi'14), KL, Hellinger and χ^2 -divergence estimation (H.–Jiao–Weissman'16), L_r norm estimation under Gaussian white noise model (H.–Jiao–Mukherjee–Weissman'16), L_1 distance estimation (Jiao–H.–Weissman'17)

Optimal Learning of Patterns from Discrete Samples								
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation					

Past Insights

- Bias dominates in functional estimation
- Bias corresponds to polynomial approximation error
- Need to use the best polynomial approximation where the functional is non-smooth
- Plug-in approach is strictly sub-optimal

Optimal Learning of Patterns from Discrete Samples							
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation				

Main Results

Let $\hat{P}^* = (\hat{p}_1^*, \cdots, \hat{p}_S^*)$ be our optimal estimator for unlabeled distribution learning.

Optimal Learning of Patterns from Discrete Samples								
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation					

Main Results

Let $\hat{P}^* = (\hat{p}_1^*, \cdots, \hat{p}_S^*)$ be our optimal estimator for unlabeled distribution learning.

Theorem (H.-Jiao-Weissman'17)

For the Shannon entropy H(P), the power sum function $F_{\alpha}(P)$ with $\alpha \in (0,1)$, and the support size function S(P), the plug-in approach $F(\hat{P}^*)$ attains the optimal sample complexity (with $F = H, F_{\alpha}, S$ respectively).

Note that for the support size function S(P), when forming \hat{P}^* we should require that $\mu_Q((0, \frac{1}{S})) = 0$ in our LP.

Optimal Learning of Patterns from Discrete Samples								
Problem Setup	Construction of Optimal Estimator 0000000 000000000000	Lower Bound	Applications in Functional Estimation					

Main Results

Let $\hat{P}^* = (\hat{p}_1^*, \cdots, \hat{p}_S^*)$ be our optimal estimator for unlabeled distribution learning.

Theorem (H.-Jiao-Weissman'17)

For the Shannon entropy H(P), the power sum function $F_{\alpha}(P)$ with $\alpha \in (0,1)$, and the support size function S(P), the plug-in approach $F(\hat{P}^*)$ attains the optimal sample complexity (with $F = H, F_{\alpha}, S$ respectively).

Note that for the support size function S(P), when forming \hat{P}^* we should require that $\mu_Q((0, \frac{1}{S})) = 0$ in our LP.

Plug-in becomes optimal!

Optimal Learning of Patterns from Discrete Samples	Optimal	Learning	of	Patterns	from	Discrete	Samples
--	---------	----------	----	----------	------	----------	---------

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

Implicit Polynomial Approximation

Why New Plug-in Estimator Works Suppose all $p_i \in [0, \frac{\ln n}{n}]$. We have $\mathbb{E} \sum_{i=1}^{S} (\hat{p}_i^*)^k \approx \sum_{i=1}^{S} p_i^k$ for $k = 0, 1, \dots, K$ by construction, and thus

$$\mathbb{E}\sum_{i=1}^{S} f(\hat{p}_{i}^{*}) - f(p_{i}) \approx \inf_{\deg P \leq K} \mathbb{E}\sum_{i=1}^{S} (f(\hat{p}_{i}^{*}) - P(\hat{p}_{i}^{*})) - (f(p_{i}) - P(p_{i}))$$

yields to polynomial approximation

Optimal	Learning	of	Patterns	from	Discrete	Samples
---------	----------	----	----------	------	----------	---------

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

Implicit Polynomial Approximation

Why New Plug-in Estimator Works Suppose all $p_i \in [0, \frac{\ln n}{n}]$. We have $\mathbb{E} \sum_{i=1}^{S} (\hat{p}_i^*)^k \approx \sum_{i=1}^{S} p_i^k$ for $k = 0, 1, \dots, K$ by construction, and thus

$$\mathbb{E}\sum_{i=1}^{S} f(\hat{p}_{i}^{*}) - f(p_{i}) \approx \inf_{\deg P \leq K} \mathbb{E}\sum_{i=1}^{S} (f(\hat{p}_{i}^{*}) - P(\hat{p}_{i}^{*})) - (f(p_{i}) - P(p_{i}))$$

yields to polynomial approximation

Properties

Implicit polynomial approximation: we did not construct any explicit polynomial in our estimator

Optimal Learning of Patterns from Discrete Samples

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

Implicit Polynomial Approximation

Why New Plug-in Estimator Works Suppose all $p_i \in [0, \frac{\ln n}{n}]$. We have $\mathbb{E} \sum_{i=1}^{S} (\hat{p}_i^*)^k \approx \sum_{i=1}^{S} p_i^k$ for $k = 0, 1, \dots, K$ by construction, and thus

$$\mathbb{E}\sum_{i=1}^{S} f(\hat{p}_{i}^{*}) - f(p_{i}) \approx \inf_{\deg P \leq K} \mathbb{E}\sum_{i=1}^{S} (f(\hat{p}_{i}^{*}) - P(\hat{p}_{i}^{*})) - (f(p_{i}) - P(p_{i}))$$

yields to polynomial approximation

Properties

- Implicit polynomial approximation: we did not construct any explicit polynomial in our estimator
- Universal estimation: a single estimator works for multiple functionals

Optimal	Learning	of	Patterns	from	Discrete	Samples
---------	----------	----	----------	------	----------	---------

Problem Setup Construction of Optimal Estimator Lower Bound Applications in Functional Estimation

Implicit Polynomial Approximation

Why New Plug-in Estimator Works Suppose all $p_i \in [0, \frac{\ln n}{n}]$. We have $\mathbb{E} \sum_{i=1}^{S} (\hat{p}_i^*)^k \approx \sum_{i=1}^{S} p_i^k$ for $k = 0, 1, \dots, K$ by construction, and thus

$$\mathbb{E}\sum_{i=1}^{S} f(\hat{p}_{i}^{*}) - f(p_{i}) \approx \inf_{\deg P \leq K} \mathbb{E}\sum_{i=1}^{S} (f(\hat{p}_{i}^{*}) - P(\hat{p}_{i}^{*})) - (f(p_{i}) - P(p_{i}))$$

yields to polynomial approximation

Properties

- Implicit polynomial approximation: we did not construct any explicit polynomial in our estimator
- Universal estimation: a single estimator works for multiple functionals
- Too good to be true!?

Optimal Le	arning of	Patterns	from	Discrete	Samples
------------	-----------	----------	------	----------	---------

Problem Setup

Construction of Optimal Estimator

Lower Bound

Applications in Functional Estimation

Open Questions

- ▶ How "universal" is our estimator for general functionals?
- ► Can our estimator be applied to 2D functionals, e.g., the ℓ₁ distance ||P Q||₁ and the KL divergence D(P||Q)?
- Why are polynomials so special in the unlabeled distribution learning problem? Can we match other symmetric functionals instead of moments?

Optimal Learning of Patterns from Discrete Samples								
Problem Setup	Construction of Optimal Estimator	Lower Bound	Applications in Functional Estimation					

Concluding Remarks

- ► It requires $n \gg \frac{S}{\ln S}$ samples for unlabeled distribution learning, while $n \gg S$ samples are required for the labeled one
- ► The natural estimator (MLE) is strictly suboptimal
- Beautiful duality
 - moment matching in both upper and lower bounds
 - Wasserstein distance argument in both upper and lower bounds
- The plug-in approach of the previous estimator is universal for functional estimation