Geometric Lower Bounds for Distributed Parameter Estimation under Communication Constraints

Yanjun Han (Stanford EE)

Joint work with:

Ayfer Özgür Tsachy Weissman Stanford EE Stanford EE

COLT 2018, Stockholm, Sweden

Distributed Parameter Estimation

Distributed Parameter Estimation

Parameters:

- n: number of sensors
- k: number of bits
- ► d: dimensionality

Distributed Parameter Estimation

Blackboard Communication Protocol

Blackboard Communication Protocol

General Lower Bounds

Theorem

Fix any θ_0 , let S(X) be the score function of (p_θ) around $\theta = \theta_0$:

$$S(X) = rac{\partial}{\partial heta} \log p_{ heta}(X) \bigg|_{ heta = heta_0}$$

Assuming mild regularity conditions,

$$\inf_{schemes} \sup_{\theta} \mathbb{E}_{\theta} \|\hat{\theta} - \theta\|_2^2 \gtrsim \frac{d}{n \text{Var}(S(X))} \vee \frac{d^2}{n 2^k \text{Var}(S(X))} \vee \frac{d^2}{n k \|S(X)\|_{\psi_2}^2}$$

Examples

Statistical Model	Centralized MSE	Distributed MSE
$egin{aligned} & P_{ heta} = \mathcal{N}(\mu, I_d) \ & (ZDJW'13, GMN'14) \end{aligned}$	<u>d</u> n	$\frac{d}{n} \cdot \frac{d}{k}$
$P_{\theta} = (\theta_1, \cdots, \theta_d)$ (HMOW'18)	$\frac{1}{n}$	$\frac{1}{n} \cdot \frac{d}{2^k}$
$egin{aligned} & P_{ heta} = \prod_{i=1}^d ext{Bern}(heta_i), \ & heta_i \in [0,1] \; (ext{ZDJW'13}) \end{aligned}$	<u>d</u> n	$\frac{d}{n} \cdot \frac{d}{k}$
$egin{aligned} & P_{ heta} = \prod_{i=1}^d ext{Bern}(heta_i), \ & \sum_{i=1}^d heta_i = 1 \end{aligned}$	$\frac{1}{n}$	$\frac{1}{n} \cdot \frac{d}{2^k}$

Examples

Statistical Model	Centralized MSE	Distributed MSE
$egin{aligned} & \mathcal{P}_{ heta} = \mathcal{N}(\mu, \mathit{I_d}) \ & (ZDJW'13, GMN'14) \end{aligned}$	<u>d</u> n	$\frac{d}{n} \cdot \frac{d}{k}$
$P_{\theta} = (\theta_1, \cdots, \theta_d)$ (HMOW'18)	$\frac{1}{n}$	$\frac{1}{n} \cdot \frac{d}{2^k}$
$egin{aligned} & P_{ heta} = \prod_{i=1}^d extsf{Bern}(heta_i), \ & heta_i \in [0,1] \; (extsf{ZDJW'13}) \end{aligned}$	d/n	$\frac{d}{n} \cdot \frac{d}{k}$
$egin{aligned} & P_{ heta} = \prod_{i=1}^d extsf{Bern}(heta_i), \ & \sum_{i=1}^d heta_i = 1 \end{aligned}$	$\frac{1}{n}$	$\frac{1}{n} \cdot \frac{d}{2^k}$

Product Bernoulli model:

$$\theta_0 = \frac{1}{2} : \frac{d^2}{n} \left(\frac{1}{2^k \cdot 1} \vee \frac{1}{k \cdot 1} \right) = \frac{d^2}{nk}$$

$$\theta_0 = \frac{1}{d} : \frac{d^2}{n} \left(\frac{1}{2^k \cdot d} \vee \frac{1}{k \cdot d^2} \right) = \frac{d}{n2^k}$$

Red - Sensor 1, Blue - Sensor 2, Green - Sensor 3

Geometric Inequalities

- ► Let X = (X₁, · · · , X_d) be a random vector with independent and zero-mean entries
- ► Given P(A) = t, aim to maximize ||E[X|A]||₂

Geometric Inequalities

- Let X = (X₁, · · · , X_d) be a random vector with independent and zero-mean entries
- ► Given P(A) = t, aim to maximize ||E[X|A]||₂

Theorem

• If $\max_{i \in [d]} \operatorname{Var}(X_i) \leq \sigma^2$,

$$\|\mathbb{E}[X|A]\|_2^2 \leq \sigma^2 \cdot rac{1 - \mathbb{P}(A)}{\mathbb{P}(A)}$$

• If
$$\max_{i \in [d]} \|X_i\|_{\psi_2}^2 \le \sigma^2$$
,

$$\|\mathbb{E}[X|A]\|_2^2 \leq C\sigma^2 \cdot \log rac{1}{\mathbb{P}(A)}$$

Strong data processing inequality (SDPI):

$$I(\Theta; Y) \leq \gamma^*(\Theta, X)I(X; Y)$$

Strong data processing inequality (SDPI):

```
I(\Theta; Y) \leq \gamma^*(\Theta, X)I(X; Y)
```

► Θ - X determined by statistical model X ~ P_Θ, X - Y subject to communication constraints

Strong data processing inequality (SDPI):

```
I(\Theta; Y) \leq \gamma^*(\Theta, X)I(X; Y)
```

- ► Θ X determined by statistical model X ~ P_Θ, X Y subject to communication constraints
- leads to tight results in Gaussian location model

Strong data processing inequality (SDPI):

 $I(\Theta; Y) \leq \gamma^*(\Theta, X)I(X; Y)$

- Θ X determined by statistical model X ~ P_Θ, X Y subject to communication constraints
- leads to tight results in Gaussian location model
- result in linear dependence on k, while tight dependence may be exponential

Strong data processing inequality (SDPI):

 $I(\Theta; Y) \leq \gamma^*(\Theta, X)I(X; Y)$

- ► Θ X determined by statistical model X ~ P_Θ, X Y subject to communication constraints
- leads to tight results in Gaussian location model
- result in linear dependence on k, while tight dependence may be exponential
- unclear operational meaning

Strong data processing inequality (SDPI):

 $I(\Theta; Y) \leq \gamma^*(\Theta, X)I(X; Y)$

- Θ X determined by statistical model X ~ P_Θ, X Y subject to communication constraints
- leads to tight results in Gaussian location model
- result in linear dependence on k, while tight dependence may be exponential
- unclear operational meaning

Thank you!