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Problem: estimation of functionals

Given i.i.d. samples Xi, -+, X, ~ P, we would like to estimate a
one-dimensional functional F(P) € R:

e Parametric case: P = (p1,- -, ps) is discrete, and
S
F(P)=>_1(p)

High dimensional: S 2 n

@ Nonparametric case: P is continuous with density f, and

F(P) = / 1((x))dx



Parametric case: when the functional is smooth...

When /(+) is everywhere differentiable...

Hajek—Le Cam Theory

The plug-in approach F(P,) is asymptotically efficient, where P, is the
empirical distribution




Nonparametric case: when the functional is smooth...

When I(-) is four times differentiable with bounded /(*), Taylor expansion
yields

/I(f(x))dx = / [/(f) + IO = F)+ %1(2)(1?)(1‘ — f)?

IO — PP+ O((F ~ 7)) ox

where f is a “good” estimator of f (e.g., a kernel estimate)
@ Key observation: suffice to deal with linear (see, e.g., Nemirovski'00),
quadratic (Bickel and Ritov'88, Birge and Massart'95) and cubic
terms (Kerkyacharian and Picard'96) separately.

@ Require bias reduction



What if /(-) is non-smooth?

Bias dominates when /(-) is non-smooth:

Theorem (/1 norm of Gaussian mean, Cai—Low’11)

For y; ~ N(6;,02),i =1,--- ,n and F(6) = n~! > 1 16il, the plug-in
estimator satisfies

2

2 g

sup Ep (Fy) - FO)’ = 2 + &
= squared bias =~~~
variance

Theorem (Discrete entropy, Jiao—Venkat—H.-\Weissman'15)

For X1, -+, Xn~ P =(p1,---,ps) and F(P) = 37_, —pin p;, the
plug-in estimator satisfies

52 In S)2
sup Ep(F(P)— F(P)2= 25 + (In 5)
PeMs \n/ <

squared bias variance

29




The optimal estimator

Theorem (¢1 norm of Gaussian mean, Cai—Low’11)
For yi ~ N(0;,02),i =1,--- ,n and F() = n=1 3", |6;

’

. 2 2
inf sup Eq (F . F(e)) = 7
F OeRr" M

squared bias

Theorem (Discrete entropy, Jiao—Venkat—H.-\Weissman'15)
FOfX]_,"' 7Xn ~P= (plv'” 7p5) and F(P) = Z,'Szl_pilnpi/

R 2 | 2
inf sup Ep(F — F(P))? < ls . 4 {In5)
i i " o

squared bias ~ Variance

Effective sample size enlargement: n samples — nln n samples



Optimal estimator for /1 norm

! !

! !
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Optimal estimator for entropy

f(pi)

unbiased estimate,
of best ponnomiaIi
approximation of !

order coInn

| A £ (Bi)pi(1—pi
: f(pi) — (p )2Pn( Bi)
“nonsmooth” i “smooth
cilnn 1 pi
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The general recipe

For a statistical model (Py : 6 € ©), consider estimating the functional
F(#) which is non-analytic at ©9 C ©, and 6, is a natural estimator for 6.

@ Classify the Regime: Compute 0, and declare that we are in the
“non-smooth” regime if é,, is “close” enough to ©g. Otherwise
declare we are in the “smooth” regime;

@ Estimate:

o If HA,, falls in the “smooth” regime, use an estimator “similar” to F(GA,,)
to estimate F(6);

o If B, falls in the “non-smooth” regime, replace the functional F(6) in
the “non-smooth” regime by an approximation Fpp(8) (another
functional) which can be estimated without bias, then apply an
unbiased estimator for the functional Fap(6).
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@ How to determine the “non-smooth” regime?

e In the “smooth” regime, what does “ ‘similar’ to F(0,)" mean
precisely?

@ In the “non-smooth” regime, what approximation (including which
kind, which degree, and on which region) should be employed?

o What if the domain of @, is different from (usually larger than) that
of 67
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© High-dimensional Parametric Setting
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Estimation of information divergence

Given joint independent samples Xi,- -+, X ~ P = (p1,---, ps) and

Yi, -y Ya~ Q=1(q1, - ,qs), we would like to estimate the L; distance
and the Kullback-Leibler (KL) divergence:

S
IP = QllL=>_Ipi — ail

i=1

S n PP
D(P(Q) {Zi_l piln 2 if P<Q,

+o00 otherwise.

In the latter case, we assume a bounded likelihood ratio: p;/q; < u(S) for
any i.
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Localization

Definition (Localization)

Consider a statistical model (Py)pco and an estimator 0 € © of 0, where
© C ©. A localization of level r € [0,1], or an r-localization, is a

collection of sets {U(x)}, g, where U(x) C © for any x € 6, and

supPg(0 ¢ U)) <r.
0cO

o Naturally induce a reverse localization V() = {0 : U(d) > 6}
@ Localization always exists, but we seek for a small one

o Different from confidence set: usually r =< n=#
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A

Localization in Gaussian model: r =< n—
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Localization in Binomial model: r < min{m, n} =4

6=0=0,1]
np ~ B(n, p)
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Localization in Binomial model: r < min{m, n} =4

~ Inn ~ plnn
| Inn
0 ueg) |n V(p) .
p < oo p>nr §5=0=10,1]

np ~ B(n, p)



Localization in Binomial model: r < min{m, n} 4

_Inn ~ 4/ RInn
up) | Vi)
p) | n P
0 _ 1
p < oo p>thr  §—0=10,1

np ~ B(n, p)

© = [0, 1] : (mpr, np2) ~ B(m, p1) x B(n, p2)




Localization in Binomial model: r < min{m, n} 4

_Inn ~ 4/ RInn
up) | Vi)
p) | n P
0 _ 1
p < oo p>thr  §—0=10,1

np ~ B(n, p)

© = [0, 1] : (mpr, np2) ~ B(m, p1) x B(n, p2)




Localization in Binomial model: r < min{m, n} 4

_Inn ~ 4/ RInn
up) | Vi)
p) | n P
0 _ 1
p < oo p>thr  §—0=10,1

np ~ B(n, p)

© = [0, 1] : (mpr, np2) ~ B(m, p1) x B(n, p2)




Localization in Binomial model: r < min{m, n} 4

_Inn ~ 4/ RInn
up) | Vi)
p) | n P
0 _ 1
p < oo p>thr  §—0=10,1

np ~ B(n, p)

© = [0, 1] : (mpr, np2) ~ B(m, p1) x B(n, p2)

0 = (p1, p2)




Localization in Binomial model: r < min{m, n} 4

_Inn ~ 4/ RInn
up) | Vi)
p) | n P
0 _ 1
p < oo p>thr  §—0=10,1

np ~ B(n, p)

© = [0, 1] : (mpr, np2) ~ B(m, p1) x B(n, p2)

17/49



The role of localization: ¢; norm estimation
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The role of localization: entropy estimation

f(pi)

unbiased estimate,
of best ponnomiaIi
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The role of localization: entropy estimation

f(pi)

unbiased estimate,
of best ponnomiaIi
approximation of !

order coInn

“nonsmooth”

f(p;) — F%ﬁﬂgﬁl—ﬁﬂ

Pi
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Determine the “non-smooth” regime

Analysis of the plug-in approach:

1(0) = 10) + 1'(0)(Bs — 6) + L1"(€)(Fn — 0)°

o Plug-in works well when 6, ¢ &g (recall that /(-) is non-analytic in
©o C @)
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Determine the “non-smooth” regime

Analysis of the plug-in approach:

1(0) = 10) + 1'(0)(Bs — 6) + L1"(€)(Fn — 0)°

o Plug-in works well when 6, ¢ &g (recall that /(-) is non-analytic in
©o C @)

The criteria

Given a suitable r-localization U(-), we declare that @ falls into the
“non-smooth” regime © ;4 if

0 c Uéeéo U(é\)

and in the “smooth” regime ©g otherwise.

dea: supgco, Po(fn € ©0) < suppee, Po(0 ¢ U(Bn)) < r

20/49



There is something more...

However, we cannot make decisions based on unknown 8!

6=06
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“Non-smooth” regime: approximation

Find an approximate functional lLppr(6) = /(6), and use an unbiased
estimate T(6,), i.e., ET(0n) = Lppr(6).

e Type: polynomial in Multinomial, Poisson and Gaussian models (only
polynomials have unbiased estimate!)

e Region: suffice to use U(A,) (6 € U(#,) w.h.p.)

@ Degree: choose a suitable one to balance bias and variance
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“Smooth” regime: bias corrected “plug-in”

Bias correction based on Taylor expansion:

Can we find an unbiased estimator for the RHS?
@ Solution: sample splitting to obtain independent samples éf,l),éf,z)

@ Use the following estimator:

) r k) gy K Al NN
T(0,) = Z IE(QI”) Z <j<>51(9$7 ))(_02 ))k J

k=0 ‘ j=0

where S;(-) is an unbiased estimator of &/, i.e., IESJ-(QASE)) =0
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Estimator of ¢; distance

I(x,y) = |x — y|, non-analytic regime &y = {(x,y) : x = y € [0,1]}
q
1
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Estimator of ¢; distance

I(x,y) = |x — y|, non-analytic regime &y = {(x,y) : x = y € [0,1]}

q
1 A
O
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Estimator of ¢; distance

I(x,y) = |x — y|, non-analytic regime &y = {(x,y) : x = y € [0,1]}
q
1

- (P3,43) O
U(p1, 41

. (ﬁyql)@)ns

polynomial approximation
of [t| (t=p—q)

n

_ * (P22
2D polynomial
approximation

of [p — g

0 Inn 1



Estimator of ¢; distance

I(x,y) = |x — y|, non-analytic regime &y = {(x,y) : x = y € [0,1]}
q
1

° (ﬁ37 63) @O
plug-in: |p3 — 43| U(p1,

- (P1{01)0 s
polynomial approximation
of |t| (t=p—q)

n N + \/a)
- (P22 ~
2D polynomial O,
approximation
of [p — g 0 - P
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Performance analysis

Let the approximation degree be K, our estimator T satisfies
2 2
oK . SK=(Inn)

Slinn
2 2

. Shn
Bpay(T 1P - Q2 S 227 +

Choosing K =< In n, we obtain

Theorem (Optimal estimator for ¢; distance)

The minimax risk in estimating {1 distance is given by

A S
inf sup E T—IP-Q|1)? =
1 P,Qeif)\/ts P.o)(T = )" = ——

Effective sample size enlargement:

Theorem (Empirical estimator for ¢; distance)

The maximum risk of the empirical estimator is given by

S
sup  Epq)(|1Pn — Qulls — [P = Qll2)* = =
QeMs n

)




Some remarks

Additional remarks:
e For large (B, §) in the non-smooth regime, approximating over the
whole stripe fails to give the optimal risk

e For small (p, §) in the non-smooth regime, best 2D polynomial
approximation is not unique and not all can work:

o Any 1D polynomial (i.e., P(x,y) = p(x — y)) cannot work!
o We use the decomposition

x =yl = (Vx+ Vy)Ivx =yl

and approximate two terms separately.
o Still open in general.

@ Valiant and Valiant'11 obtains the correct sample complexity
n> % but suboptimal in the convergence rate
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Estimator for KL divergence

I(p,q) = ping, © ={(p,q) € [0,1]*: p < u(S)q} C © = [0, 1]
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Estimator for KL divergence
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Estimator for KL divergence

I(p,q) = ping, © ={(p,q) € [0,1]*: p < u(S)q} C © = [0, 1]
p

1 __________________________
éO C:)ns

3 o
: (6717131)

+ Cllnm ,,,,,,,,,,,,,,,,,, lug-in with order-one
p2 2 - p2 |as correction

P2 >< 1D polynomial

Por---m A 2) apprOX|mat|on of Ing
ﬁ2 1 Cllnr;m i %22 ] | :
alnm|] ! | :
71 (4a7Ps) | 2D pdlynomial
| approkimation
0 1 1 q
1 a 1 /alnm a alnn u(ls)
s (B B/omm ) .



Some remarks

Additional remarks:
@ Best polynomial approximation over general polytopes have not been
solved until very recently!

@ Room for improvement: use a single polynomial P(x,y) to
approximate x Iny whenever y < &n“” where P(x,y) = xq(y), and

yq(y) + C = arg min max |zInz — p(z)|
pEPoly ZE[O,L:"]

28 /49



Performance analysis

Theorem (Optimal estimator for KL divergence)

Ifm2 2 s N2 Sf,'](;g) and u(S) 2 (InS)?, we have

A | 2
mf sup EP7Q(T—D(PHQ))2 — ( S ( ))2 ( n U(S)) +U(5)
T P,QeMs s mInm ninn m n

and our estimator attains the upper bound and does not require the
knowledge of S nor u(S).

The empirical estimator D(Pp[|Qp) with Q) = max{n~", Q,}:

Theorem (Empirical estimator for KL divergence)

The empirical estimator satisfies

u nu 2 u(S
swp  Ep o(D(Pnl|Q)-D(PIQ))2 = (5424052 (Inu(S))”  u(S)
P,QeMs s) m n . ”J




Summary: the refined general recipe

Let {U(x)}xecer be a satisfactory localization.

O Classify the Regime:
o For the true parameter 6, declare that 6 is in the “non-smooth” regime
if 0 is “close” enough to ©j in terms of localization. Otherwise declare
0 is in the “smooth” regime;
o Compute én, and declare that we are in the “non-smooth” regime if
the localization of 8, falls into the “non-smooth” regime of 6.
Otherwise declare we are in the “smooth” regime;

@ Estimate:

o If OA,, falls in the “smooth” regime, use an estimator “similar” to F(GA,,)
to estimate F(6);

o If @, falls in the “non-smooth” regime, replace the functional F(6) in
the "non-smooth” regime by an approximation Fpp(6) (another
functional which well approximates F(6) on U(f,)) which can be
estimated without bias, then apply an unbiased estimator for the
functional Fappr(6).
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The problem

In the Gaussian white noise model
o
Vn

with f € H*(L), we would like to estimate the following functional in Lp

risk:
A ! %
], 2 (/0 \f(t)th) .

Holder Ball

f € C[0,1] belongs to the Holder ball #*(L) with s = m+r > 0,
m e N, r € (0,1], if and only if

dY, = f(t)dt + —dB,,  t€][0,1]

(m)(x) — £(m)
wp 70 = A7)

0<x<y<1 Ix =yl
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Equivalence between nonparametric models

Under certain smoothness conditions (s > 1/2 for Holder balls), Brown et
al. proved the asymptotic equivalence between the following models:

@ Gaussian white noise model:

dY, = f(t)dt + inch te0,1]

NG
@ Regression model: for iid A(0,1) noise {§i}7 4,
yi = f(i/n)+ o§, i=1,2,---,n

@ Poisson process: generate N = Poi(n) iid samples from common
density g (g = 2,0 = 1/2)

@ Density estimation model: generate n iid samples from common
density g (g = 2,0 = 1/2)

33/49



Lepski's result

Theorem (Lepski's result on L, norm)

For even r, we have

1
. 2\ 2 s
irlf sup ]:Ef‘(T—”f”r) — n 2+i-1/r
T fes(L)

while for non-even r, we have the lower bound

1
. 2\ 2 In n)~ =1
nf sup E (T f]))°) 2 0 ET
T fens(L) (Inn)

and for r = 1, we have the upper bound

NI

T fers(L

A 2 s
(inf sup )Ef(T—||f||1) ) < (nlnn)"=h
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The Besov ball setting

Instead of the Holder ball H*(L), we use the following Besov ball
(generalized Lipschitz class)

B (L) £ {f € LP[0,1] : |f|5s . < L}

with 1 < p < co. Properties:
° By DB forp<p

e B, o, = H?® for non-integer s

Intuition of Besov ball
f € B, if and only if [|F(9)]|, < 0.
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Main result for L; norm

Theorem (Minimax risk for estimating L; norm)

Foranys >0 and 1 < p < oo, we have

2
(mf sup IE,c( / |f(t) |dt)> (nlnn)_ﬁrl
T feBs (L)
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Natural estimator for f: the kernel estimate for s <1

If f € H°(L) with 0 < s <1, consider the simple averaging (rectangle
window) with bandwidth 2h:

Bias-variance analysis:
e Bias: [Ef,(x) — f(x)| = | 2= fx+hh(f(t) — f(x))|dt < Lh*
o Variance: Var(fy(x)) = 7 [F11

@ Optimal bandwidth: h = n_Flﬂ

General Besov ball

For general Besov ball f € B;, . (L), the wavelet basis is the optimal basis
(attains the Kolmogorov n-width), and the associated kernel K} with
bandwidth h satisfies

If — Kufllp < LA
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Bias-variance tradeoff

Bias/Variance tradeoff
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First-stage approximation: approximation of function

Consider a kernel estimate of f with bandwidth h:

! —u
f,,(t):/0 %K(th ). F(u)du

1 —u
) = [ GRS,

e For suitable kernel, we have |f(t) — f(t)| < b°.
@ The observation model becomes

fo(t) = fa(t) + Anén(t)

with A = ﬁ and &p(t) ~ N(0,1).
@ {p(s) and Ex(t) are independent whenever |s — t| > h.
Idea: estimate ||f4||1 instead of ||f||1, i.e., approximate ||f]|1 by ||f4|]1
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Second-stage approximation: approximation of functional

Second-stage approximation:
@ Polynomial approximation of |x| on [—c1ApVIn n, ci ApVIn n:

K
|x| =~ Z arxX

k=0

o Let Q(fy(t)) be the unbiased estimator of S"K_ afy(t)k
@ Split samples, and estimate |f,(t)| via

T(t) = Q(fa1)1(|fh2| < caXnVInn) + |fo1|1(|fn2] > ciXnVInn)

Estimator construction:
~ 1
T:/ T(t)dt
0
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Error analysis

Three types of errors:
e Approximation error I: |||f||1 — ||[falli| < [|f — fulli < ||f — fullp S h°
e Approximation error |l (bias): the bias at a point corresponds to the

ApVinn
K

polynomial approximation error, which is of order
integrated bias is upper bounded by

Inn
ET — ||f
EF 1] S o)/ oo

@ Variance: the standard deviation at a point is upper bounded by
Ap - exp(cK). Since we have h™! “independent samples”, the total
variance is upper bounded by

\/Var(T) S Vh- A - exp(cK) = n—2eK

. _1
Choice of parameters: h =< (nlnn)~ 271, K < Inn.

. Hence, the
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Fuzzy hypothesis testing

Suppose we want to estimate T () with § € © based on observation X.

Lemma (Tsybakov'08)

Suppose there exist ( € R,;s > 0,0 < 5y, 1 < 1 and two priors op, 01 on
© such that

o0(0:T(0)<(—5s)>1- P (1)
o1(0:T(O)>C+s)>1-pa. (2)

If TV(Fy, Fo) < n < 1, then

. 1—n—By—
inf sup Py (|T —T(9)] > s) > n— o ﬁl, (3)
T 0co 2

where F;, i = 0,1 are the marginal distributions of X when the priors are

oi,i = 0,1, respectively.
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Reduction to parametric model

Fix some smooth g on [0, 1]. Consider the parametric submodel with

N .
t—(i—1)/N
fo(t)=L» 0;VInN-hg(———
o(0) = U3 0n/in - g )
where h =< (nlIn n)*fi1 is the size of each subinterval, and N = h~1.
e Functional value: ||fa]|; = h°vIn N - % Z,N:l 16|

@ Besov ball condition: (3 SN 16 |p) I}1N

It suffices to prove that in the Gaussian sequence model y; = 6; + &;,
i=1,--- N, & "% N(0,1), we have

1Y 1
inf su Eo(T — = 0; —
1 s 1 o( Zl )? 2 Y

0:(5 XL, 16i1P)P S ’1

~+VIn N
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Construction of two measures

These two measures g, o1 should satisfy the following conditions:
@ supported on [—v/In N, +/In N] (measure concentration)

@ large difference in functional value:

[ itloatat) — [ Ielon(e) wlw

matching moments (= small total variation distance):

/t’ao(dt) :/tlal(dt), I=0,1,---,cInN

constrained moment:

1

(/|t|”a,-(dt)>p§\/h117N, =01
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Dual: polynomial approximation

The key duality:

sup / F(u(dt) = inf || — pllc

e pllrv<t pePolyk
J t'u(dt)=0,1=0, K

Claim

To construct such measures, it is sufficient (and also necessary) to prove
that, for some integer g > p/2, we have

n
. g4l _
inf sup |x 92 — E apxk| > 2t
n
{ak}k:—q+1 x€[en—2,1] e 0l

Still a non-trivial question (involving approximation using x¥ with k < 0),
but can be solved using approximation theory.
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Our result on L, norm estimation

Theorem (Main result on L, norm estimation)

In Besov balls By, (L) with s >0 and r < p < oo, the minimax risk is
given by

~ 2
inf sup  Er (T—|f)
TfEBf,,OO(L)

The upper bound is attained by polynomial approximation.

N

s
{ n 2st1=1/r r even

__S o
(nlnn)~2+1  r odd or non-integer

e Note: if ris even, |x|" = x" is itself a polynomial!
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The general recipe in the nonparametric setting:

@ Stage-one approximation: approximate /(f) by /(f,), where we
essentially have a parametric model

@ Stage-two approximation: apply the approximation-based method in
the parametric case to reduce bias

@ Choose the optimal bandwidth h and approximation degree K
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Discussions and questions

e What about the Holder ball case (p = o0)?

e Can our estimator be adaptive in smoothness parameter s? (Lepski's
trick)

o Adaptive confidence interval in general L, norm (Risk estimation)

@ Other non-smooth functionals (e.g., differential entropy
[ —f(t)Inf(t)dt)
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