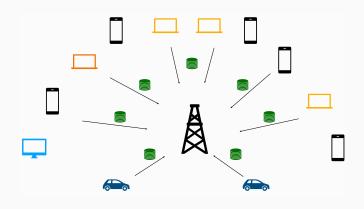
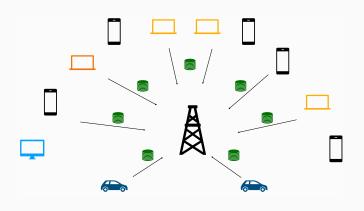
Domain compression: a new primitive

Paper: Domain Compression and its Application to Randomness-Optimal Distributed Goodness-of-Fit

COLT 2020, everywhere on earth

Jayadev Acharya, Cornell University Clément Canonne, IBM Research Yanjun Han, Stanford University Ziteng Sun, Cornell University Himanshu Tyagi, IISc Bangalore





Does the data satisfy a postulated hypothesis/property?

Only constrained observations are available.

• $\mathcal{X} = [k] := \{0, 1, 2, ..., k - 1\}$, a discrete set of size k.

- $\mathcal{X} = [k] := \{0, 1, 2, ..., k 1\}$, a discrete set of size k.
- q: a **known** reference distribution.

- $\mathcal{X} = [k] := \{0, 1, 2, ..., k 1\}$, a discrete set of size k.
- q: a **known** reference distribution.
- Given $X^n = X_1 \dots X_n$ independent samples from **unknown** p.

- $\mathcal{X} = [k] := \{0, 1, 2, ..., k 1\}$, a discrete set of size k.
- q: a **known** reference distribution.
- Given $X^n = X_1 \dots X_n$ independent samples from **unknown** p.
- Is p = q?

- $\mathcal{X} = [k] := \{0, 1, 2, ..., k 1\}$, a discrete set of size k.
- q: a **known** reference distribution.
- Given $X^n = X_1 \dots X_n$ independent samples from **unknown** p.
- Is p = q?
- Test: $A: [k]^n \to \{0,1\}$, which satisfies the following:

With probability at least
$$1-\delta$$
,
$$\mathcal{A}(X^n) = \begin{cases} 1, \text{ if } p=q \\ 0, \text{ if } \|p-q\|_{\mathrm{TV}} > \varepsilon \end{cases}$$

- $\mathcal{X} = [k] := \{0, 1, 2, ..., k 1\}$, a discrete set of size k.
- q: a **known** reference distribution.
- Given $X^n = X_1 \dots X_n$ independent samples from **unknown** p.
- Is p = q?
- Test: $A: [k]^n \to \{0,1\}$, which satisfies the following:

With probability at least $\frac{2}{3}$, $\mathcal{A}(X^n) = \begin{cases} 1, & \text{if } p = q \\ 0, & \text{if } \|p - q\|_{\mathrm{TV}} > \varepsilon \end{cases}$

- $\mathcal{X} = [k] := \{0, 1, 2, ..., k 1\}$, a discrete set of size k.
- q: a **known** reference distribution.
- Given $X^n = X_1 \dots X_n$ independent samples from **unknown** p.
- Is p = q?
- Test: $A: [k]^n \to \{0,1\}$, which satisfies the following:

With probability at least
$$\frac{2}{3}$$
,
$$\mathcal{A}(X^n) = \begin{cases} 1, & \text{if } p = q \\ 0, & \text{if } \|p - q\|_{\mathrm{TV}} > \varepsilon \end{cases}$$

Sample complexity: Smallest *n* for which such a test exists.

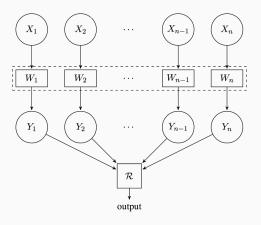
- $\mathcal{X} = [k] := \{0, 1, 2, ..., k 1\}$, a discrete set of size k.
- q: a **known** reference distribution.
- Given $X^n = X_1 \dots X_n$ independent samples from **unknown** p.
- Is p = q?
- Test: $A: [k]^n \to \{0,1\}$, which satisfies the following:

With probability at least
$$\frac{2}{3}$$
,
$$\mathcal{A}(X^n) = \begin{cases} 1, & \text{if } p = q \\ 0, & \text{if } \|p - q\|_{\mathrm{TV}} > \varepsilon \end{cases}$$

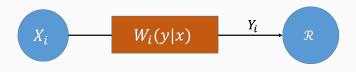
$$\Theta\left(\sqrt{k}/\varepsilon^2\right)$$
.

Simultaneous Message Passing (SMP) Protocol

Observations $Y_i = W_i(X_i) \in \mathcal{Y}$. $W_i \in \mathcal{W}$.



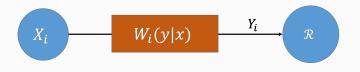
Local Information Constraints



• Communication. Only ℓ -bits from each user.

$$|\mathcal{Y}| \leq 2^{\ell}$$
.

Local Information Constraints



• **Communication.** Only ℓ-bits from each user.

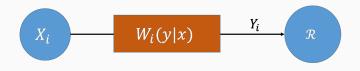
$$|\mathcal{Y}| \leq 2^{\ell}$$
.

• **Privacy.** W_i 's satisfy ρ -local differentially privacy (LDP).

$$\sup_{y \in \mathcal{Y}} \sup_{x, x' \in \mathcal{X}} \frac{W_i(y|x)}{W_i(y|x')} \le e^{\rho}.$$

4

Local Information Constraints



• **Communication.** Only ℓ-bits from each user.

$$|\mathcal{Y}| \leq 2^{\ell}$$
.

• **Privacy.** W_i 's satisfy ρ -local differentially privacy (LDP).

$$\sup_{y \in \mathcal{Y}} \sup_{x, x' \in \mathcal{X}} \frac{W_i(y|x)}{W_i(y|x')} \le e^{\rho}.$$

• **Restricted Measurement.** E.g. Linear measurements, noisy measurements.

Related Works

Identity Testing:

Paninski '08, Valiant-Valiant '17, ADK '15, Goldreich '16, DGPP '18

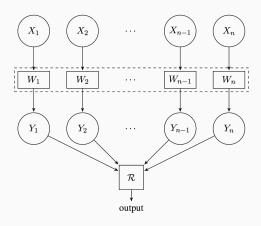
Communication-limited Inference:

ZDJW '13, GMN '14, AMS '18, FMO '18, HMW '18, BarnesH '19

LDP-constrainted Inference:

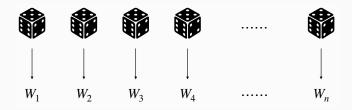
EPR '13, DJW '13, YB '17, ASZ '18, Sheffet '17, AJM '19, CSU '19

And many more.



Private-coin protocols:

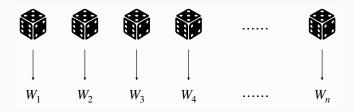
 $U_1,\,U_2,...,\,U_n$: independent random seeds at each user $W_i=g_i(U_i)\in\mathcal{W}.$



7

Private-coin protocols:

 $U_1,\,U_2,...,\,U_n$: independent random seeds at each user $W_i=g_i(U_i)\in\mathcal{W}.$



If \mathcal{W} is convex,

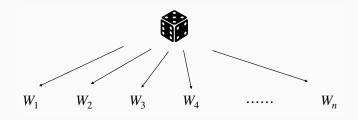
$$\bar{W}_i = \mathbb{E}_{U_i}[g_i(U_i)].$$

7

Public-coin protocols:

U: shared random seeds available to all players and the referee.

$$W_i = g_i(U) \in \mathcal{W}$$
.



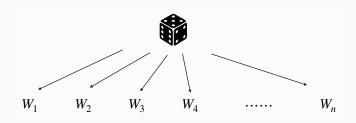
Previous Works

Acharya, Canonne, and Tyagi, 2019:

	Public-Coin Protocols	Private-Coin Protocols
No Constraint	$\Theta\left(\frac{\sqrt{k}}{arepsilon^2}\right)$	
ℓ -bit	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2}\sqrt{\frac{k}{2^\ell}}\right)$	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2} \frac{k}{2^\ell}\right)$
ho-LDP	$\Theta\left(\frac{\sqrt{k}}{\epsilon^2} \frac{\sqrt{k}}{\rho^2}\right)$	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2} \frac{k}{\rho^2}\right)$

Limited Shared-Randomness

What if we can only throw the dice s times ($\Theta(s)$ bits of shared-randomness)?



Our Contribution

	Public-Coin Protocols	Private-Coin Protocols	s-bit shared randomness
No Constraint	$\Theta\left(rac{\sqrt{k}}{arepsilon^2} ight)$		
<i>ℓ</i> -bit	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2}\sqrt{\frac{k}{2^\ell}}\right)$	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2} \frac{k}{2^\ell}\right)$	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2} \frac{k}{\min\{2^{s/2}, \sqrt{k}\} 2^{\ell}}\right)$
$ ho ext{-LDP}$	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2}\frac{\sqrt{k}}{\rho^2}\right)$	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2} \frac{k}{\rho^2}\right)$	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2} \frac{k}{\min\{2^{s/2}, \sqrt{k}\} \rho^2}\right)$

Our Contribution

	Public-Coin Protocols	Private-Coin Protocols	s-bit shared randomness
No Constraint	$\Theta\left(rac{\sqrt{k}}{arepsilon^2} ight)$		
ℓ-bit	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2}\sqrt{\frac{k}{2^\ell}}\right)$	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2} \frac{k}{2^\ell}\right)$	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2} \frac{k}{\min\{2^{s/2}, \sqrt{k}\} 2^{\ell}}\right)$
$ ho ext{-LDP}$	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2}\frac{\sqrt{k}}{\rho^2}\right)$	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2} \frac{k}{\rho^2}\right)$	$\Theta\left(\frac{\sqrt{k}}{\varepsilon^2} \frac{k}{\min\{2^{s/2}, \sqrt{k}\} \rho^2}\right)$

One bit of shared-randomness is worth 0.5 bit of communication!

Overview of Our Approach

Use shared randomness to *embed* the statistical problem into a smaller domain

Overview of Our Approach

Use shared randomness to *embed* the statistical problem into a smaller domain

High-level description

1. Domain compression: find a set \mathcal{F} of mappings $f:[k] \to [L]$ of size 2^s such that for all distributions p,q supported on [k],

$$\Pr_{f \sim \mathsf{Unif}(\mathcal{F})}(d(p^f,q^f) \geq \theta \cdot d(p,q)) \geq 1 - \delta$$

holds for small L, large θ , small δ , and suitable d;

Overview of Our Approach

Use shared randomness to *embed* the statistical problem into a smaller domain

High-level description

1. Domain compression: find a set \mathcal{F} of mappings $f:[k] \to [L]$ of size 2^s such that for all distributions p,q supported on [k],

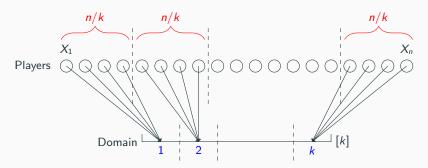
$$\Pr_{f \sim \mathsf{Unif}(\mathcal{F})}(d(p^f,q^f) \geq \theta \cdot d(p,q)) \geq 1 - \delta$$

holds for small L, large θ , small δ , and suitable d;

2. Reduction to small domain: players use the s-bit shared randomness to apply the same mapping $f \in \mathcal{F}$ to their data, and use the private-randomness scheme for the small domain.

Estimation with No Shared Randomness

Suppose s = 0 and $\ell = 1$:

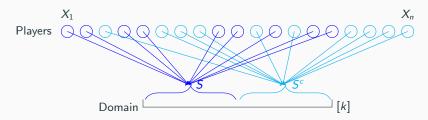


Reduced to uniformity testing with n' = n/k, therefore

$$n' = O\left(\frac{\sqrt{k}}{\varepsilon^2}\right) \Longrightarrow n = O\left(\frac{\sqrt{k}}{\varepsilon^2} \cdot k\right).$$

Estimation with Unlimited Shared Randomness

Suppose $s = \infty$ and $\ell = 1$:



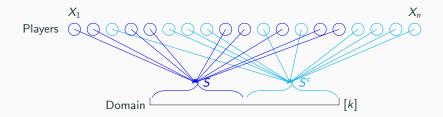
Theorem (ACT'19)

Let $S \subseteq [k]$ be a uniformly random subset of size k/2, and p^S be the restriction of p on (S, S^c) . For any p, q supported on [k],

$$\Pr_{S} \left(\| p^{S} - q^{S} \|_{\text{TV}} \ge \frac{0.1}{\sqrt{k}} \| p - q \|_{\text{TV}} \right) \ge 0.01.$$

Estimation with Unlimited Shared Randomness

Suppose $s = \infty$ and $\ell = 1$:



Reduced to uniformity testing with $(k', \varepsilon') = (2, \frac{\varepsilon}{10\sqrt{k}})$, giving

$$n = O\left(\frac{\sqrt{k'}}{(\varepsilon')^2}\right) = O\left(\frac{\sqrt{k}}{\varepsilon^2} \cdot \sqrt{k}\right).$$

Selecting a random subset is not randomness efficient.

 $\Theta(k)$ bits of shared-randomness.

Theorem (ACHST'20)

There exist m = O(k) and subsets $S_1, \ldots, S_m \subseteq [k]$ of size k/2 such that for any p, q supported on [k],

$$\Pr_{S \sim \mathsf{Unif}\{S_1, ..., S_m\}} \left(\|p^S - q^S\|_{\mathsf{TV}} \ge \frac{0.1}{\sqrt{k}} \|p - q\|_{\mathsf{TV}} \right) \ge 0.01.$$

Theorem (ACHST'20)

There exist m = O(k) and subsets $S_1, \ldots, S_m \subseteq [k]$ of size k/2 such that for any p, q supported on [k],

$$\Pr_{\boldsymbol{S} \sim \mathsf{Unif}\{\boldsymbol{S}_1, \dots, \boldsymbol{S}_m\}} \left(\|\boldsymbol{p}^{\boldsymbol{S}} - \boldsymbol{q}^{\boldsymbol{S}}\|_{\mathrm{TV}} \geq \frac{0.1}{\sqrt{k}} \|\boldsymbol{p} - \boldsymbol{q}\|_{\mathrm{TV}} \right) \geq 0.01.$$

Remarks

- subsets S_1, \ldots, S_m chosen before p and q;
- $m = \Omega(k)$ also necessary;

Theorem (ACHST'20)

There exist m = O(k) and subsets $S_1, \ldots, S_m \subseteq [k]$ of size k/2 such that for any p, q supported on [k],

$$\Pr_{\substack{S \sim \mathsf{Unif}\{S_1, \dots, S_m\}}} \left(\|p^S - q^S\|_{\mathrm{TV}} \geq \frac{0.1}{\sqrt{k}} \|p - q\|_{\mathrm{TV}} \right) \geq 0.01.$$

Remarks

- subsets S_1, \ldots, S_m chosen before p and q;
- $m = \Omega(k)$ also necessary;

 $\Theta(\log k)$ bits suffice to achieve public-coin performance.

Domain Compression: A Key Primitive

Domain Compression Theorem (ACHST'20)

There exists constants $c, \delta_0, \forall \theta \in [\sqrt{c/k}, \sqrt{c/2}]$ and $L \ge \theta^2 k/c$, there exists a set \mathcal{F} of mappings $f : [k] \to [L]$ of size $O(\frac{1}{\theta^2})$ such that for all distributions p, q supported on [k],

$$\Pr_{f \sim \mathsf{Unif}(\mathcal{F})}(\|p^f - q^f\|_{\mathrm{TV}} \geq \frac{\theta}{\theta} \cdot \|p - q\|_{\mathrm{TV}}) \geq 1 - \delta_0.$$

Domain Compression: A Key Primitive

Domain Compression Theorem (ACHST'20)

There exists constants $c, \delta_0, \forall \theta \in [\sqrt{c/k}, \sqrt{c/2}]$ and $L \ge \theta^2 k/c$, there exists a set \mathcal{F} of mappings $f : [k] \to [L]$ of size $O(\frac{1}{\theta^2})$ such that for all distributions p, q supported on [k],

$$\Pr_{f \sim \mathsf{Unif}(\mathcal{F})}(\|p^f - q^f\|_{\mathrm{TV}} \geq \frac{\theta}{\theta} \cdot \|p - q\|_{\mathrm{TV}}) \geq 1 - \delta_0.$$

Parameter choices:

- Size $|\mathcal{F}| = O(\frac{1}{\theta^2})$. Select $\theta = O(\frac{1}{\sqrt{2^s}})$.
- New domain size $L = O(\theta^2 k) = O(k/2^s)$.
- $\varepsilon' > \frac{\varepsilon}{\sqrt{2^s}}$.

Domain Compression: A Key Primitive

Domain Compression Theorem (ACHST'20)

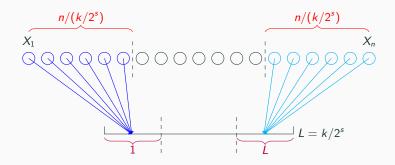
There exists constants $c, \delta_0, \forall \theta \in [\sqrt{c/k}, \sqrt{c/2}]$ and $L \ge \theta^2 k/c$, there exists a set \mathcal{F} of mappings $f : [k] \to [L]$ of size $O(\frac{1}{\theta^2})$ such that for all distributions p, q supported on [k],

$$\Pr_{f \sim \mathsf{Unif}(\mathcal{F})} (\| p^f - q^f \|_{\mathrm{TV}} \geq \frac{\theta}{\theta} \cdot \| p - q \|_{\mathrm{TV}}) \geq 1 - \delta_0.$$

Remarks

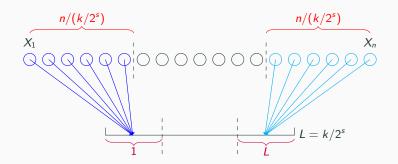
- Each mapping is an almost equal partition of the domain.
- Similar results hold for ℓ_2 in addition to TV.

Reduced to uniformity testing with $(k', \varepsilon') = (\frac{k}{2^s}, \frac{\varepsilon}{\sqrt{2^s}})$.



Recall one bit protocol. $n' = \frac{n}{k/2^s}$, therefore

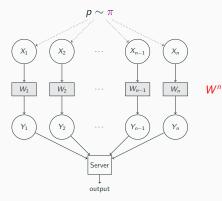
$$n' = O\left(\frac{\sqrt{k'}}{(\varepsilon')^2}\right) \Longrightarrow n = O\left(\frac{\sqrt{k}}{\varepsilon^2} \cdot \sqrt{k} \cdot \sqrt{\frac{k}{2^s} \vee 1}\right).$$



A small catch:

- boosting using repetition requires more shared randomness. ©
- solution: deterministic amplification. ©
- see full paper for details.

Lower Bound Idea



Learner: choose communication channel $W^n = (W_1, \dots, W_n)$ to **perform** constrained inference.

Adversary: choose prior π on the underlying distribution p to **confuse** the learner.

Role of shared randomness:

- without shared randomness: W^n is a product channel;
- with shared randomness: W^n is a mixture of product channels.

• Let $I(W^n \to \pi)$ be a suitable notion of "information" provided by a given channel W^n to a given prior π .

- Let $I(W^n \to \pi)$ be a suitable notion of "information" provided by a given channel W^n to a given prior π .
- Semimaxmin information:

$$\overline{\underline{I}} = I(W^n \to \pi)$$
.

- Let $I(W^n \to \pi)$ be a suitable notion of "information" provided by a given channel W^n to a given prior π .
- Semimaxmin information:

$$ar{\underline{I}} = \max_{\mathcal{W}: |\mathcal{W}| = 2^s} \qquad \qquad I(\mathcal{W}^n o \pi) \ .$$

- Let $I(W^n \to \pi)$ be a suitable notion of "information" provided by a given channel W^n to a given prior π .
- Semimaxmin information:

$$ar{I} = \max_{\mathcal{W}: |\mathcal{W}| = 2^s} \min_{\pi} \qquad \qquad I(\mathcal{W}^n \to \pi) \ .$$

- Let $I(W^n \to \pi)$ be a suitable notion of "information" provided by a given channel W^n to a given prior π .
- Semimaxmin information:

$$\underline{\bar{I}} = \max_{\mathcal{W}: |\mathcal{W}| = 2^s} \ \min_{\pi} \ \mathbb{E}_{\mathcal{W}^n \sim \mathsf{Unif}(\mathcal{W})}[I(\mathcal{W}^n \to \pi)].$$

- Let $I(W^n \to \pi)$ be a suitable notion of "information" provided by a given channel W^n to a given prior π .
- Semimaxmin information:

$$\underline{\bar{I}} = \max_{\mathcal{W}: |\mathcal{W}| = 2^s} \min_{\pi} \; \mathbb{E}_{\mathcal{W}^n \sim \mathsf{Unif}(\mathcal{W})} [I(\mathcal{W}^n \to \pi)].$$

• s = 0 gives the maxmin information for private randomness:

$$\underline{\overline{I}} \geqslant \underline{I} = \max_{W^n} \min_{\pi} I(W^n \to \pi).$$

- Let $I(W^n \to \pi)$ be a suitable notion of "information" provided by a given channel W^n to a given prior π .
- Semimaxmin information:

$$\bar{\underline{I}} = \max_{\mathcal{W}: |\mathcal{W}| = 2^s} \min_{\pi} \mathbb{E}_{W^n \sim \mathsf{Unif}(\mathcal{W})} [I(W^n \to \pi)].$$

• s = 0 gives the maxmin information for private randomness:

$$\bar{\underline{I}} \geqslant \underline{I} = \max_{W^n} \min_{\pi} I(W^n \to \pi).$$

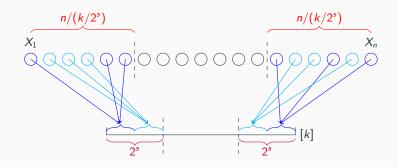
• $s=\infty$ gives the minmax information for public randomness:

$$\bar{\underline{I}} \leqslant \bar{I} = \min_{\pi} \max_{W^n} I(W^n \to \pi).$$

Conclusion

- randomness-optimal domain compression;
- tight tradeoffs on shared randomness.

Thank You! arXiv: 1907.08743



Reduced to uniformity testing with $(k', \varepsilon') = (\frac{2k}{2^s}, \frac{\varepsilon}{10\sqrt{2^s}})$ and $n' = \frac{n}{k/2^s}$, therefore

$$n' = O\left(\frac{\sqrt{k'}}{(\varepsilon')^2}\right) \Longrightarrow n = O\left(\frac{\sqrt{k}}{\varepsilon^2} \cdot \sqrt{k} \cdot \sqrt{\frac{k}{2^s} \vee 1}\right).$$

