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Generation of Shared Randomness
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Secret key generation

Other applications: distributed computing, distributed inference, game
theory, quantum mechanics...

2 / 16



Toy Example
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Toy Example

Carol

Alice Bob

R1 R2

M = R1 ⊕ R2

(R1,R2) (R1,R2)

Communication rate = 1/2.
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Generalization to n Users

1 2 3 · · · n − 1

n

R1 R2 R3 Rn−1

M = (R1 ⊕ R2,R1 ⊕ R3, · · · ,R1 ⊕ Rn−1)

R = (R1, · · · ,Rn−1)

Communication rate = |M|/|R| = (n − 2)/(n − 1).
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Generalization to Connected Graphs
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M3 = (R1 ⊕ R2,R1 ⊕ R3)

M4 = (R3 ⊕ R4)

M5 = (R5 ⊕ R4,R5 ⊕ R6)

Communication rate =
5

6
=

7− 2

7− 1
.
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Problem Formulation

Let G be a hypergraph with vertex set [n] and edge set consisting of
all groups of users who share common randomness
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Under the blackboard communication procotol, users write message
M on the blackboard

Each of the user simulates the same random sequence R

Target: find the minimum communication rate |R|/|M|
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Motivating Result

Theorem

For n users and k-complete hypergraph G , the optimal communication
rate is (n − k)/(n − 1).

lower bounds the communication rate for any k-uniform hypergraph

the previous rate (n − 2)/(n − 1) is optimal for k = 2

connected graphs suffice for k = 2

tight result for general hypergraph is available, but in terms of a
computationally intractable linear program

Target

Find proper connectivity notions for general k-uniform hypergraphs.
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Generalization of Connectivity

Usual connectivity notions for hypergraphs break down here

For example, the communication rate 1/3 cannot be achieved in the
following hypergraph:
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Idea: generalize the following folklore:

Folklore

Any tree on n vertices has n − 1 edges.

Answer: topological connectivity and path connectivity
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Topological Connectivity

Definition (Topological Connectivity, Kalai’83)

A k-uniform hypergraph is topologically k-connected iff it becomes the
complete graph after adding the last missing facet of each k-dim polygon
finitely many times.
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Combinatorial Property

Theorem

Any minimal topologically k-connected hypergraph has
(n−1
k−1
)
hyperedges.

First proof via Euler’s formula
∑k−1

j=0 (−1)jFj = χ = 1 with Fj =
( n
j+1

)
for 0 ≤ j ≤ k − 2, and Fk−1 = |E |
Second proof via incident matrix of G :

(12) (13) (14) (15) (23) (24) (25) (34) (35) (45)


(123) 1 1 1
(124) 1 1 1
(134) 1 1 1
(125) 1 1 1
(235) 1 1 1
(245) 1 1 1

with full row rank and number of rows being |E |
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Communication Strategy
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M1 = R124 ⊕ R134 ⊕ R123
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R124 ⊕ R134 ⊕ R123

M = R124 ⊕ R134 ⊕ R123, R = (R123,R124,R125,R134,R235,R245).
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Communication Strategy
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R125 ⊕ R235 ⊕ R123

R124 ⊕ R125 ⊕ R245

M =


R124 ⊕ R134 ⊕ R123

R125 ⊕ R235 ⊕ R123

R124 ⊕ R125 ⊕ R245

R = (R123,R124,R125,R134,R235,R245).
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Analysis

Bits of shared randomness:

|R| =

(
n − 1

k − 1

)
.

Bits of messages:

|M| =
n∑

i=1

(
di −

(
n − 2

k − 2

))
= k

(
n − 1

k − 1

)
− n

(
n − 2

k − 2

)
=

(
n − 2

k − 1

)
.

Decodability: see full paper
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A Counterexample
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Not topologically 3-connected
However, admit a strategy acheving optimal communication rate 3/5:

R = (R123,R
′
123,R145,R146,R456)

M =


R123 ⊕ R145

R ′123 ⊕ R146

R145 ⊕ R146 ⊕ R456

Repetition required
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Path Connectivity

Definition (Path Connectivity)

A hypergraph G = (V , {E1, · · · ,Em}) is path connected iff for every
u, v ∈ V , there exist a sequence v0 = u, v1, · · · , vn−1, vn = v such that for
every i ∈ [n], we have {vi−1, vi} ⊆ Ej for some j ∈ [m].
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Theorem

If G = ([n], {E1, · · · ,Em}) is path-connected and cycle-free, then∑m
j=1(|Ej | − 1) = n − 1.
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Path-connected Cycle-free Cluster

Definition

A uniform k-hypergraph G is a path-connected cycle-free cluster of
topologically connected components iff there exists another hypergraph
G ′ = (V , {E1, · · · ,Em}) which is path-connected and cycle-free, and the
restriction of G to each Ej is topologically k-connected.
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Theorem

The optimal communication rate (n − k)/(n − 1) is achievable for
path-connected cycle-free clusters of topologically connected components.
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Concluding Remarks

Take-home messages:

Two generalizations of connectivity and the tree folklore

Both generalizations give local algorithms for distributed simulation

Thank you!
Arxiv: 1904.03271
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