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Problem: estimation of information divergence

Given jointly independent samples X1, -+ , X;m ~ P, Y1,---, Y, ~ Q, we
would like to estimate

s
IP = Qll=>_Ipi — gil

i=1
S A
D(P||Q) = > 1piln % if P<Q,
+00 otherwise.
where
@ S is the unknown support size

o £ < u(S) is the unknown likelihood-ratio bound in the latter case
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General problem: estimation of functionals

Given i.i.d. samples Xi, -+, X, ~ P, we would like to estimate a
one-dimensional functional F(P) € R:
e Parametric case: P = (p1,- -, ps) is discrete, and
S
F(P)=>_1(pi)

High dimensional: S 2 n

@ Nonparametric case: P is continuous with density f, and

F(P) = / 1((x))dx



Parametric case: when the functional is smooth...

When /(+) is everywhere differentiable...

Hajek—Le Cam Theory

The plug-in approach F(P,) is asymptotically efficient, where P, is the
empirical distribution




Nonparametric case: when the functional is smooth...

When I(-) is four times differentiable with bounded /(*), Taylor expansion
yields

/I(f(x))dx = / [/(f) + IO = F)+ %1(2)(1?)(1‘ — f)?

IO — PP+ O((F ~ 7)) ox

where f is a “good” estimator of f (e.g., a kernel estimate)
@ Key observation: suffice to deal with linear (see, e.g., Nemirovski'00),
quadratic (Bickel and Ritov'88, Birge and Massart'95) and cubic
terms (Kerkyacharian and Picard'96) separately.

@ Require bias reduction



What if /(-) is non-smooth?

Bias dominates when estimating non-smooth functionals:

Theorem (Entropy, Jiao, Venkat, H., Weissman'15)

FOle,"' aXn ~P= (pla"' ,PS) and H('D) = ;'5:1 _PilnPi, lfnZ S,
the plug-in estimator satisfies

sup Ep(H(P,) — H(P))’ = =
PeMs

squared bias variance




What if /(-) is non-smooth?

Bias dominates when estimating non-smooth functionals:

Theorem (Entropy, Jiao, Venkat, H., Weissman'15)

For Xy, -+, Xo~ P =(p1,---,ps) and H(P) = Y7, —piInpi, ifn 2 S,
the plug-in estimator satisfies

sup Ep(H(P,) — H(P))? = S? N (InS)?
PeMs

squared bias variance

Theorem (Entropy, Jiao, Venkat, H., Weissman'15, Wu and Yang'15)

FOI‘X%,--- s Xn ~ P:(plv 7p5) and H(P) :Ziszl —pilnp;, if
n> S
~ InS”’

, ~ S? In S)>?

inf sup Ep(H — H(P))? < vl (In 5)

of s T
SN—— )
squared bias ~ Varance




Effective sample size enlargement

@ In estimating functionals of a single distribution P, we have (Jiao,
Venkat, H., Weissman'14, Wu and Yang'14, Jiao, H., Weissman'15)

Minimax L» rate | Lo rate of MLE
H(P) =7, —piln p; (nlnn)2+'” S 5y ’s
FoP) =371 P80 <a<1/2 (nlfw il
Fu(P) =37 P8 1/2<a <1 (nlfi)m UL R
Fo(P) = Zi:l Pl <a<3/2 (nlnn)% nz(i_n

Effective Sample Size Enlargement

Minimax rate-optimal with n samples <= Plug-in with nIn n samples

Similar results also hold for Rényi entropy estimation (Acharya,
Orlitsky, Suresh, Tyagi'14), Hellinger divergence and y-divergence
estimation (H., Jiao, Weissman'16), L, norm estimation under
Gaussian white noise model (H., Jiao, Mukherjee, Weissman'16)



Optimal estimator for ZiS:1 f(pi)

f(pi) = —pilnp; or pi*

unbiased estimate,
of best ponnomiaIi
approximation of !

order co Inn

fF(pi) — f”(ﬁi)g;’(l_ﬁi)

“nonsmooth” “smooth”

> Pi

cilnn 1
n



The general recipe

For a statistical model (Py : 6 € ©), consider estimating the functional
F(#) which is non-analytic at ©9 C ©, and 6, is a natural estimator for 6.

@ Classify the Regime: Compute 0, and declare that we are in the
“non-smooth” regime if é,, is “close” enough to ©g. Otherwise
declare we are in the “smooth” regime;

@ Estimate:

o If HA,, falls in the “smooth” regime, use an estimator “similar” to F(GA,,)
to estimate F(6);

o If B, falls in the “non-smooth” regime, replace the functional F(6) in
the “non-smooth” regime by an approximation Fpp(8) (another
functional) which can be estimated without bias, then apply an
unbiased estimator for the functional Fap(6).



New challenges

@ Existing work: /(+) is only non-analytic at zero
@ L; distance and KL divergence:

p
h(p.q) = lp—al, /2(P,q):P|na

e Bivariate function
o Non-analytic on a segment p=q € [0,1] or g =10,p €[0,1]
o © # O for KL divergence: p > u(S5)§ may occur even if p < u(S)q
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@ How to determine the “non-smooth” regime?

e In the “smooth” regime, what does “ ‘similar’ to F(0,)" mean
precisely?

@ In the “non-smooth” regime, what approximation (including which
kind, which degree, and on which region) should be employed?

o What if the domain of @, is different from (usually larger than) that
of 67

11 /24



Confidence set

Definition (Confidence set)

Consider a statistical model (Py)pco and an estimator 6 € 6 of 6, where
© C ©. A confidence set of significance level re [0,1], is a collection of
sets {U(x)}, g where U(x) C © for any x € ©, and

sup Py(6 ¢ U(B)) < r.
ISC]

o Confidence set always exists, but we seek for a small one

e Choice of significance: r =< n=#A
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Confidence set in Binomial model: r < min{m, n}

6=0=0,1]
np ~ B(n, p)
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Confidence set in Binomial model: r < min{m, n}

~ Inn ~ plnn
up) | U
p n p
0 _ 1
p < oo p>nhe  ©=0=10,1

np ~ B(n, p)



Confidence set in Binomial model: r < min{m, n}~*4
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The role of confidence set: entropy estimation

f(pi) = —pilnp; or p*

unbiased estimate,
of best ponnomiaIi
approximation of !

order co Inn
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“nonsmooth” “smooth”
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Determine the “non-smooth” regime

Plug-in works well when @, ¢ ©¢ (the non-analytic region of /(-))

The criteria

Given a suitable r-confidence set U(-), we declare that 6 falls into the
“non-smooth” regime ©; if

LS Uéeéo U(é)

and in the “smooth” regime ©g otherwise.
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There is something more...

However, we cannot make decisions based on unknown 8!

6=06
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Different regimes: approximation and “plug-in"

“Non-smooth” regime: find an approximate functional Lppr(6) ~ 1(6):
e Type: polynomial (admits unbiased estimators)

@ Region: confidence set U(0,)

@ Degree: balance bias and variance

17 /24



Different regimes: approximation and “plug-in"

“Non-smooth” regime: find an approximate functional Lppr(6) ~ 1(6):
e Type: polynomial (admits unbiased estimators)
e Region: confidence set U(f,)
@ Degree: balance bias and variance

“Smooth” regime: Taylor-based bias-correction up to any order
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Estimator of ¢; distance

I(x,y) = |x — y|, non-analytic regime &y = {(x,y) : x = y € [0,1]}
q
1
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Estimator of ¢; distance

I(x,y) = |x — y|, non-analytic regime &y = {(x,y) : x = y € [0,1]}

q
1 A
O
U(ﬁl’ 671
- (P1{01)0 s
polynomial approximation
of [t| (t=p—q)
U(p2, 42)
|
N +(9)
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Estimator of ¢; distance

I(x,y) = |x — y|, non-analytic regime &y = {(x,y) : x = y € [0,1]}
q
1

- (P3,43) O
U(p1, 41

. (ﬁyql)@)ns

polynomial approximation
of [t| (t=p—q)

n

_ * (P22
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Estimator of ¢; distance

I(x,y) = |x — y|, non-analytic regime &y = {(x,y) : x = y € [0,1]}
q
1

° (ﬁ37 63) @O
plug-in: |p3 — 43| U(p1,

- (P1{01)0 s
polynomial approximation
of |t| (t=p—q)

n N + \/a)
- (P22 ~
2D polynomial O,
approximation
of [p — g 0 - P
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Performance analysis

Theorem (Optimal estimator for ¢; distance, Jiao, H., Weissman'16)

The minimax risk in estimating {1 distance is given by

. S
inf sup Epo(T —||P—Q|1)? =
i Q(T = 1) Py

and the previous estimator achieves the upper bound without the
knowledge of S.

Effective sample size enlargement:

Theorem (Empirical estimator for ¢; distance, Jiao, H., Weissman'16)

The maximum risk of the empirical estimator is given by

S
sup  Ep o(||Pn— Qulls — [IP — Qll1)* =< =
P,QeMs n
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Estimator for KL divergence

I(p,q) = ping, © ={(p,q) € [0,1]*: p < u(S)q} C © = [0, 1]
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Estimator for KL divergence

I(p,q) = ping, © ={(p,q) € [0,1]*: p < u(S)q} C © = [0, 1]
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Estimator for KL divergence

I(p,q) = ping, © ={(p,q) € [0,1]*: p < u(S)q} C © = [0, 1]
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Estimator for KL divergence
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Estimator for KL divergence

I(p,q) = ping, © ={(p,q) € [0,1]*: p < u(S)q} C © = [0, 1]
p
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Some remarks

Additional remarks:
@ Best polynomial approximation over general polytopes have not been
solved until very recently!
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Some remarks

Additional remarks:
@ Best polynomial approximation over general polytopes have not been

solved until very recently!
e Adaptation: use a single polynomial P(x,y) to approximate xIny

whenever y < €1 \yhere P(x,y) = xq(y), and

n

yq(y) + C = arg min max |zInz — p(z)|
PePol zelo )
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Performance analysis

Theorem (Optimal estimator for KL divergence)

Ifm2 25, n2 SI':](? and u(S) 2 (InS)?, we have

: A S Inu(S))? S
nf sp Epo(T-D(PIQ)Y < (245U, (nUOIF, u(9)
T P,QeMs s mInm nlnn m n

and the previous estimator attains the upper bound without the knowledge
of S nor u(S).

v

Effective sample size enlargement:

Theorem (Empirical estimator for KL divergence)

The empirical estimator satisfies

u nu 2 u(S
sup  Ep o(D(Pn|@,)—-D(P|Q))* = ~ (2432 (5))2+(' (5))° , u(8)
P,QeMs s) m n m nJ




Summary: the refined general recipe

Let {U(x)},cq be a satisfactory confidence set.

@ Classify the Regime:

o For the true parameter 6, declare that 6 is in the “non-smooth” regime
if 0 is “close” enough to ©g in terms of confidence set. Otherwise
declare 8 is in the “smooth” regime;

o Compute 0,, and declare that we are in the “non-smooth” regime if
the confidence set of 0, falls into the “non-smooth” regime of 6.
Otherwise declare we are in the “smooth” regime;

@ Estimate:
o If @, falls in the “smooth” regime, use an estimator “similar” to F(f,)

to estimate F(0);

o If §, falls in the “non-smooth” regime, replace the functional F() in
the “non-smooth” regime by an approximation Fypp(8) (another
functional which well approximates F(6#) on U(f,)) which can be
estimated without bias, then apply an unbiased estimator for the

functional Fappr(6).
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Extensions

Minimax order-optimal estimator and effective sample size enlargement for
more non-smooth functionals:

@ Other divergences (H., Jiao, Weissman'16):

o Hellinger distance: H?(P, Q) —Z, 1( p, Vai)?
o Chi-squared divergence: *(P, Q) = Z 1(pi —qi)?/qi
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Extensions

Minimax order-optimal estimator and effective sample size enlargement for
more non-smooth functionals:
@ Other divergences (H., Jiao, Weissman'16):
o Hellinger distance: H?(P, Q) = Z,-Szl( pi — \/qi)?
o Chi-squared divergence: *(P, Q) = Zle(p,- —qi)?/q;

@ Non-smooth nonparametric functionals (H., Jiao, Mukherjee,
Weissman'16):

1

o General L, norm: I(f) = ||f||, = (fol |f(t)|’dt)?
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Extensions

Minimax order-optimal estimator and effective sample size enlargement for
more non-smooth functionals:
@ Other divergences (H., Jiao, Weissman'16):
o Hellinger distance: H?(P, Q) = Z,-Szl( pi — \/qi)?
o Chi-squared divergence: *(P, Q) = Z?Zl(p,- —qi)?/q;

@ Non-smooth nonparametric functionals (H., Jiao, Mukherjee,
Weissman'16):

1

o General L, norm: I(f) = ||f||, = (fol |f(t)|’dt)?

Thank you!
Email: yjhan@stanford.edu
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Estimating /1 norm of Gaussian mean

Theorem (¢; norm of Gaussian mean, Cai and Low'11)

For y; ~ N(0;,02),i =1,--- ,n and F(8) = n~! o 1@
estimator satisfies

, the plug-in

2
2 g
sup Bg (F(y) — F(0))* = 0% + o
ek squared bias =~~~
variance

Theorem (/1 norm of Gaussian mean, Cai and Low'11)
For yi ~ N(0;,02),i =1,--- ,n and F(8) = n=1 3", |6;

’

A 2 2
inf sup Eg (F - F(a)) =
F 9cRrn Jnn

squared bias

\
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Optimal estimator for /1 norm

! !

! !

. unbiased estimate | plug-in
i of best polynomial i

' approximation of !

l order czInn l

| 1 x|
| |

| |

: :

‘ “nonsmooth” ' “Smooth”
! !

! !

| |

| |

| |

—c1Vinn 0 caVinn
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A

Confidence set in Gaussian model: r < n—
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The role of confidence set: ¢; norm estimation

| |
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“Smooth” regime: bias corrected “plug-in”

Bias correction based on Taylor expansion:

Can we find an unbiased estimator for the RHS?
@ Solution: sample splitting to obtain independent samples éf,l),éf,z)

@ Use the following estimator:

) r k) gy K Al NN
T(0,) = Z IE(QI”) Z <j<>51(9$7 ))(_02 ))k J

k=0 ‘ j=0

where S;(-) is an unbiased estimator of &/, i.e., IESJ-(QASE)) =0
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Some remarks on /; distance estimation

Additional remarks:
e For large (B, §) in the non-smooth regime, approximating over the
whole stripe fails to give the optimal risk

e For small (p, §) in the non-smooth regime, best 2D polynomial
approximation is not unique and not all can work:

o Any 1D polynomial (i.e., P(x,y) = p(x — y)) cannot work!
o We use the decomposition

x =yl = (Vx+ Vy)Ivx =yl

and approximate two terms separately.
o Still open in general.

@ Valiant and Valiant'11 obtains the correct sample complexity
n> % but suboptimal in the convergence rate
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