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Distributed Hypothesis Testing

Does the data satisfy a postulated hypothesis/property?



Distributed Hypothesis Testing

| 1

i

(o
= R =
(=)



Distributed Hypothesis Testing

| 1

[

1

@

i

(o
= R =
(=)

Only constrained observations are available.
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o X =[k]:={0,1,2,...,k — 1}, a discrete set of size k.
e g: a known reference distribution.
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o Is p=gqg?

Test: A: [k]" — {0, 1}, which satisfies the following:
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Sample complexity: Smallest n for which such a test exists.



Identity Testing (IT), Goodness of Fit

o X =[k]:={0,1,2,...,k — 1}, a discrete set of size k.

e g: a known reference distribution.

e Given X" = Xj ... X, independent samples from unknown p.
o Is p=gqg?

Test: A: [k]” — {0, 1}, which satisfies the following:

With probability at least 2/3,
1L, ifp=gq
0, if lp—gllrv >e

© (\/1/52)

AX™) =




Simultaneous Message Passing (SMP) Protocol

Observations Y; = W;(X;) € Y. W; e W.

_________________________________________
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Local Information Constraints

e Communication. Only /-bits from each user.

y < 2(,'
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e Communication. Only /-bits from each user.
V] <24

e Privacy. W,'s satisfy p-local differentially privacy (LDP).
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Local Information Constraints

e Communication. Only /-bits from each user.
V] <24

e Privacy. W;'s satisfy p-local differentially privacy (LDP).
Wilylx) _ .

sup sup <
yeEY xx'eX |/V,'(y|X/)

e Restricted Measurement. E.g. Linear measurements, noisy

measurements.
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Private-coin protocols:
Ui, Us, ..., U,: independent random seeds at each user
W, = gi(Ui) e W.
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Private-coin protocols:
Ui, Us, ..., U,: independent random seeds at each user
W, = gi(Ui) e W.
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If W is convex,
W; = Ey,[gi(U;)].



How are Channels Selected

Public-coin protocols:
U: shared random seeds available to all players and the referee.
W; = gi(U) e W.

ﬁ



Previous Works

Acharya, Canonne, and Tyagi, 2019:

Public-Coin Private-Coin
Protocols Protocols
k
No Constraint 0 <£>
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Limited Shared-Randomness

What if we can only throw the dice s times (©(s) bits of
shared-randomness)?

W
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Our Contribution

Public-Coin | Private-Coin
Protocols Protocols

s-bit shared randomness

No 0 vk
Constraint &2
k |k k k
eoir | YE X o XY gk
g2 [2¢ g2 2¢ €% min{25/2,vk} 2¢

p-LDP @ (ﬁ E) 0 (ﬁ i) 0

£ p?

()
€2 min{25/2,Vk} p?
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Our Contribution

Public-Coin | Private-Coin <-bit shared randomness
Protocols Protocols
No 0 vk
Constraint &2
k |k k k
f-bit O £ — 1 0 ﬁi 0 £—
g2 [2¢ g2 2¢ €% min{25/2,vk} 2¢
k Vk k k k k
p-LDP (e)££ @£— ®£—
g2 p? g2 p2 g2 min{ZS/Z,\/E} p2

One bit of shared-randomness is worth 0.5 bit of communication!
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Overview of Our Approach

Use shared randomness to embed the statistical problem

into a smaller domain
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Overview of Our Approach

Use shared randomness to embed the statistical problem

into a smaller domain

High-level description

1. Domain compression: find a set F of mappings f : [k] — [L]
of size 2° such that for all distributions p, g supported on [k],

Pr (d(p',q")>6-d(p,q))>1-34
(4P a7) 2 6 d(pq)) 2 1=

holds for small L, large 6, small §, and suitable d;
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Overview of Our Approach

Use shared randomness to embed the statistical problem

into a smaller domain

High-level description
1. Domain compression: find a set F of mappings f : [k] — [L]
of size 2° such that for all distributions p, g supported on [k],

P dipf. g Y>0-d >1-6
4P a) 2 8- dlp, ) 2

holds for small L, large #, small §, and suitable d;

2. Reduction to small domain: players use the s-bit shared
randomness to apply the same mapping f € F to their data,
and use the private-randomness scheme for the small domain.
13



Estimation with Shared Randomness

Suppose s = 0 and £/ = 1:

n/k n/k n/k
— L
X1 : : : X"
Players WO OOOO W
Domain | 1 % 5 % % P ‘[k]

Reduced to uniformity testing with n’ = n/k, therefore

n’:O<§>2>n: (\/2/<k>
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Estimation with Shared Randomness

Suppose s = oo and £ = 1:

X1 Xn
Players (9. (9 (>C

Domain ! J (k]

Theorem (ACT’19)

Let S C [k] be a uniformly random subset of size k/2, and p° be
the restriction of p on (S,S€). For any p, q supported on [k],

01

P S _ |y >
o (16 - ¢l 2 22

lp— qHTV) > 0.01.

ii5)



Estimation with Shared Randomness

Suppose s = oo and £ = 1:

Domain | I K]

Reduced to uniformity testing with (k’,e") = (2, ﬁ) giving

n:o<(5\//’;z>:o<‘f.\/?>.

ii5)



Derandomization

Selecting a random subset is not randomness efficient.

©(k) bits of shared-randomness.
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Derandomization

Theorem (ACHST’20)
There exist m = O(k) and subsets Si,..., Sy C [k] of size k/2
such that for any p, g supported on [k],

0.1
P S ¢Ollrv > —=|lp — > 0.01.
sxumf{sr] ..... Sm} (Hp ey 2 \/EHP qhv) N
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Derandomization

Theorem (ACHST’20)

There exist m = O(k) and subsets Si,..., Sy C [k] of size k/2
such that for any p, g supported on [k],

0.1
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Remarks

e subsets Sy, ...,S,, chosen before p and g;

e m = Q(k) also necessary;
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Derandomization

Theorem (ACHST’20)

There exist m = O(k) and subsets Si,..., Sy C [k] of size k/2
such that for any p, g supported on [k],

0.1
P S— @y > —=|lp — > 0.01.
oo (197 =y = 2o dlh) 2

Remarks

e subsets Sy, ...,S,, chosen before p and g;

e m = Q(k) also necessary;

©(log k) bits suffice to achieve public-coin performance.
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Domain Compression: A Key Primitive

Domain Compression Theorem (ACHST’20)

There exists constants ¢, g, V0 € [\/c/k,+/c/2] and L > 0%k /c,
there exists a set F of mappings f : [k] — [L] of size O(>) such
that for all distributions p, g supported on [],

P F gl lov >0 |p— > 1— 6.
f~Uni:‘(]-')(||p q lrv >0 llp—qllrv) > 0
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Domain Compression: A Key Primitive

Domain Compression Theorem (ACHST’20)

There exists constants ¢, g, V0 € [\/c/k,+/c/2] and L > 0%k /c,
there exists a set F of mappings f : [k] — [L] of size O(>) such
that for all distributions p, g supported on [],

_ >0 - >1-—9
o f(f)(llp q [ty lp —alltv) > 0-

Parameter choices:

e Size | 7| = O(;). Select § = O(\/lz»s)

e New domain size L = O(0%k) = O(k/2%).

05’>\/52f5.
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Domain Compression: A Key Primitive

Domain Compression Theorem (ACHST’20)

There exists constants ¢, g, V0 € [\/c/k,+/c/2] and L > 0%k /c,
there exists a set F of mappings f : [k] — [L] of size O(>) such
that for all distributions p, g supported on [],

P F gl lov >0 |p— > 1— 6.
f~Uni:‘(]-')(||p q lrv >0 llp—qllrv) > 0

Remarks

e Each mapping is an almost equal partition of the domain.

e Similar results hold for £, in addition to TV.
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Estimation with Shared Randomness

X1 Xn
OO0O0OO0O0OO0O0OOOOOOOOOO
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Shared Randomness

Estimation with

/(k/2s) /(k/25)

i Il = k/2°

therefore

Recall one bit protocol. n’ = k/25'
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Estimation with Shared Randomness

n/(k/2°) n/(k/2°)
X1 I I X,,
0000000
\ : : 'L =k/2°
" I
1 | I L

A small catch:

e boosting using repetition requires more shared randomness. ®
e solution: deterministic amplification. ®

e see full paper for details.

19



Lower Bound ldea

p~w

Learner: choose communication
channel W™ = (Wq,--- ,W,) to
perform constrained inference.

E

1@

: -
/@ Adversary: choose prior 7 on the
underlying distribution p to
S confuse the learner.

output

Role of shared randomness:

e without shared randomness: W" is a product channel;

e with shared randomness: W" is a mixture of product channels. -



Semimaxmin Information

o Let /(W" — ) be a suitable notion of “information”
provided by a given channel W" to a given prior 7.
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Semimaxmin Information

o Let /(W" — ) be a suitable notion of “information”
provided by a given channel W" to a given prior 7.

e Semimaxmin information:

[~1

(W™ = 1) .
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Semimaxmin Information

o Let /(W" — ) be a suitable notion of “information”
provided by a given channel W" to a given prior 7.

e Semimaxmin information:

I= max I(W" — 7).
Wi W|=25
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e Semimaxmin information:
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Wi W|=2s
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Semimaxmin Information

o Let /(W" — ) be a suitable notion of “information”
provided by a given channel W" to a given prior 7.

e Semimaxmin information:

7: in Eyyn. ni NI(W" — :
1 W:W\?\X:? min Kyny fom)l( )]

e s = 0 gives the maxmin information for private randomness:

z>[:n‘)‘§anx min [(W" — ).

™
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Semimaxmin Information

o Let /(W" — ) be a suitable notion of “information”
provided by a given channel W" to a given prior 7.

e Semimaxmin information:

7: in Eyyn. ni NI(W" — :
1 W:rlr;\z)a‘x:? min Kyny fom)l( )]

e s = 0 gives the maxmin information for private randomness:
1> 1 = max min I(W" — 7).
wn w

e s = oo gives the minmax information for public randomness:

I <T=min max I(W" — 7).
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Conclusion

e randomness-optimal domain compression;

e tight tradeoffs on shared randomness.

Thank Youl!
arXiv: 1907.08743
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Estimation with Shared Randomness

n/(k/25) /(k/25)
®Q§§§£:0000022§2%9Q
1 % (K]
\ ! 2

Reduced to uniformity testing with (k’,¢’) = (2%, —£) and

= therefore

k/2sv

NG ko~ [k .
n/:O<(8/)2 == n=0 :2'Vk'\ﬁﬁ§\v/1 .
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Estimation with Shared Randomness
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