Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Yanjun Han (Stanford EE)

Joint work with:

Pritam Mukherjee Stanford EE

Ayfer Özgür Stanford EE

Tsachy Weissman Stanford EE

July 16, 2018

Proof of Main Results

Discussions and Generalizations

Outline

Distributed Distribution Estimation

Proof of Main Results
Proof of Achievability
Proof of Converse

Discussions and Generalizations

Distributed Controlled Localitation of Fig. Paracticional and Horiparametric Distributions				
Distributed Distribution Estimation	Proof of Main Results	Discussions and Generalizations		
	0			

Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Proof of Main Results
Proof of Achievability
Proof of Converse

Discussions and Generalizations

Parameters:

- ▶ n: number of sensors
- ▶ *k*: number of bits
- ▶ d: dimensionality

Parameters:

- ▶ n: number of sensors
- ▶ k: number of bits
- ▶ *d*: dimensionality

Goal: characterize

 $\inf_{\text{schemes}} \sup_{P} \mathbb{E}_{P} \| \hat{P} - P \|_{1}$

Proof of Main Results

Discussions and Generalizations

Main Results

Theorem

The minimax ℓ_1 risk for distributed distribution estimation is

$$\inf_{schemes} \sup_{P} \mathbb{E} \|\hat{P} - P\|_1 \asymp \sqrt{\frac{d}{n}} \cdot \left(\sqrt{\frac{d}{2^k}} \vee 1\right).$$

Main Results

Theorem

The minimax ℓ_1 risk for distributed distribution estimation is

$$\inf_{\text{schemes}} \sup_{P} \mathbb{E} \|\hat{P} - P\|_1 \asymp \sqrt{\frac{d}{n}} \cdot \left(\sqrt{\frac{d}{2^k}} \vee 1 \right).$$

Implications:

- ▶ require $k \ge \log_2 d O(1)$ to achieve centralized performance
- $\frac{d}{2^k}$ distributed sensors $\Leftrightarrow 1$ centralized sensor

Proof of Main Results

Discussions and Generalizations

Related Works

Gaussian location model (and its variants):

- ▶ lots of works: Duchi et al.'13, Zhang et al.'13, Shamir'14, Garg et al.'14, Braverman et al.'16
- $\frac{d}{k}$ distributed sensors $\Leftrightarrow 1$ centralized sensor
- ▶ tool: strong data processing inequality

Related Works

Gaussian location model (and its variants):

- ▶ lots of works: Duchi et al.'13, Zhang et al.'13, Shamir'14, Garg et al.'14, Braverman et al.'16
- $\frac{d}{k}$ distributed sensors \Leftrightarrow 1 centralized sensor
- tool: strong data processing inequality

Discrete distribution estimation:

- require $\Omega(n \log d)$ bits in total to achieve centralized performance (Diakonikolas et al.'17)
- ▶ minimax risk for $k \ll \log d$ is missing

Distributed Statistical Estimation of Fig. Simensional and Tomparametric Sistinguistics			
Distributed Distribution Estimation	Proof of Main Results	Discussions and Generalizations	
	0		

Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Proof of Main Results

Proof of Achievability
Proof of Converse

Discussions and Generalizations

Achievability: Grouping Idea

Split $\{1, 2, \dots, d\}$ into groups:

$$\underbrace{1, 2, \cdots, 2^k - 1}_{G_1}, \underbrace{2^k, 2^k + 1, \cdots, 2(2^k - 1)}_{G_2}, \cdots, \underbrace{d - 2^k + 2, \cdots, d}_{G_m}$$

Achievability: Grouping Idea

Split $\{1, 2, \dots, d\}$ into groups:

$$\underbrace{1, 2, \cdots, 2^k - 1}_{G_1}, \underbrace{2^k, 2^k + 1, \cdots, 2(2^k - 1)}_{G_2}, \cdots, \underbrace{d - 2^k + 2, \cdots, d}_{G_m}$$

protocol: each sensor is responsible for one group

Achievability: Grouping Idea

Split $\{1, 2, \dots, d\}$ into groups:

$$\underbrace{1,2,\cdots,2^k-1}_{G_1},\underbrace{2^k,2^k+1,\cdots,2(2^k-1)}_{G_2},\cdots,\underbrace{d-2^k+2,\cdots,d}_{G_m}$$

- protocol: each sensor is responsible for one group
- estimator \hat{P} : empirical distribution within each group

Achievability: Grouping Idea

Split $\{1, 2, \dots, d\}$ into groups:

$$\underbrace{1, 2, \cdots, 2^k - 1}_{G_1}, \underbrace{2^k, 2^k + 1, \cdots, 2(2^k - 1)}_{G_2}, \cdots, \underbrace{d - 2^k + 2, \cdots, d}_{G_m}$$

- protocol: each sensor is responsible for one group
- estimator \hat{P} : empirical distribution within each group
- ▶ *n* distributed sensors $\Rightarrow \frac{n}{m} \times \frac{n2^k}{d}$ centralized sensors

Characterizing all Schemes

•00

Characterizing all Schemes

For any $i \in [n], s \in [2^k]$: $P(Y_i = s | X_i) \triangleq a_{i,s}(X_i)$

Characterizing all Schemes

For any $i \in [n], s \in [2^k]$:

$$\mathbb{P}(Y_i = s) = \mathbb{E}_P a_{i,s}(X_i)$$

Characterizing all Schemes

For any $i \in [n], s \in [2^k]$:

$$\mathbb{P}(Y_i = s | X_i) \triangleq a_{i,s}(X_i)$$

$$P(Y_i = s) = \mathbb{E}_{P} a_{i,s}(X_i)$$

Feasible schemes:

▶
$$a_{i,s} \in [0,1]$$

•00

Characterizing all Schemes

For any $i \in [n], s \in [2^k]$:

$$\mathbb{P}(Y_i = s | X_i) \triangleq a_{i,s}(X_i)$$

$$\mathbb{P}(Y_i = s) = \mathbb{E}_{P}a_{i,s}(X_i)$$

Feasible schemes:

▶
$$a_{i,s} \in [0,1]$$

$$ightharpoonup \sum_s a_{i,s} \equiv 1$$

Proof of Main Results

000

Discussions and Generalizations

Proof of Lower Bound

Paninski's construction:

 $ightharpoonup U \sim \mathsf{Unif}(\{\pm 1\}^{rac{d}{2}})$

Proof of Lower Bound

Paninski's construction:

- $V \sim \text{Unif}(\{\pm 1\}^{\frac{d}{2}})$
- ► $X \sim P_U = (\frac{1}{d} + \delta U_1, \frac{1}{d} \delta U_1, \cdots, \frac{1}{d} + \delta U_{d/2}, \frac{1}{d} \delta U_{d/2})$

Proof of Lower Bound

Paninski's construction:

- $V \sim \text{Unif}(\{\pm 1\}^{\frac{d}{2}})$
- ► $X \sim P_U = (\frac{1}{d} + \delta U_1, \frac{1}{d} \delta U_1, \cdots, \frac{1}{d} + \delta U_{d/2}, \frac{1}{d} \delta U_{d/2})$
- ▶ Y generated by X based on previous scheme

Proof of Lower Bound

Paninski's construction:

- $V \sim \text{Unif}(\{\pm 1\}^{\frac{d}{2}})$
- $X \sim P_U = (\frac{1}{d} + \delta U_1, \frac{1}{d} \delta U_1, \cdots, \frac{1}{d} + \delta U_{d/2}, \frac{1}{d} \delta U_{d/2})$
- Y generated by X based on previous scheme

Fano's inequality for U - X - Y:

$$\sup_{P} \mathbb{E}_{P} \|\hat{P} - P\|_{1} \geq \frac{d\delta}{8} \left(1 - \frac{I(U;Y) + \ln 2}{d/8} \right)$$

ŏ0•

$$I(U;Y) \leq \sum_{i=1}^{n} I(U;Y_i)$$

$$I(U; Y) \le \sum_{i=1}^{n} I(U; Y_i)$$

 $\le \sum_{i=1}^{n} \mathbb{E}_{U} D(P_{Y_i|U} || P_{Y_i|U=\mathbf{0}})$

$$I(U; Y) \leq \sum_{i=1}^{n} I(U; Y_{i})$$

$$\leq \sum_{i=1}^{n} \mathbb{E}_{U} D(P_{Y_{i}|U} || P_{Y_{i}|U=\mathbf{0}})$$

$$\leq \sum_{i=1}^{n} \mathbb{E}_{U} \chi^{2} (P_{Y_{i}|U} || P_{Y_{i}|U=\mathbf{0}})$$

$$I(U; Y) \leq \sum_{i=1}^{n} I(U; Y_{i})$$

$$\leq \sum_{i=1}^{n} \mathbb{E}_{U} D(P_{Y_{i}|U} || P_{Y_{i}|U=\mathbf{0}})$$

$$\leq \sum_{i=1}^{n} \mathbb{E}_{U} \chi^{2} (P_{Y_{i}|U} || P_{Y_{i}|U=\mathbf{0}})$$

$$= \sum_{i=1}^{n} \sum_{s=1}^{2^{k}} \mathbb{E}_{U} \frac{(\mathbb{E}_{P_{U}} a_{i,s}(X) - \mathbb{E}_{P_{0}} a_{i,s}(X))^{2}}{\mathbb{E}_{P_{0}} a_{i,s}(X)}$$

$$I(U; Y) \leq \sum_{i=1}^{n} I(U; Y_{i})$$

$$\leq \sum_{i=1}^{n} \mathbb{E}_{U} D(P_{Y_{i}|U} || P_{Y_{i}|U=\mathbf{0}})$$

$$\leq \sum_{i=1}^{n} \mathbb{E}_{U} \chi^{2} (P_{Y_{i}|U} || P_{Y_{i}|U=\mathbf{0}})$$

$$= \sum_{i=1}^{n} \sum_{s=1}^{2^{k}} \mathbb{E}_{U} \frac{(\mathbb{E}_{P_{U}} a_{i,s}(X) - \mathbb{E}_{P_{0}} a_{i,s}(X))^{2}}{\mathbb{E}_{P_{0}} a_{i,s}(X)}$$

$$\leq n2^{k} \cdot 2\delta^{2}$$

Distributed Distribution Estimation	Proof of Main Results	Discussions and Generalizations	

Distributed Statistical Estimation of High-Dimensional and Nonparametric Distributions

Proof of Main Results
Proof of Achievability
Proof of Converse

Discussions and Generalizations

Blackboard Communication Protocol

Blackboard Communication Protocol

Proof of Main Results

Blackboard Communication Protocol (Cont'd)

Red - Sensor 1, Blue - Sensor 2, Green - Sensor 3

Blackboard Communication Protocol (Cont'd)

Red - Sensor 1, Blue - Sensor 2, Green - Sensor 3

Blackboard Communication Protocol (Cont'd)

Red - Sensor 1, Blue - Sensor 2, Green - Sensor 3

Blackboard Communication Protocol (Cont'd)

Red - Sensor 1, Blue - Sensor 2, Green - Sensor 3 $a_{\emptyset}(X_1) \in \{0,1\}$ $a_{(0)}(X_2)$ depth = nk $Y = 010 \cdots$

Nonparametric Density Estimation

Let $H^s[0,1]$ be the class of all s-Lipschitz probability densities supported on [0,1], where $0 < s \le 1$.

Theorem

Under k-bit communication constraints,

$$\inf_{\text{schemes}} \sup_{f \in H^s[0,1]} \mathbb{E}_f \|\hat{f} - f\|_1 \asymp \left(n \cdot 2^k\right)^{-\frac{s}{2(s+1)}} \vee n^{-\frac{s}{2s+1}}.$$

Corollary

Centralized performance is achieved iff $k \ge \frac{1}{2s+1} \log_2 n - O(1)$.

General Distributed Estimation

Parameters:

- ▶ n: number of sensors
- ▶ k: number of bits
- ▶ *d*: dimensionality

General Distributed Estimation

Parameters:

- ▶ n: number of sensors
- ▶ k: number of bits
- d: dimensionality

Goal: characterize

$$\inf_{\text{schemes}} \sup_{\theta} \mathbb{E}_{\theta} \| \hat{\theta} - \theta \|_2^2$$

General Lower Bounds

Theorem (Han, Özgür, Weissman'18)

Fix any θ_0 , let S(X) be the score function of (p_θ) around $\theta = \theta_0$:

$$S(X) = \frac{\partial}{\partial \theta} \log p_{\theta}(X) \bigg|_{\theta = \theta_0}.$$

Assuming mild regularity conditions,

$$\inf_{\textit{schemes}} \sup_{\theta} \mathbb{E}_{\theta} \|\hat{\theta} - \theta\|_2^2 \gtrsim \frac{d}{n \mathsf{Var}(S(X))} \vee \frac{d^2}{n 2^k \mathsf{Var}(S(X))} \vee \frac{d^2}{n \frac{k}{N} \|S(X)\|_{\psi_2}^2}.$$

$$I(U;Y) \leq \gamma^*(U,X)I(X;Y)$$

Strong data processing inequality (SDPI):

$$I(U; Y) \le \gamma^*(U, X)I(X; Y)$$

▶ U - X determined by statistical model $X \sim P_U$, X - Y subject to communication constraints

$$I(U; Y) \le \gamma^*(U, X)I(X; Y)$$

- ▶ U X determined by statistical model $X \sim P_U$, X Y subject to communication constraints
- leads to tight results in Gaussian location model

$$I(U; Y) \leq \gamma^*(U, X)I(X; Y)$$

- ▶ U X determined by statistical model $X \sim P_U$, X Y subject to communication constraints
- leads to tight results in Gaussian location model
- ► can only result in linear dependence on *k*, while our dependence is exponential

$$I(U; Y) \leq \gamma^*(U, X)I(X; Y)$$

- ▶ U X determined by statistical model $X \sim P_U$, X Y subject to communication constraints
- leads to tight results in Gaussian location model
- ► can only result in linear dependence on *k*, while our dependence is exponential
- unclear operational meaning

Proof of Main Results

Discussions and Generalizations

Geometric Inequalities

Let $X = (X_1, \dots, X_d)$ be a random vector with independent and zero-mean entries.

Geometric Inequalities

Let $X = (X_1, \dots, X_d)$ be a random vector with independent and zero-mean entries.

Geometric Inequalities (Han, Özgür, Weissman'18)

▶ If $Var(X_i) \le \sigma^2$ for any i:

$$\|\mathbb{E}[X|A]\|_2^2 \le \sigma^2 \cdot \frac{1 - \mathbb{P}(A)}{\mathbb{P}(A)}, \quad \forall A \subset \mathbb{R}^d$$

▶ If each X_i is σ^2 -sub-Gaussian:

$$\|\mathbb{E}[X|A]\|_2^2 \le C\sigma^2 \cdot \log \frac{1}{\mathbb{P}(A)}, \quad \forall A \subset \mathbb{R}^d$$

Geometric Inequalities

Let $X = (X_1, \dots, X_d)$ be a random vector with independent and zero-mean entries.

Geometric Inequalities (Han, Özgür, Weissman'18)

▶ If $Var(X_i) \le \sigma^2$ for any i:

$$\|\mathbb{E}[X|A]\|_2^2 \le \sigma^2 \cdot \frac{1 - \mathbb{P}(A)}{\mathbb{P}(A)}, \quad \forall A \subset \mathbb{R}^d$$

▶ If each X_i is σ^2 -sub-Gaussian:

$$\|\mathbb{E}[X|A]\|_2^2 \le C\sigma^2 \cdot \log \frac{1}{\mathbb{P}(A)}, \quad \forall A \subset \mathbb{R}^d$$