Minimax Rate-optimal Estimation of KL Divergence between Discrete Distributions

Yanjun Han (Stanford EE)

Joint work with:

Jiantao Jiao Stanford EE

Tsachy Weissman Stanford EE

November 1, 2016

Problem: estimation of information divergence

Given jointly independent samples $X_1, \dots, X_m \sim P, Y_1, \dots, Y_n \sim Q$, we would like to estimate

$$\|P - Q\|_1 = \sum_{i=1}^{S} |p_i - q_i|$$

$$D(P\|Q) = \begin{cases} \sum_{i=1}^{S} p_i \ln \frac{p_i}{q_i} & \text{if } P \ll Q, \\ +\infty & \text{otherwise.} \end{cases}$$

where

- S is the unknown support size
- $\frac{p_i}{q_i} \leq u(S)$ is the *unknown* likelihood-ratio bound in the latter case

General problem: estimation of functionals

Given i.i.d. samples $X_1, \dots, X_n \sim P$, we would like to estimate a one-dimensional functional $F(P) \in \mathbb{R}$:

• Parametric case: $P = (p_1, \dots, p_S)$ is discrete, and

$$F(P) = \sum_{i=1}^{S} I(p_i)$$

High dimensional: $S \gtrsim n$

• Nonparametric case: P is continuous with density f, and

$$F(P) = \int I(f(x))dx$$

Parametric case: when the functional is smooth...

When $I(\cdot)$ is everywhere differentiable...

Hájek-Le Cam Theory

The plug-in approach $F(P_n)$ is asymptotically efficient, where P_n is the empirical distribution

Nonparametric case: when the functional is smooth...

When $I(\cdot)$ is four times differentiable with bounded $I^{(4)}$, Taylor expansion yields

$$\int I(f(x))dx = \int \left[I(\hat{f}) + I^{(1)}(\hat{f})(f - \hat{f}) + \frac{1}{2}I^{(2)}(\hat{f})(f - \hat{f})^2 + \frac{1}{6}I^{(3)}(\hat{f})(f - \hat{f})^3 + O((f - \hat{f})^4) \right] dx$$

where \hat{f} is a "good" estimator of f (e.g., a kernel estimate)

- Key observation: suffice to deal with linear (see, e.g., Nemirovski'00), quadratic (Bickel and Ritov'88, Birge and Massart'95) and cubic terms (Kerkyacharian and Picard'96) separately.
- Require bias reduction

What if $I(\cdot)$ is non-smooth?

Bias dominates when estimating non-smooth functionals:

Theorem (Entropy, Jiao, Venkat, H., Weissman'15)

For $X_1, \dots, X_n \sim P = (p_1, \dots, p_S)$ and $H(P) = \sum_{i=1}^S -p_i \ln p_i$, if $n \gtrsim S$, the plug-in estimator satisfies

$$\sup_{P \in \mathcal{M}_S} \mathbb{E}_P(H(P_n) - H(P))^2 \asymp \underbrace{\frac{S^2}{n^2}}_{squared \ bias} + \underbrace{\frac{(\ln S)^2}{n}}_{variance}$$

What if $I(\cdot)$ is non-smooth?

Bias dominates when estimating non-smooth functionals:

Theorem (Entropy, Jiao, Venkat, H., Weissman'15)

For $X_1, \dots, X_n \sim P = (p_1, \dots, p_S)$ and $H(P) = \sum_{i=1}^S -p_i \ln p_i$, if $n \gtrsim S$, the plug-in estimator satisfies

$$\sup_{P \in \mathcal{M}_S} \mathbb{E}_P(H(P_n) - H(P))^2 \asymp \underbrace{\frac{S^2}{n^2}}_{squared \ bias} + \underbrace{\frac{(\ln S)^2}{n}}_{variance}$$

Theorem (Entropy, Jiao, Venkat, H., Weissman'15, Wu and Yang'15)

For
$$X_1, \dots, X_n \sim P = (p_1, \dots, p_S)$$
 and $H(P) = \sum_{i=1}^S -p_i \ln p_i$, if $n \geq \frac{S}{\log S}$,

$$\inf_{\hat{H}} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P(\hat{H} - H(P))^2 \asymp \underbrace{\frac{S^2}{(n \ln n)^2}}_{squared \ bias} + \underbrace{\frac{(\ln S)^2}{n}}_{variance}$$

Effective sample size enlargement

 In estimating functionals of a single distribution P, we have (Jiao, Venkat, H., Weissman'14, Wu and Yang'14, Jiao, H., Weissman'15)

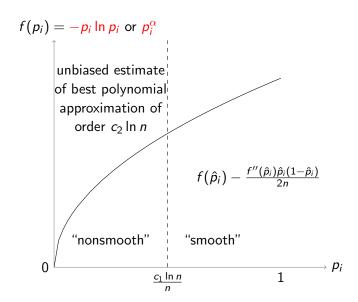
	Minimax L_2 rate	L_2 rate of MLE
$H(P) = \sum_{i=1}^{S} -p_i \ln p_i$	$\frac{S^2}{(n \ln n)^2} + \frac{\ln^2 S}{n}$	$\frac{S^2}{n^2} + \frac{\ln^2 S}{n}$
$F_{\alpha}(P) = \sum_{i=1}^{S} p_i^{\alpha}, 0 < \alpha < 1/2$	$\frac{S^2}{(n \ln n)^{2\alpha}}$	$\frac{S^2}{n^{2\alpha}}$
$F_{\alpha}(P) = \sum_{i=1}^{S} p_i^{\alpha}, 1/2 \le \alpha < 1$	$\frac{S^2}{(n \ln n)^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$	$\frac{S^2}{n^{2\alpha}} + \frac{S^{2-2\alpha}}{n}$
$F_{\alpha}(P) = \sum_{i=1}^{S} p_i^{\alpha}, 1 < \alpha < 3/2$	$\frac{1}{(n \ln n)^{2(\alpha-1)}}$	$\frac{1}{n^{2(\alpha-1)}}$

Effective Sample Size Enlargement

Minimax rate-optimal with n samples \iff Plug-in with $n \ln n$ samples

Similar results also hold for Rényi entropy estimation (Acharya, Orlitsky, Suresh, Tyagi'14), Hellinger divergence and χ^2 -divergence estimation (H., Jiao, Weissman'16), L_r norm estimation under Gaussian white noise model (H., Jiao, Mukherjee, Weissman'16)

Optimal estimator for $\sum_{i=1}^{S} f(p_i)$



The general recipe

For a statistical model $(P_{\theta} : \theta \in \Theta)$, consider estimating the functional $F(\theta)$ which is non-analytic at $\Theta_0 \subset \Theta$, and $\hat{\theta}_n$ is a natural estimator for θ .

- **① Classify the Regime**: Compute $\hat{\theta}_n$, and declare that we are in the "non-smooth" regime if $\hat{\theta}_n$ is "close" enough to Θ_0 . Otherwise declare we are in the "smooth" regime;
- ② Estimate:
 - If $\hat{\theta}_n$ falls in the "smooth" regime, use an estimator "similar" to $F(\hat{\theta}_n)$ to estimate $F(\theta)$;
 - If $\hat{\theta}_n$ falls in the "non-smooth" regime, replace the functional $F(\theta)$ in the "non-smooth" regime by an approximation $F_{\rm appr}(\theta)$ (another functional) which can be estimated without bias, then apply an unbiased estimator for the functional $F_{\rm appr}(\theta)$.

New challenges

- **1** Existing work: $I(\cdot)$ is only non-analytic at zero
- ② L_1 distance and KL divergence:

$$I_1(p,q) = |p-q|, \qquad I_2(p,q) = p \ln \frac{p}{q}$$

- Bivariate function
- Non-analytic on a segment $p=q\in[0,1]$ or $q=0,p\in[0,1]$
- $\Theta \neq \hat{\Theta}$ for KL divergence: $\hat{p} > u(S)\hat{q}$ may occur even if $p \leq u(S)q$

Questions

- How to determine the "non-smooth" regime?
- In the "smooth" regime, what does "'similar' to $F(\hat{\theta}_n)$ " mean precisely?
- In the "non-smooth" regime, what approximation (including which kind, which degree, and on which region) should be employed?
- What if the domain of $\hat{\theta}_n$ is different from (usually larger than) that of θ ?

Confidence set

Definition (Confidence set)

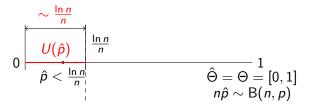
Consider a statistical model $(P_{\theta})_{\theta \in \Theta}$ and an estimator $\hat{\theta} \in \hat{\Theta}$ of θ , where $\Theta \subset \hat{\Theta}$. A confidence set of significance level $r \in [0,1]$, is a collection of sets $\{U(x)\}_{x \in \hat{\Theta}}$, where $U(x) \subset \Theta$ for any $x \in \hat{\Theta}$, and

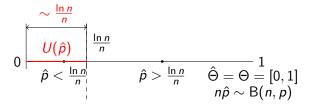
$$\sup_{\theta \in \Theta} \mathbb{P}_{\theta}(\theta \notin U(\hat{\theta})) \leq r.$$

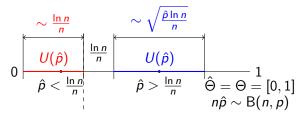
- Confidence set always exists, but we seek for a small one
- Choice of significance: $r \approx n^{-A}$

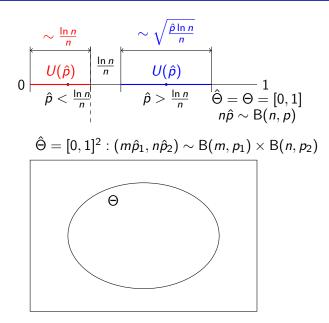
0
$$\hat{\Theta} = \Theta = [0,1] \ n\hat{p} \sim \mathsf{B}(n,p)$$

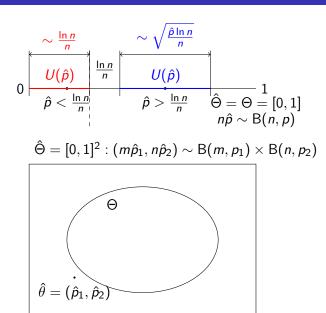


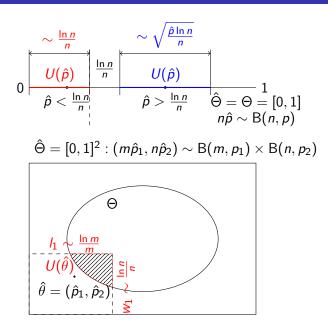


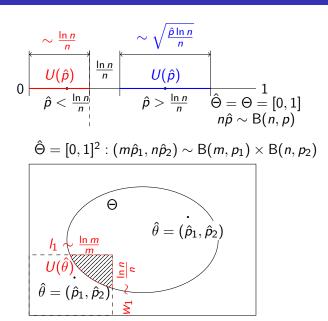


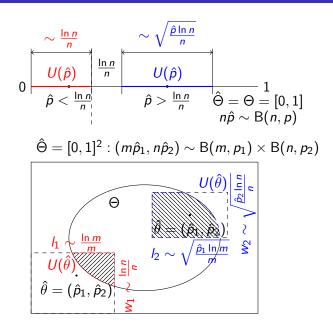




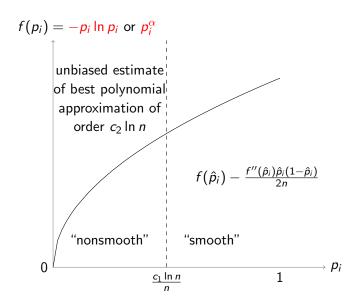




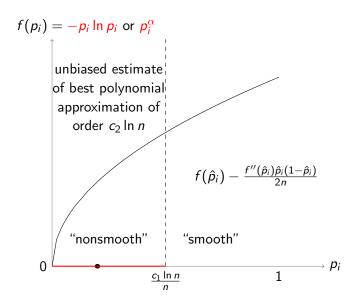




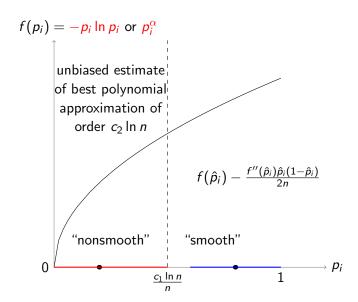
The role of confidence set: entropy estimation



The role of confidence set: entropy estimation



The role of confidence set: entropy estimation

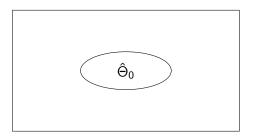


Plug-in works well when $\hat{\theta}_n \notin \hat{\Theta}_0$ (the non-analytic region of $I(\cdot)$)

The criteria

Given a suitable r-confidence set $U(\cdot)$, we declare that θ falls into the "non-smooth" regime Θ_{ns} if

$$\theta \in \cup_{\hat{\theta} \in \hat{\Theta}_0} U(\hat{\theta})$$

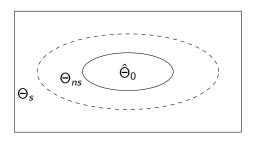


Plug-in works well when $\hat{\theta}_n \notin \hat{\Theta}_0$ (the non-analytic region of $I(\cdot)$)

The criteria

Given a suitable r-confidence set $U(\cdot)$, we declare that θ falls into the "non-smooth" regime Θ_{ns} if

$$\theta \in \cup_{\hat{\theta} \in \hat{\Theta}_0} U(\hat{\theta})$$

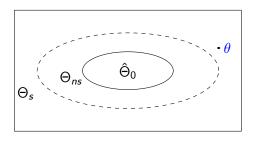


Plug-in works well when $\hat{\theta}_n \notin \hat{\Theta}_0$ (the non-analytic region of $I(\cdot)$)

The criteria

Given a suitable r-confidence set $U(\cdot)$, we declare that θ falls into the "non-smooth" regime Θ_{ns} if

$$\theta \in \cup_{\hat{\theta} \in \hat{\Theta}_0} U(\hat{\theta})$$

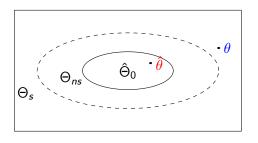


Plug-in works well when $\hat{\theta}_n \notin \hat{\Theta}_0$ (the non-analytic region of $I(\cdot)$)

The criteria

Given a suitable r-confidence set $U(\cdot)$, we declare that θ falls into the "non-smooth" regime Θ_{ns} if

$$\theta \in \cup_{\hat{\theta} \in \hat{\Theta}_0} U(\hat{\theta})$$

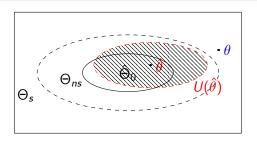


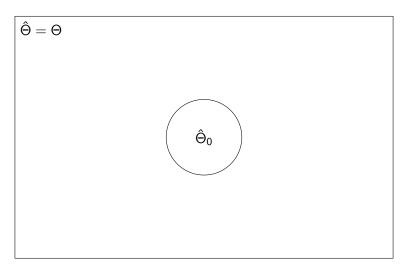
Plug-in works well when $\hat{\theta}_n \notin \hat{\Theta}_0$ (the non-analytic region of $I(\cdot)$)

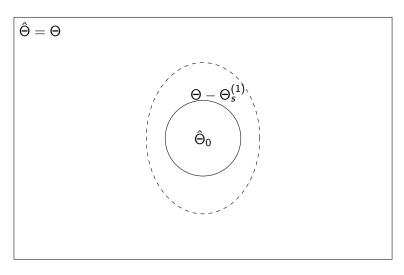
The criteria

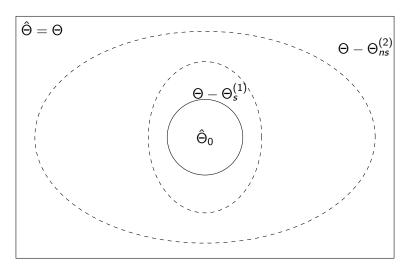
Given a suitable r-confidence set $U(\cdot)$, we declare that θ falls into the "non-smooth" regime Θ_{ns} if

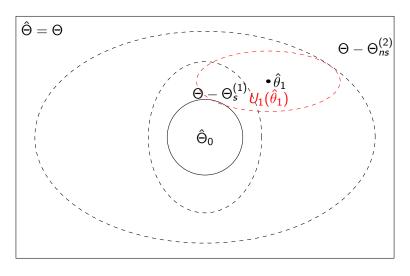
$$\theta \in \cup_{\hat{\theta} \in \hat{\Theta}_0} U(\hat{\theta})$$





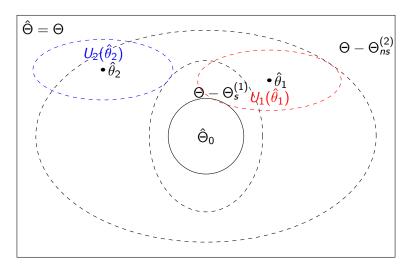






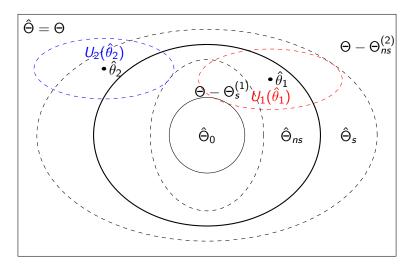
There is something more...

However, we cannot make decisions based on unknown $\theta!$



There is something more...

However, we cannot make decisions based on unknown θ !



Different regimes: approximation and "plug-in"

"Non-smooth" regime: find an approximate functional $I_{appr}(\theta) \approx I(\theta)$:

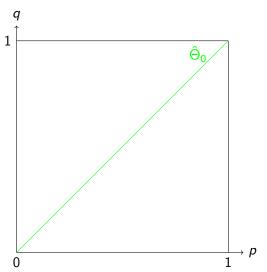
- Type: polynomial (admits unbiased estimators)
- Region: confidence set $U(\hat{\theta}_n)$
- Degree: balance bias and variance

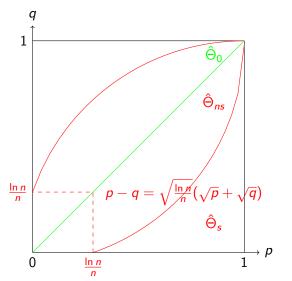
Different regimes: approximation and "plug-in"

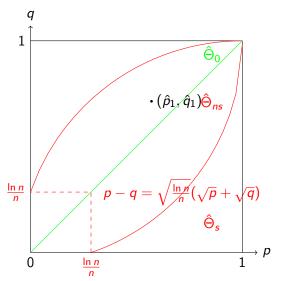
"Non-smooth" regime: find an approximate functional $I_{appr}(\theta) \approx I(\theta)$:

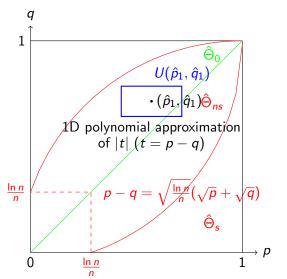
- Type: polynomial (admits unbiased estimators)
- Region: confidence set $U(\hat{\theta}_n)$
- Degree: balance bias and variance

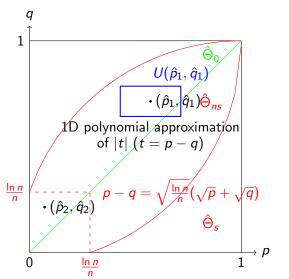
"Smooth" regime: Taylor-based bias-correction up to any order



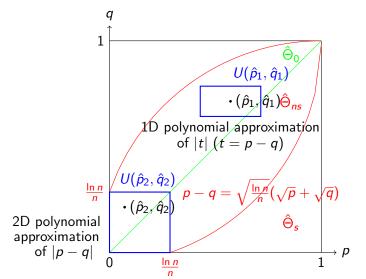




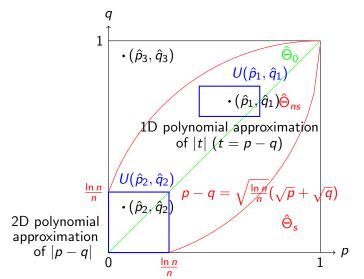




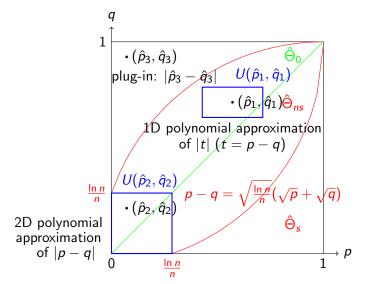
$$I(x,y) = |x-y|$$
, non-analytic regime $\hat{\Theta}_0 = \{(x,y) : x = y \in [0,1]\}$



$$I(x,y) = |x-y|$$
, non-analytic regime $\hat{\Theta}_0 = \{(x,y) : x = y \in [0,1]\}$



$$I(x,y) = |x-y|$$
, non-analytic regime $\hat{\Theta}_0 = \{(x,y) : x = y \in [0,1]\}$



Performance analysis

Theorem (Optimal estimator for ℓ_1 distance, Jiao, H., Weissman'16)

The minimax risk in estimating ℓ_1 distance is given by

$$\inf_{\hat{\mathcal{T}}} \sup_{P,Q \in \mathcal{M}_{\mathcal{S}}} \mathbb{E}_{P,Q} (\hat{\mathcal{T}} - \|P - Q\|_1)^2 \asymp \frac{\mathcal{S}}{n \ln n}$$

and the previous estimator achieves the upper bound without the knowledge of S.

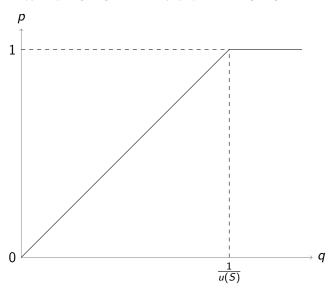
Effective sample size enlargement:

Theorem (Empirical estimator for ℓ_1 distance, Jiao, H., Weissman'16)

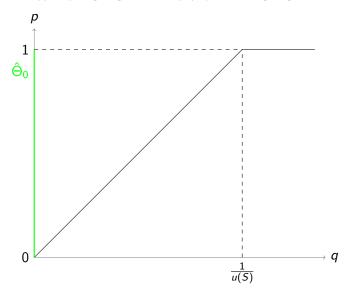
The maximum risk of the empirical estimator is given by

$$\sup_{P,Q\in\mathcal{M}_{\mathcal{S}}}\mathbb{E}_{P,Q}(\|P_n-Q_n\|_1-\|P-Q\|_1)^2\asymp\frac{\mathcal{S}}{n}$$

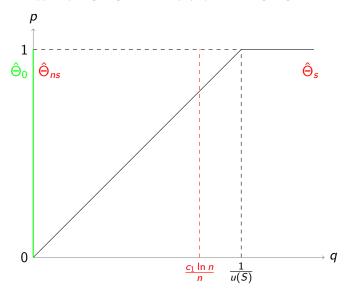
$$I(p,q) = p \ln q, \ \Theta = \{(p,q) \in [0,1]^2 : p \le u(S)q\} \subset \hat{\Theta} = [0,1]^2$$



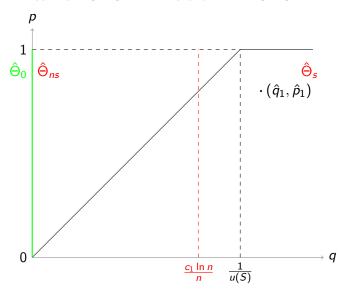
$$I(p,q) = p \ln q, \ \Theta = \{(p,q) \in [0,1]^2 : p \le u(S)q\} \subset \hat{\Theta} = [0,1]^2$$



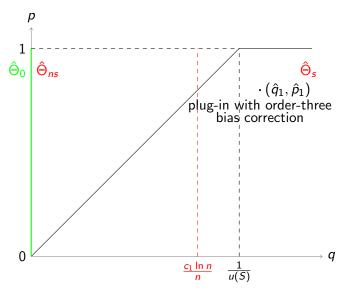
$$I(p,q) = p \ln q, \ \Theta = \{(p,q) \in [0,1]^2 : p \le u(S)q\} \subset \hat{\Theta} = [0,1]^2$$



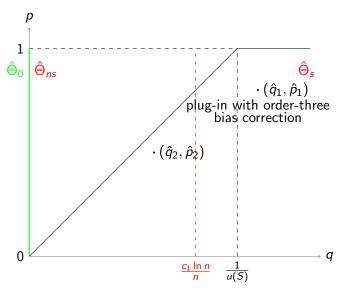
$$I(p,q) = p \ln q, \ \Theta = \{(p,q) \in [0,1]^2 : p \le u(S)q\} \subset \hat{\Theta} = [0,1]^2$$



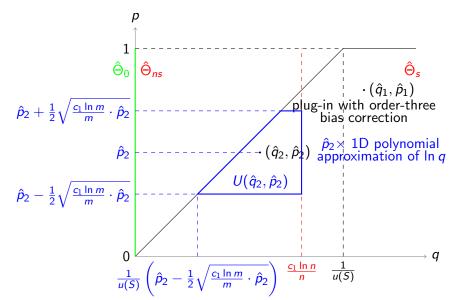
$$I(p,q) = p \ln q, \ \Theta = \{(p,q) \in [0,1]^2 : p \le u(S)q\} \subset \hat{\Theta} = [0,1]^2$$



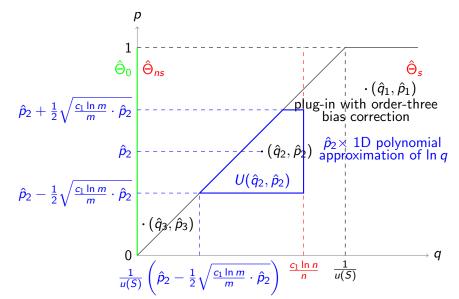
$$I(p,q) = p \ln q, \ \Theta = \{(p,q) \in [0,1]^2 : p \le u(S)q\} \subset \hat{\Theta} = [0,1]^2$$



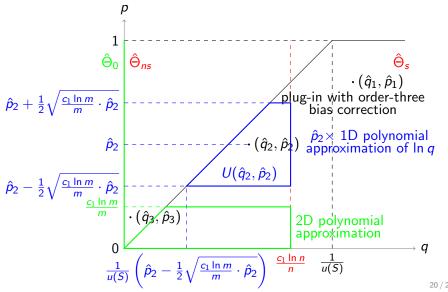
$$I(p,q) = p \ln q, \ \Theta = \{(p,q) \in [0,1]^2 : p \le u(S)q\} \subset \hat{\Theta} = [0,1]^2$$



$$I(p,q) = p \ln q, \ \Theta = \{(p,q) \in [0,1]^2 : p \le u(S)q\} \subset \hat{\Theta} = [0,1]^2$$



$$I(p,q) = p \ln q, \ \Theta = \{(p,q) \in [0,1]^2 : p \le u(S)q\} \subset \hat{\Theta} = [0,1]^2$$



Some remarks

Additional remarks:

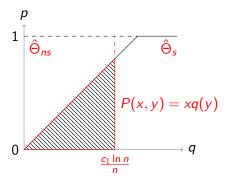
 Best polynomial approximation over general polytopes have not been solved until very recently!

Some remarks

Additional remarks:

- Best polynomial approximation over general polytopes have not been solved until very recently!
- Adaptation: use a single polynomial P(x, y) to approximate $x \ln y$ whenever $y \le \frac{c_1 \ln n}{n}$, where P(x, y) = xq(y), and

$$yq(y) + C = \arg\min_{p \in \mathsf{Poly}_K} \max_{z \in [0, \frac{c_1 \ln n}{a}]} |z \ln z - p(z)|$$



Performance analysis

Theorem (Optimal estimator for KL divergence)

If $m \gtrsim \frac{S}{\ln S}$, $n \gtrsim \frac{Su(S)}{\ln S}$ and $u(S) \gtrsim (\ln S)^2$, we have

$$\inf_{\hat{T}} \sup_{P,Q \in \mathcal{M}_{S,u(S)}} \mathbb{E}_{P,Q} (\hat{T} - D(P||Q))^2 \approx (\frac{S}{m \ln m} + \frac{Su(S)}{n \ln n})^2 + \frac{(\ln u(S))^2}{m} + \frac{u(S)}{n}$$

and the previous estimator attains the upper bound without the knowledge of S nor u(S).

Effective sample size enlargement:

Theorem (Empirical estimator for KL divergence)

The empirical estimator satisfies

$$\sup_{P,Q \in \mathcal{M}_{S,u(S)}} \mathbb{E}_{P,Q}(D(P_m \| Q_n') - D(P \| Q))^2 \approx (\frac{S}{m} + \frac{Su(S)}{n})^2 + \frac{(\ln u(S))^2}{m} + \frac{u(S)}{n}$$

Summary: the refined general recipe

Let $\{U(x)\}_{x\in\hat{\Theta}}$ be a satisfactory confidence set.

Classify the Regime:

- For the true parameter θ , declare that θ is in the "non-smooth" regime if θ is "close" enough to $\hat{\Theta}_0$ in terms of confidence set. Otherwise declare θ is in the "smooth" regime;
- Compute $\hat{\theta}_n$, and declare that we are in the "non-smooth" regime if the confidence set of $\hat{\theta}_n$ falls into the "non-smooth" regime of θ . Otherwise declare we are in the "smooth" regime;

Estimate:

- If $\hat{\theta}_n$ falls in the "smooth" regime, use an estimator "similar" to $F(\hat{\theta}_n)$ to estimate $F(\theta)$;
- If $\hat{\theta}_n$ falls in the "non-smooth" regime, replace the functional $F(\theta)$ in the "non-smooth" regime by an approximation $F_{\rm appr}(\theta)$ (another functional which well approximates $F(\theta)$ on $U(\hat{\theta}_n)$) which can be estimated without bias, then apply an unbiased estimator for the functional $F_{\rm appr}(\theta)$.

Extensions

Minimax order-optimal estimator and effective sample size enlargement for more non-smooth functionals:

- Other divergences (H., Jiao, Weissman'16):
 - Hellinger distance: $H^2(P,Q) = \sum_{i=1}^{S} (\sqrt{p_i} \sqrt{q_i})^2$
 - Chi-squared divergence: $\chi^2(P,Q) = \sum_{i=1}^{S} (p_i q_i)^2/q_i$

Extensions

Minimax order-optimal estimator and effective sample size enlargement for more non-smooth functionals:

- Other divergences (H., Jiao, Weissman'16):
 - Hellinger distance: $H^2(P,Q) = \sum_{i=1}^{S} (\sqrt{p_i} \sqrt{q_i})^2$
 - Chi-squared divergence: $\chi^2(P,Q) = \sum_{i=1}^{S} (p_i q_i)^2/q_i$
- Non-smooth nonparametric functionals (H., Jiao, Mukherjee, Weissman'16):
 - General L_r norm: $I(f) = ||f||_r = \left(\int_0^1 |f(t)|^r dt\right)^{\frac{1}{r}}$

Extensions

Minimax order-optimal estimator and effective sample size enlargement for more non-smooth functionals:

- Other divergences (H., Jiao, Weissman'16):
 - Hellinger distance: $H^2(P,Q) = \sum_{i=1}^{S} (\sqrt{p_i} \sqrt{q_i})^2$
 - Chi-squared divergence: $\chi^2(P,Q) = \sum_{i=1}^{S} (p_i q_i)^2/q_i$
- Non-smooth nonparametric functionals (H., Jiao, Mukherjee, Weissman'16):
 - General L_r norm: $I(f) = \|f\|_r = \left(\int_0^1 |f(t)|^r dt\right)^{\frac{1}{r}}$

Thank you! Email: yjhan@stanford.edu

Estimating ℓ_1 norm of Gaussian mean

Theorem (ℓ_1 norm of Gaussian mean, Cai and Low'11)

For $y_i \sim \mathcal{N}(\theta_i, \sigma^2)$, $i = 1, \dots, n$ and $F(\theta) = n^{-1} \sum_{i=1}^{n} |\theta_i|$, the plug-in estimator satisfies

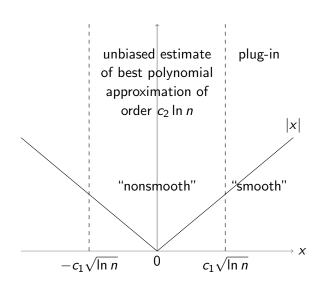
$$\sup_{\boldsymbol{\theta} \in \mathbb{R}^n} \mathbb{E}_{\boldsymbol{\theta}} \left(F(\boldsymbol{y}) - F(\boldsymbol{\theta}) \right)^2 \asymp \underbrace{\sigma^2}_{squared \ bias} + \underbrace{\frac{\sigma^2}{n}}_{variance}$$

Theorem (ℓ_1 norm of Gaussian mean, Cai and Low'11)

For
$$y_i \sim \mathcal{N}(\theta_i, \sigma^2)$$
, $i = 1, \dots, n$ and $F(\theta) = n^{-1} \sum_{i=1}^{n} |\theta_i|$,

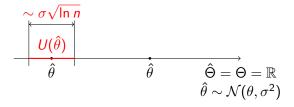
$$\inf_{\hat{F}} \sup_{\theta \in \mathbb{R}^n} \mathbb{E}_{\theta} \left(\hat{F} - F(\theta) \right)^2 \asymp \underbrace{\frac{\sigma^2}{\ln n}}_{squared \ bias}$$

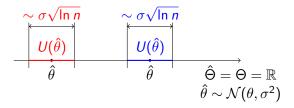
Optimal estimator for ℓ_1 norm



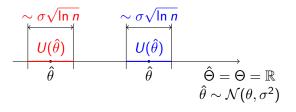
$$\hat{\Theta} = \Theta = \mathbb{R} \ \hat{ heta} \sim \mathcal{N}(heta, \sigma^2)$$

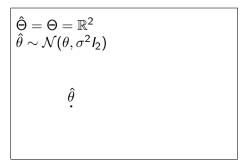


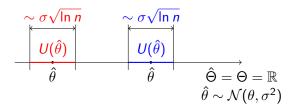


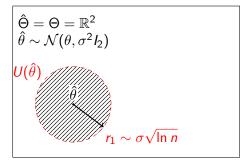


|Confidence set in Gaussian model: $r symp n^{-A}$

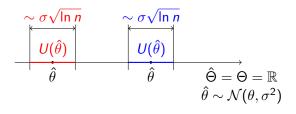


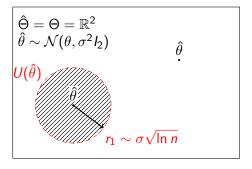


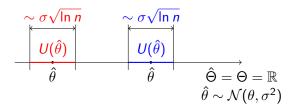


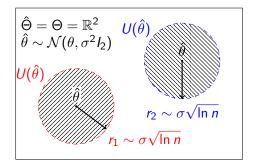


|Confidence set in Gaussian model: $r symp n^{-A}$

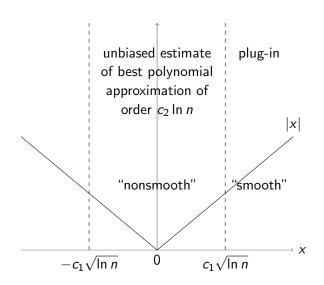




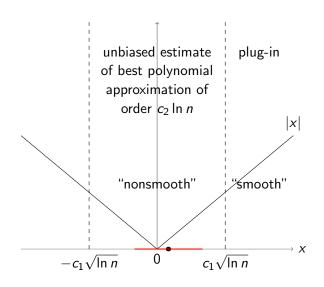




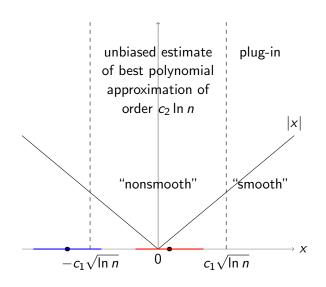
The role of confidence set: ℓ_1 norm estimation



The role of confidence set: ℓ_1 norm estimation



The role of confidence set: ℓ_1 norm estimation



"Smooth" regime: bias corrected "plug-in"

Bias correction based on Taylor expansion:

$$\mathbb{E}I(\theta) \approx \mathbb{E}\sum_{k=0}^{r} \frac{I^{(k)}(\hat{\theta}_n)}{k!} (\theta - \hat{\theta}_n)^k$$

Can we find an unbiased estimator for the RHS?

- Solution: sample splitting to obtain independent samples $\hat{\theta}_n^{(1)}, \hat{\theta}_n^{(2)}$
- Use the following estimator:

$$T(\hat{\theta}_n) = \sum_{k=0}^r \frac{I^{(k)}(\hat{\theta}_n^{(1)})}{k!} \sum_{j=0}^k \binom{k}{j} S_j(\hat{\theta}_n^{(2)}) (-\hat{\theta}_n^{(1)})^{k-j}$$

where $S_j(\cdot)$ is an unbiased estimator of θ^j , i.e., $\mathbb{E}S_j(\hat{\theta}_n^{(2)}) = \theta^j$.

Some remarks on ℓ_1 distance estimation

Additional remarks:

- For large (\hat{p}, \hat{q}) in the non-smooth regime, approximating over the whole stripe fails to give the optimal risk
- For small (\hat{p}, \hat{q}) in the non-smooth regime, best 2D polynomial approximation is not unique and not all can work:
 - Any 1D polynomial (i.e., P(x, y) = p(x y)) cannot work!
 - We use the decomposition

$$|x - y| = (\sqrt{x} + \sqrt{y})|\sqrt{x} - \sqrt{y}|$$

and approximate two terms separately.

- Still open in general.
- Valiant and Valiant'11 obtains the correct sample complexity $n \gg \frac{S}{\ln S}$, but suboptimal in the convergence rate