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Implications:
> require k > log, d — O(1) to achieve centralized performance
4 distributed sensors < 1 centralized sensor
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Related Works

Gaussian location model (and its variants):

» lots of works: Duchi et al.'13, Zhang et al.’13, Shamir'14,
Garg et al.'14, Braverman et al.'16

> % distributed sensors < 1 centralized sensor
> tool: strong data processing inequality
Discrete distribution estimation:

» require Q(nlog d) bits in total to achieve centralized
performance (Diakonikolas et al.'17)

» minimax risk for k < log d is missing
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Proof of Lower Bound

Paninski's construction:
> U ~ Unif({£1}?)
> X~ Py=(5+6U1,5 =60, L +6Uqp0, 5 —6Uy)0)
» Y generated by X based on previous scheme

Fano's inequality for U — X — Y:

do
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supEp|P — P||; > 5 (1 _ (U)Jr“>
P

d/s

10/19



Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Distributed Distribution Estimation Proof of Main Results

[e]
ooe

Discussions and Generalizations

Upper Bound of /(U;Y)

I(U;Y) < zn:I(U; Yi)
i=1

11/19



Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Distributed Distribution Estimation Proof of Main Results Discussions and Generalizations

[e]
ooe

Upper Bound of /(U;Y)

I(U:Y) < zn:/(u; Y)
i=1

<Y EuD(Py,ullPy;ju0)
i=1

11/19



Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Distributed Distribution Estimation Proof of Main Results

[e]
ooe

Discussions and Generalizations

Upper Bound of /(U;Y)

I(U:Y) < zn:/(u; Y)
i=1

<> EuD(Py,ull Py, ju-o)

i—1
<Y Eux®(Py,ull Py ju=o)
i—1

11/19



Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Distributed Distribution Estimation Proof of Main Results Discussions and Generalizations

[e]
ooe

Upper Bound of /(U;Y)

I(U:Y) < zn:/(u; Y)
i=1

< > EuD(Py,jullPyju=0)

i=1
n
<> Eux*(Py,ullPy;ju=o)
i—1

2k

_ 33y BR2is(X) — Erais (X))

i=1 s=1 Epyais(X)

11/19



Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions
Distributed Distribution Estimation Proof of Main Results Discussions and Generalizations

[e]
ooe

Upper Bound of /(U;Y)

I(U;Y) < zn:/(u; Yi)
i=1

< > EuD(Py,jullPyju=0)

i=1
n
<> Eux*(Py,ullPy;ju=o)
i=1
2k
303y BrusX) — Erais(X))
i=1 s=1 Epyais(X)
< n2% . 247

11/19



Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Distributed Distribution Estimation Proof of Main Results Discussions and Generalizations

[e]
000

Discussions and Generalizations

12/19



Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Distributed Distribution Estimation Proof of Main Results Discussions and Generalizations

[e]
000

Blackboard Communication Protocol

plv an

AN

X1 Xz Xn—l Xn

k bits k bits

«—



Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Distributed Distribution Estimation Proof of Main Results Discussions and Generalizations

[e]
000

Blackboard Communication Protocol

plv an

AN

RSN 7N =T
< < P -~
NN S % ~
. AR NS SN .
N/ ~ RN N e N/
k bits Mool k bits
/\ - /\/< >\/\ ~ /\
/N TN~ D /N
. N
P SR NS IO
P - S~
/4/ \ z N / \Q\

«—

13/19



Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Distributed Distribution Estimation Proof of Main Results Discussions and Generalizations

[e]
000

Blackboard Communication Protocol (Cont'd)

Red - Sensor 1, Blue - Sensor 2, Green - Sensor 3




Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Distributed Distribution Estimation Proof of Main Results Discussions and Generalizations

[e]
000

Blackboard Communication Protocol (Cont'd)

Red - Sensor 1, Blue - Sensor 2, Green - Sensor 3
ap(X1) € {0,1}




Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Distributed Distribution Estimation Proof of Main Results Discussions and Generalizations

[e]
000

Blackboard

Communication Protocol (Cont'd)

Red - Sensor 1, Blue - Sensor 2, Green - Sensor 3
ap(X1) € {0,1}

depth

= nk




Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Distributed Distribution Estimation Proof of Main Results Discussions and Generalizations

[e]
000

Blackboard Communication Protocol (Cont'd)

Red - Sensor 1, Blue - Sensor 2, Green - Sensor 3
ap(X1) € {0,1}

depth = nk

Y =010 --

14/19



Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions
Distributed Distribution Estimation Proof of Main Results Discussions and Generalizations

[e]
000

Nonparametric Density Estimation

Let H*[0, 1] be the class of all s-Lipschitz probability densities
supported on [0, 1], where 0 < s < 1.

Theorem
Under k-bit communication constraints,

inf  sup E||f — |y < (n-2K)7% T\ g,
schemes feH=[0,1]

Corollary

Centralized performance is achieved iff k > 5=~ +1 logo n — O(1).
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Theorem (Han, (“)zgiir, Weissman'18)
Fix any 6, let S(X) be the score function of (pg) around 6 = 6y:

S(X) =~ log po(X)

6=06q
Assuming mild regularity conditions,
d 2 2
f supEolld — 0 v v .
et SuP Eo 32 Var(S(X)) * n2fVar(S(X)) * nkl|S(X)I2,
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Comparison with SDPI

Strong data processing inequality (SDPI):

I(U; Y) < 75U, X)I(X; Y)

v

U — X determined by statistical model X ~ Py, X =Y
subject to communication constraints

> leads to tight results in Gaussian location model

» can only result in linear dependence on k, while our
dependence is exponential

> unclear operational meaning
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Let X = (X1, -+, Xy4) be a random vector with independent and
zero-mean entries.

Geometric Inequalities (Han, Ozgiir, Weissman'18)

» If Var(X;) < o2 for any i:

1—-P(A)
E[X|A]|j3 < 02— AcCRY
IBXIAIR < 0 “Fra=  VAC
» If each X; is o%-sub-Gaussian:
1
E[X|A]||2 < Co? - log —— AcCRY
BIXIAI3 < Co® log gy VAC
Thank you!
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