Optimal Communication Rates and Combinatorial Properties of Distributed Simulation

Yanjun Han (Stanford EE)

Joint work with:

Kedar Tatwawadi Zhengqing Zhou Gowtham Kurri Vinod Prabhakaran Tsachy Weissman Stanford EE Stanford Math TIFR TIFR Stanford EE

Generation of Shared Randomness

Other applications: distributed computing, distributed inference, game theory, quantum mechanics...

Communication rate = 1.

Communication rate = 1/2.

Generalization to n Users

Communication rate = |M|/|R| = (n-2)/(n-1).

4/16

Generalization to Connected Graphs

Communication rate
$$=$$
 $\frac{5}{6} = \frac{7-2}{7-1}$.

Problem Formulation

• Let G be a hypergraph with vertex set [n] and edge set consisting of all groups of users who share common randomness

- Under the blackboard communication procotol, users write message *M* on the blackboard
- Each of the user simulates the same random sequence R
- Target: find the minimum communication rate |R|/|M|

Motivating Result

Theorem

For n users and k-complete hypergraph G, the optimal communication rate is (n - k)/(n - 1).

- lower bounds the communication rate for any k-uniform hypergraph
- the previous rate (n-2)/(n-1) is optimal for k=2
- connected graphs suffice for k = 2
- tight result for general hypergraph is available, but in terms of a computationally intractable linear program

Target

Find proper connectivity notions for general k-uniform hypergraphs.

Generalization of Connectivity

- Usual connectivity notions for hypergraphs break down here
- For example, the communication rate 1/3 cannot be achieved in the following hypergraph:

• Idea: generalize the following folklore:

FolkloreAny tree on n vertices has n - 1 edges.

• Answer: topological connectivity and path connectivity

Topological Connectivity

Definition (Topological Connectivity, Kalai'83)

A *k*-uniform hypergraph is topologically *k*-connected iff it becomes the complete graph after adding the last missing facet of each *k*-dim polygon finitely many times.

Combinatorial Property

Theorem

Any minimal topologically k-connected hypergraph has $\binom{n-1}{k-1}$ hyperedges.

- First proof via Euler's formula $\sum_{j=0}^{k-1} (-1)^j F_j = \chi = 1$ with $F_j = {n \choose j+1}$ for $0 \le j \le k-2$, and $F_{k-1} = |E|$
- Second proof via incident matrix of G:

	(12)	(13)	(14)	(15)	(23)	(24)	(25)	(34)	(35)	(45)
(123)	Γ1	1			1					٦
(124)	1		1			1				
(134)		1	1					1		
(125)	1			1			1			
(235)					1		1		1	
(245)	L					1	1			1]

with full row rank and number of rows being |E|

Communication Strategy

 $M = R_{124} \oplus R_{134} \oplus R_{123}, \qquad R = (R_{123}, R_{124}, R_{125}, R_{134}, R_{235}, R_{245}).$

Communication Strategy

 $M = \begin{cases} R_{124} \oplus R_{134} \oplus R_{123} \\ R_{125} \oplus R_{235} \oplus R_{123} \\ R_{124} \oplus R_{125} \oplus R_{245} \end{cases}$

 $R = (R_{123}, R_{124}, R_{125}, R_{134}, R_{235}, R_{245}).$

• Bits of shared randomness:

$$|R| = \binom{n-1}{k-1}.$$

• Bits of messages:

$$|M| = \sum_{i=1}^{n} \left(d_i - \binom{n-2}{k-2} \right) = k \binom{n-1}{k-1} - n \binom{n-2}{k-2} = \binom{n-2}{k-1}.$$

• Decodability: see full paper

A Counterexample

- Not topologically 3-connected
- However, admit a strategy acheving optimal communication rate 3/5:

$$R = (R_{123}, R'_{123}, R_{145}, R_{146}, R_{456})$$
$$M = \begin{cases} R_{123} \oplus R_{145} \\ R'_{123} \oplus R_{146} \\ R_{145} \oplus R_{146} \oplus R_{456} \end{cases}$$

Repetition required

Path Connectivity

Definition (Path Connectivity)

A hypergraph $G = (V, \{E_1, \dots, E_m\})$ is path connected iff for every $u, v \in V$, there exist a sequence $v_0 = u, v_1, \dots, v_{n-1}, v_n = v$ such that for every $i \in [n]$, we have $\{v_{i-1}, v_i\} \subseteq E_j$ for some $j \in [m]$.

Theorem

If $G = ([n], \{E_1, \dots, E_m\})$ is path-connected and cycle-free, then $\sum_{j=1}^{m} (|E_j| - 1) = n - 1.$

Path-connected Cycle-free Cluster

Definition

A uniform k-hypergraph G is a path-connected cycle-free cluster of topologically connected components iff there exists another hypergraph $G' = (V, \{E_1, \dots, E_m\})$ which is path-connected and cycle-free, and the restriction of G to each E_j is topologically k-connected.

Theorem

The optimal communication rate (n - k)/(n - 1) is achievable for path-connected cycle-free clusters of topologically connected components.

Take-home messages:

- Two generalizations of connectivity and the tree folklore
- Both generalizations give local algorithms for distributed simulation

Thank you! Arxiv: 1904.03271