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Distributed Hypothesis Testing

Does the data satisfy a postulated hypothesis/property?
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Distributed Hypothesis Testing

Only constrained observations are available.
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Identity Testing (IT), Goodness of Fit

• X = [k] := {0, 1, 2, ..., k − 1}, a discrete set of size k .

• q : a known reference distribution.

• Given X n = X1 . . .Xn independent samples from unknown p.

• Is p = q?

• Test: A : [k]n → {0, 1}, which satisfies the following:
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Identity Testing (IT), Goodness of Fit

• X = [k] := {0, 1, 2, ..., k − 1}, a discrete set of size k .

• q : a known reference distribution.

• Given X n = X1 . . .Xn independent samples from unknown p.

• Is p = q?

• Test: A : [k]n → {0, 1}, which satisfies the following:

With probability at least 1− δ,

A(X n) =

1, if p = q

0, if ‖p − q‖TV > ε
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Identity Testing (IT), Goodness of Fit

• X = [k] := {0, 1, 2, ..., k − 1}, a discrete set of size k .

• q : a known reference distribution.

• Given X n = X1 . . .Xn independent samples from unknown p.

• Is p = q?

• Test: A : [k]n → {0, 1}, which satisfies the following:

With probability at least 2/3,

A(X n) =

1, if p = q

0, if ‖p − q‖TV > ε

Sample complexity: Smallest n for which such a test exists.
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Identity Testing (IT), Goodness of Fit

• X = [k] := {0, 1, 2, ..., k − 1}, a discrete set of size k .

• q : a known reference distribution.

• Given X n = X1 . . .Xn independent samples from unknown p.

• Is p = q?

• Test: A : [k]n → {0, 1}, which satisfies the following:

With probability at least 2/3,

A(X n) =

1, if p = q

0, if ‖p − q‖TV > ε

Θ
(√

k/ε2
)
.
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Simultaneous Message Passing (SMP) Protocol

Observations Yi = Wi (Xi ) ∈ Y. Wi ∈ W.
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Local Information Constraints

• Communication. Only `-bits from each user.

|Y| ≤ 2`.

• Privacy. Wi ’s satisfy ρ-local differentially privacy (LDP).

sup
y∈Y

sup
x ,x ′∈X

Wi (y |x)

Wi (y |x ′)
≤ eρ.

• Restricted Measurement. E.g. Linear measurements, noisy

measurements.
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How are Channels Selected
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How are Channels Selected

Private-coin protocols:

U1,U2, ...,Un : independent random seeds at each user

Wi = gi (Ui ) ∈ W.

……

W1 W2 WnW4W3 ……
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How are Channels Selected

Private-coin protocols:

U1,U2, ...,Un : independent random seeds at each user

Wi = gi (Ui ) ∈ W.

……

W1 W2 WnW4W3 ……

If W is convex,

W̄i = EUi
[gi (Ui )].
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How are Channels Selected

Public-coin protocols:

U : shared random seeds available to all players and the referee.

Wi = gi (U) ∈ W.

W1 W2 WnW4W3 ……
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Previous Works

Acharya, Canonne, and Tyagi, 2019:

Public-Coin 
Protocols

Private-Coin
Protocols

No Constraint Θ "
ε$

ℓ-bit Θ "
ε$

"
2ℓ Θ "

ε$
"
2ℓ

'-LDP Θ "
ε$

"
'$ Θ "

ε$
"
'$
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Limited Shared-Randomness

What if we can only throw the dice s times (Θ(s) bits of

shared-randomness)?

W1 W2 WnW4W3 ……
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Our Contribution

Public-Coin 
Protocols

Private-Coin
Protocols !-bit shared randomness

No 
Constraint Θ #

ε%

ℓ-bit Θ #
ε%

#
2ℓ Θ #

ε%
#
2ℓ Θ #

ε%
#

min{2,/%, #} 2ℓ

0-LDP Θ #
ε%

#
0% Θ #

ε%
#
0% Θ #

ε%
#

min{2,/%, #} 0%
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Our Contribution

Public-Coin 
Protocols

Private-Coin
Protocols !-bit shared randomness

No 
Constraint Θ #

ε%

ℓ-bit Θ #
ε%

#
2ℓ Θ #

ε%
#
2ℓ Θ #

ε%
#

min{2,/%, #} 2ℓ

0-LDP Θ #
ε%

#
0% Θ #

ε%
#
0% Θ #

ε%
#

min{2,/%, #} 0%

One bit of shared-randomness is worth 0.5 bit of communication!
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Overview of Our Approach

Use shared randomness to embed the statistical problem

into a smaller domain

12



Overview of Our Approach

Use shared randomness to embed the statistical problem

into a smaller domain

High-level description

1. Domain compression: find a set F of mappings f : [k]→ [L]

of size 2s such that for all distributions p, q supported on [k],

Pr
f∼Unif(F)

(d(pf , qf ) ≥ θ · d(p, q)) ≥ 1− δ

holds for small L, large θ, small δ, and suitable d ;

2. Reduction to small domain: players use the s-bit shared

randomness to apply the same mapping f ∈ F to their data,

and use the private-randomness scheme for the small domain.
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Estimation with No Shared Randomness

Suppose s = 0 and ` = 1:

Domain [k]

Players

X1 Xn

1 2 k

n/k n/k n/k

Reduced to uniformity testing with n′ = n/k, therefore

n′ = O

(√
k

ε2

)
=⇒ n = O

(√
k

ε2
· k

)
.
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Estimation with Unlimited Shared Randomness

Suppose s =∞ and ` = 1:

Domain [k]

Players

X1 Xn

S Sc

Theorem (ACT’19)

Let S ⊆ [k] be a uniformly random subset of size k/2, and pS be

the restriction of p on (S , Sc). For any p, q supported on [k],

Pr
S

(
‖pS − qS‖TV ≥

0.1√
k
‖p − q‖TV

)
≥ 0.01.
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Estimation with Unlimited Shared Randomness

Suppose s =∞ and ` = 1:

Domain [k]

Players

X1 Xn

S Sc

Reduced to uniformity testing with (k ′, ε′) = (2, ε
10
√
k

), giving

n = O

(√
k ′

(ε′)2

)
= O

(√
k

ε2
·
√
k

)
.
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Derandomization

Selecting a random subset is not randomness efficient.

Θ(k) bits of shared-randomness.
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Derandomization

Theorem (ACHST’20)

There exist m = O(k) and subsets S1, . . . ,Sm ⊆ [k] of size k/2

such that for any p, q supported on [k],

Pr
S∼Unif{S1,...,Sm}

(
‖pS − qS‖TV ≥

0.1√
k
‖p − q‖TV

)
≥ 0.01.
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Remarks

• subsets S1, . . . ,Sm chosen before p and q;

• m = Ω(k) also necessary;
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Derandomization

Theorem (ACHST’20)

There exist m = O(k) and subsets S1, . . . ,Sm ⊆ [k] of size k/2

such that for any p, q supported on [k],

Pr
S∼Unif{S1,...,Sm}

(
‖pS − qS‖TV ≥

0.1√
k
‖p − q‖TV

)
≥ 0.01.

Remarks

• subsets S1, . . . ,Sm chosen before p and q;

• m = Ω(k) also necessary;

Θ(log k) bits suffice to achieve public-coin performance.
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Domain Compression: A Key Primitive

Domain Compression Theorem (ACHST’20)

There exists constants c , δ0, ∀θ ∈ [
√

c/k,
√
c/2] and L ≥ θ2k/c,

there exists a set F of mappings f : [k]→ [L] of size O( 1
θ2 ) such

that for all distributions p, q supported on [k],

Pr
f∼Unif(F)

(‖pf − qf ‖TV ≥ θ · ‖p − q‖TV) ≥ 1− δ0.
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Domain Compression Theorem (ACHST’20)

There exists constants c , δ0, ∀θ ∈ [
√

c/k,
√
c/2] and L ≥ θ2k/c,

there exists a set F of mappings f : [k]→ [L] of size O( 1
θ2 ) such

that for all distributions p, q supported on [k],

Pr
f∼Unif(F)

(‖pf − qf ‖TV ≥ θ · ‖p − q‖TV) ≥ 1− δ0.

Parameter choices:

• Size |F| = O( 1
θ2 ). Select θ = O( 1√

2s
).

• New domain size L = O(θ2k) = O(k/2s).

• ε′ > ε√
2s

.
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Domain Compression: A Key Primitive

Domain Compression Theorem (ACHST’20)

There exists constants c , δ0, ∀θ ∈ [
√

c/k,
√
c/2] and L ≥ θ2k/c,

there exists a set F of mappings f : [k]→ [L] of size O( 1
θ2 ) such

that for all distributions p, q supported on [k],

Pr
f∼Unif(F)

(‖pf − qf ‖TV ≥ θ · ‖p − q‖TV) ≥ 1− δ0.

Remarks

• Each mapping is an almost equal partition of the domain.

• Similar results hold for `2 in addition to TV.
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Estimation with Some Shared Randomness

L = k/2s

X1 Xn

1 L

Reduced to uniformity testing with (k ′, ε′) = ( k
2s ,

ε√
2s

).
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Estimation with Some Shared Randomness

L = k/2s

X1 Xn

1 L

n/(k/2s) n/(k/2s)

Recall one bit protocol. n′ = n
k/2s , therefore

n′ = O

(√
k ′

(ε′)2

)
=⇒ n = O

(√
k

ε2
·
√
k ·
√

k

2s
∨ 1

)
.
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Estimation with Some Shared Randomness

L = k/2s

X1 Xn

1 L

n/(k/2s) n/(k/2s)

A small catch:

• boosting using repetition requires more shared randomness. /

• solution: deterministic amplification. ,

• see full paper for details.
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Lower Bound Idea

X1 X2
. . . Xn−1 Xn

W1 W2
. . . Wn−1 Wn W n

Y1 Y2
. . . Yn−1 Yn

p ∼ π

Server

output

Learner: choose communication

channel W n = (W1, · · · ,Wn) to

perform constrained inference.

Adversary: choose prior π on the

underlying distribution p to

confuse the learner.

Role of shared randomness:

• without shared randomness: W n is a product channel;

• with shared randomness: W n is a mixture of product channels.
20



Semimaxmin Information

• Let I (W n → π) be a suitable notion of “information”

provided by a given channel W n to a given prior π.

• Semimaxmin information:

Ī =

max
W:|W|=2s

min
π

EW n∼Unif(W)[

I (W n → π)

]

.

• s = 0 gives the maxmin information for private randomness:

Ī > I = max
W n

min
π

I (W n → π).

• s =∞ gives the minmax information for public randomness:

Ī 6 Ī = min
π

max
W n

I (W n → π).

21
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Ī > I = max
W n

min
π

I (W n → π).

• s =∞ gives the minmax information for public randomness:
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Ī > I = max
W n

min
π

I (W n → π).

• s =∞ gives the minmax information for public randomness:
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Conclusion

• randomness-optimal domain compression;

• tight tradeoffs on shared randomness.

Thank You!

arXiv: 1907.08743
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Estimation with Some Shared Randomness

[k]

X1 Xn

2s 2s

n/(k/2s) n/(k/2s)

Reduced to uniformity testing with (k ′, ε′) = ( 2k
2s ,

ε
10
√

2s
) and

n′ = n
k/2s , therefore

n′ = O

(√
k ′

(ε′)2

)
=⇒ n = O

(√
k

ε2
·
√
k ·
√

k

2s
∨ 1

)
.
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