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Gaussian white noise model

The problem

Recover the function f € F via noisy observation (Y; : t € [0, 1]), where
dY, = f(t)dt + edB;

where (B; : t € [0,1]) is the standard Brownian motion.

Relationship with the regression model: € = o /\/n.



Gaussian sequence estimation

Last time: estimation in function space

@ Linear estimates: kernel estimator, local polynomial approximation
estimator, etc...

@ Nonlinear estimates: Lepski's adaptive estimator

Gaussian sequence estimation

Suppose that {¢;}?°; is an orthonormal basis in L2([0,1]), then

1 1
i /0 ¢j(t)dYe = (f, ¢;) + /0 ¢;(t)dB: = 0; + €z

where {z}22; are iid N/(0,1) random noises.

If we adopt the L, risk, two estimation problems are equivalent due to Ly
isometry.



Projection estimator

The simplest estimate for {¢;}7°; is the projection estimator:

é_{yj, 1<j<m
j_

0, j>m

MSE of the projection estimator

Eollf—01°P= > 67 + me
Jj>m Variance
——
Squared Bias

@ The bias-variance tradeoff: bandwidth m 1, bias |, variance 1

@ Choice of the basis is important: {qﬁj}j”;l should correspond to the
rate of the Kolmogorov m-width



© Estimation via Fourier transform
@ Estimation in Sobolev ellipsoids
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Fourier transform and Sobolev ellipsoid

Consider the Sobolev ball Sf’2(L) given by

1
SE2(L) = {f e Clo,1] : / 1FR) (x)[2dx < L2}

0

and consider the following Fourier basis:

do(t) = 1, o _1(t) = V2 cos(2mjt), ¢oj(t) = V2 sin(2mjt)

f € S2(L) if and only if 6; = (f, ¢;) satisfies

> (2mj)* (16251 + 16951%) < L2.
Jj=1




Estimation in ellipsoids

Consider the Gaussian mean estimation problem with parameter set
[e.e]
— . 212 2
O(L)=<0:> al67 <L
Jj=1
where 0 < a3 < a, <--- and a; — 0.

o The linear estimator: 6 = {6}, with 6; = ¢jy;,j > 1
o The MSE:

o0
Eoll0— 0] =>"(1 - ¢)%0? + ¢
j=1



Minimax linear estimator

Minimax linear estimator

The optimal weight sequence {cf}j’il is the solution to the optimization
problem: L({c/}?2;) = min L({¢;}?2;) where

(e.9]

L({c}32,) = o2 > (1 - )%07 + €

202 2
j=1 30 <L

A\

1—c¥
J

@ Intuitively, we have = A for small j, and cf = 0 for large j.

P
@ Minimax theorem can be used here to swap the order of min and max

Lemma
The minimax linear estimator * = {GAJ*}j’il is given by GAJ* = cyj, where

¢ = (1 —Aaj)+ and A is the solution to the following equation

2 00
€
X Z aj(l — )\aj)Jr = L2.

Jj=1 9/ 72




Pinsker’'s theorem

Pinsker's theorem
fo<ay<ap<---

and a; — oo in the Gaussian mean estimation
problem, the linear estimator 8* is asymptotically minimax:

sup Eg[|0* — 0] = (1+ o(1))inf sup Eold — 6|
6co(L) 0 veo(L)

where o(1) — 0 as € — 0.

@ The estimator is asymptotically minimax even in constants!
For estimation in Sobolev ellipsoids, we have the following corollary:

Corollary (Sobolev ellipsoid estimation)

inf sup Ef[|f — £]|3 = (1 + o(1))C*ezet
f fesk?(L)

where C* = (L?(2k + 1))71“(?",()% is Pinsker’s constant.
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© Estimation via Fourier transform

@ Adaptive estimation over ellipsoids
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James-Stein estimator

Pinsker’s theorem requires perfect knowledge of the coefficients {a,} and
the radius L

@ Adaptive estimation: find an estimator which performs nearly as well
as the best linear estimates

Consider the estimation problem of § € RY in the model
y o~ N(G,ezld), d > 3, the James-Stein estimator is defined as

ps _ (1 _(d— 2)€2> y
2w

Theorem (Oracle inequality for James-Stein estimator)

inf Egllcy — 0] < Eg||6%° — 0] < 2¢% + inf Eg|lcy — 0]?
ceR ceR
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Block James-Stein estimator

Divide the parameter vector 6 into dyadic blocks {B;} with
B; = {J il <j< f,‘},g,’/f,',l =r > 1, and write

O(L)=¢06:>" ) a67 < I
i=1 jeB;

In the sequel we assume that a; = (1 + o(1))j*, e.g., f € Sf’2(27rL)
expressed in Fourier basis.

Block James-Stein estimator

yi i<l
~ )2 .
BBy =4 (1- &3 )+y,- bh<i<l
0 i > I

where y; is the observation vector in block B;.

13 /72



Choice of the threshold

Distinguish three cases:
o i <l Eg”é\?Js - 9,’”2 = (€;+1 — f,’)tf2
o hhy<i<I: IEQHQA?JS —0;]|% < 2€? + infeer Eol|ciyi — 9% by oracle
inequality
o i>I: IE(;HHAF‘JS ;11> = 1|0:]
Add them together:

Eg||fB%S — 0)|% < (21, — 21o + £4,)€? + Ze2+z inf f Eolciyi — 0; 12

>4,

Since when a; = (1 + o(1)),*, the optimal MSE is =< ¢T3%, we can choose
@ Iy any fixed constant
° L2/a%/5 < e el =<In(1/e)

to make the first two terms negligible.
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Performance of block James-Stein estimator

The previous argument shows that

o
Eg||0B%5 — 0| < (1 + o(1 inf Egl ciyi — 0i)?
oll 17 < (1 + o ))quR ollciyi — 0ill
i=1
Note that sup; ycp. aj/aj ~ (i/li—1)¥ = r¥ — 1 as r — 1, the best
blockwise linear estimator performs similarly to the best coordinatewise
linear estimator. A closer inspection of the linear minimax estimator shows
that the multiplicative gap is at most r2.

Theorem (Efroimovich-Pinsker'84)

If a; = jk for some k > 0,

sup Eg||0B% — 012 < (r** + o(1)) -inf sup Eqld — 0|2
9cO(L) 6 9co(L)

and block James-Stein estimator is adaptively minimax if we choose
r = f,url/f,' — 1.

15/72



© Estimation via Fourier transform

@ Discussions
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Linear estimators in function space

Kernel estimator:

Flx) = / Kn(x — £)dY:

e Write f = Kj, % Y, by Fourier transform we have éj = Ku()) Y

Smoothed spline estimator:

f:argmin/(dYt—g(t)dt)2+/\/]g”(t)\2dt
g

@ Parseval’s inequality yields

A

0; = argmin(y; — x;)? + \j°x?
Xj

which yields a linear estimator again: 0 = 1+)\J

17/72



More on Fourier transform and adaptive scheme

Question 1: Is the Fourier basis the right basis in other spaces?

@ In general, no!

@ We will show that, in Besov space, the wavelet basis is the right one.
Question 2: in adaptive estimation, what if a; does not increase
polynomially with ;7

@ Block James-Stein estimator fails: oscillation within blocks

Supj jreB; aj/aj’- may be really large

e However, under mild conditions on {a;}, aggregation using projection
estimates can still yield adaptive minimax estimator (next lecture)

18 /72



© Estimation via wavelet transform
@ Introduction to wavelets
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Multiresolution analysis: father wavelets

Fix some function () € L?(R) such that {(- — k), k € Z} forms an
orthonormal system, i.e.,

/go(x — k)p(x — )dx = 0y, k,1€Z

Nested sequence of linear spaces:

o Define pji(x) = 2//2(2/x — k), and the linear space
= {f f X) chcpjk {Ck} S £2}

@ We hope that {V}} is nested: ---C V_;CVpC Vi C---
@ ¢(-) is called the father wavelet, level j corresponds to resolution.
Example: ¢(x) = x[o,1(x) is called the Haar basis.

20/72



Multiresolution analysis: mother wavelets

Denote by W; the orthogonal complement of V; in Vi 1, i.e.,
VVJ' = VJ‘+1 S} VJ', then

Vi=VoaWea Wi & W,y

o If U2, Vj is dense in L2(R), and denote by {tjx(x)} the orthonormal

basis of W, then any f € L? can be written as

Z AkPjok X) + Z Z ﬁjkdjjk

J=jo k

where jo € Z is arbitrary initial resolution level.
o If there exists some function 1(-) € L?(R) such that
Yik(x) = 2/24p(2ix — k), we call ¥(-) the mother wavelet.
Example: for Haar basis, mother wavelet is 1)(x) = x[0,1/2(X) — X[1/2,1(X)

21/72



Conditions for father and mother wavelets

Question 1: when {¢(- — k), k € Z} forms an orthonormal system?
o Answer: >, |p(w +27k)[2 =1 aee.
Question 2: when {V;} is a nested sequence?
@ Answer: there exists a 27-periodic function mg(w) such that
P(w) = mo(w/2)Pp(w/2)
Question 3: when v can be expressed as ¥ (x) = 21'/2¢(2jx — k)?
o Answer: {(w) = mi(w/2)@(w/2), where my(w) = mg(w + m)e ¥
Question 4: when U2, Vj is dense in Lp(R)?

@ Answer: it is sufficient to let (x) satisfy the previous two conditions
and

lp(u)| < @(|ul), ueR

where ®(-) is a bounded nonincreasing function on [0, c0) and
[ o(Jul)du < .

22/72



Compactly supported wavelets

To obtain a finite summation over k, we hope that both wavelets ¢(-) and
() have compact supports.

Theorem (Daubechies’ construction)

For each integer N > 0, there exists father wavelet ¢(-) supported on

[0,2N — 1] and the corresponding mother wavelet 1(-) supported on
[-N + 1, N] such that

/1/}(x)x’:0, [=0,1,--- ,N—1

@ There also exist so-called coiflets and symmlets whose father wavelet
©(+) also have first vanishing N — 1 moments.

23 /72



Projection operator

Denote by Py the orthogonal projection operator to linear space V.

For compactly supported mother wavelet ¢(-) with vanishing first N — 1
moments, we have

Pup=p, YpePy !

Projection operator as a kernel:

Puf() =3 ([ ety W) ot~ 1

k
- / (Z o(x — K)p(y — k)) f(y)dy = / Ko(x, y)f(y)dy
k

where Ko(x,y) = >, ¢(x — k)p(y — k) is the projection kernel.
o Similarly, Kj(x,y) = 2Ko(2x,2/y) = 321 oiu(x)pix(y)

24 /72



Approximation by wavelets

Theorem (Wavelet approximation in Sobolev space)

For compactly supported mother wavelet () with vanishing first N — 1
moments, and for f € 81" with p € [1, 00|, we have

If = Kifllp S 27NN, = 00

Proof:

@ To bound |f(x) — Kjf(x)|, denote by g.(-) the Taylor polynomial of
degree N — 1 of f(-) at x

@ By the previous lemma, Kj[g](x) = gx(x) = f(x)

o Hence, |f(x) — Kif (x)| = |Ki[f — g (x)| = [Kolfj — &j1(2x)], where
fily) = f(y/2)

@ Then by homogeneity and Taylor's formula, it is easy to show that

~ N . _.
IF = Kifllp < IFM (@), = 27N £V,

25 /72



© Estimation via wavelet transform

@ Introduction to Besov space
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Modulus of smoothness

Definition (Modulus of smoothness)

Define the r-th symmetric difference operator A} by

ALF(x) = Ap(AFEF)(x) = zr:(-nf—k(r) fix+ (k= 2) h)

k=0

and the r-th order modulus of smoothness w’(f,t), by

w'(f,t)p = sup [|ALf]p.
0<h<t

Some properties:
o w(f,t)y >0ast—0if felPforl<p<oo,orfeCforp=oco
o W(f+g,t) W (fit)p+w(g t)p, w(f,At)p < (A+1)w(f, 1)y,
WHL(F, 1), < 2u0(F, 1), S ¢ [ e gy,
o F e8P = wi(f,t), <t||f,, wTk(f, 1), < t"wk(F1) 1),
o If liminf, 0w (f,t),/t" =0, we have f € P[~*

27 /72




Besov space

Definition (Besov space)

Define f € B, , if and only if, for r = [s| +1,

1
0o w’(f,t),,)q dt:|5 1<
_ s tTE = q < o0
Ifllss,, = I Flo + e (4 :

w'(f,t) _
SUPts0 — L qg=00

exists and is finite. Define f € B3 ,(L) iff ||f||zs < L.

Properties:
@ Monotonicity in g: g < q' = By, C B;
@ Sobolev space: Bf; C SPPc Bk,
o Embedding theorem: p < p' = B; , C B;:;/pﬂ/pl

P,
o Continuous embedding: s > 1/p = B; , C C

28 /72



Equivalent characterization |: discrete norm

j+1
Breaking the integral [ into > f;ﬁ and applying the inequality
wh(f,t)p <w'(f,2t), < 2"w"(f,t)p, we have the following equivalent
characterization.

Theorem (Discrete characterization of Besov space)

The Besov norm | - ||gs , is equivalent to

1Fllg, = Il + 1425 (£, 29} e,

v

Corollary

f € By, if and only if f € L, and {25w"(f,279),} € 4q, r = [s] + 1.

N,

@ Motivate us to apply multiresolution analysis!
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Equivalent characterization Il: Paley-Littlewood
decomposition

Theorem (Paley-Littlewood decomposition)

f € B} if and only if there exist functions {f;}22, such that f = > 2, f;
(weakly), and

16, < 2%, [I£
where {¢;j} € £q, {€;} € £q.

=

< 21("5)6;,

Proof of necessity:

@ Define f; as the result by passing f through a bandpass filter which
picks out frequency [2/,27F1]. It's to easy to have f = Zf.io .

o The time width of filter j is < 277, thus ||, < w'(f,279),

o Since the frequency of f; cannot exceed 2/t1, ||F(")||, < 27|/ f||,

Proof of sufficiency: apply the previous decomposition with localized
frequencies to each f;

30/72



Equivalent characterization Ill: kernel approximation

Theorem (Kernel approximation in Besov space)

Fix a kernel K(x,y) which maps all polynomials of degree |s] to
themselves and satisfies |K(x,y)| < F(x — y), [ |x|"F(x) < oo. Define

Kif(x) = [ 2K(2x,2/y)f(y)dy, then f € 657 lfand only if

felp, ¢ = 2°||Kif — £l € Uy

o Insights: kernel estimator with bandwidth h has bias O(h®)

@ Can be proved via Paley-Littlewood decomposition, but more directly
by introducing the K-functional

31/72




K-functional and modulus of smoothness

Definition (K-functional)
The K-functional K,(f,t), is defined as

K.(f,t),=  inf f—gll,+ t)g"
r(f t)p g('—l)eA.C.|ocH gl o

Theorem (Equivalence of K-functional and modulus of smoothness)

w(f,t)p < Ke(f, t")p

Proof of necessity:
o [|[Kif —fllp < |IKi(f —g)llp+1If —gllp+[Kig —&llp <
If —gllp +2771lg"]l,
@ Minimize over g and apply the equivalence to get
IKif = fllp S Ke(F,2777), SwI(F,279),
Proof of sufficiency: substitute g = K;f in the definition of K-functional
and apply the opposite inequality

32/72




Equivalent characterization I1V: wavelet approximation

Consider the wavelet basis generated by a compactly supported mother
wavelet ¢(-) with first |s| vanishing moments, the previous theorem
entails that f € B , if and only if

IPvf —fllp=2%¢;,  {ej} €4q
This condition is further equivalent to

1Pw,fllp = 1Py, o f = Py fll, =27¢;,  {ef} €4q

Theorem (Wavelet approximation of Besov spaces)

Fix the wavelet basis described above. Then f € By, . if and only if

Pufell,  {2%|Puflp} € £q

33/72



Inequality for wavelet coefficients

If >, lo(x — k)| < M and {¢(x — k) : k € Z} constitutes an orthonormal
system, there exists constants C;, (; such that

CilMle, < 11D Aee(x = K)llp < GallMle,
k

By homogeneity, we have

J L

ii i
G| Alle,22 HZ/\k%k X)lp < Gol[Allg, 22>
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Wavelet coefficients for function in Besov space

Combining them together yields:

Theorem (Parameter set for wavelet coefficients)

Consider the wavelet basis with compactly supported mother wavelet ()
with vanishing first R > |s| moments, and

Z Oljgk(:DJOk + Z Z ﬁjk'¢1k

J=o k

then the Besov norm || - ||gs . is equivalent to the norm || - ||ps ., where

7 +l_l
1Flls5., = levolle, + 1257272185114, e,

, 1 1\ 97 7%
2/0—1 P 9 21

S lal” |+ |0 [ 20 Zlﬁk!"
k=0

J=jo

ol
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© Estimation via wavelet transform

@ VisuShrink estimator
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Ideal truncated estimate

Consider the Gaussian mean estimation model y, = 0y + ez, with known
parameter 6, but we constrain our estimator to be either 8, = y, or
0k =0

@ |t is easy to show that the ideal truncated estimator is

Ok = yi1(0k > €)

@ The corresponding MSE is R1(0) = >, min{62, ¢}

Theorem (Donoho-Liu-MacGibbon'90)

If the parameter set is a hyperrectangle ©(1) = [[724[—7i, 7], we have

sup R7() <2.22 xinf sup Eyllf — 6]
9e0() 0 6eo(r)

37/72



Solid orthosymmetric parameter set

Definition (Solid orthosymmetric parameter set)

The parameter set © is called solid and orthosymmetric if and only if:
0= {9,‘},’61 €0 implies {)\,’9,’},’61 € © for any A € [—1, 1], i€l

If © is solid and orthosymmetric, the minimax L, risk over © can be
decomposed into

infsupEg|d — 6]|> =inf sup sup Ey[|f — 0]
0 6ce 0 ©(r)Ce 6co(r)

1 sup  sup RT(Q):isup R7(0)

>
T 222 g(r)copeo(r) 2.22 peo

If © is solid and orthosymmetric, we have

- sup Z min{62, 2}

A 1
inf sup Eg||0 — 6> > —— sup R7(9) =
6 6eo | | 2.22 yco (©) 2.22 yco el

3812



Thresholding estimator

Definition (Thresholding estimators)

The soft- and hard-thresholding estimators 7$(-) and 1(-) with threshold
t are defined as

ni(y) =sen(¥)(|lyl — t)+,  nf(y) =yl(ly| > t)

Theorem (Donoho-Johnstone'94)
For Gaussian mean estimation y; = 0; + €z;,1 < i < n, t = eV/2In n yields

Eolln(y) — 01 < (2Inn+ 1) (me{ez 2} +e )

i=1

and similar results hold for hard-thresholding with t = ex/2Inn 4+ Inln n.

v

@ Choice of the threshold: P(maxi<j<p|zi| > v2Inn) — 0
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VisuShrink estimator

Consider the Besov ball B3 (L) and the wavelet model:
Vik=0ix+ezix, j>)jo,0<k<2-10€0©

where © is solid and orthosymmetric.

VisuShrink estimator

Yjk J=1Jo
Oik(y) = 9 mi(yik) Jo <J <lJe
0 J > Je

where t = ev/2In n, and n. is the number of observations to which
nonlinearity applies.

Choice of the parameters:
@ jo can be any fixed constant, e.g., jo = 2
® jo is chosen s.t. supgeg Y s Dy |0jk|* < €, yielding jo =< In(1/€)
@ As a result, Inn. < In(1/€)
40/72



Adaptive optimality of VisuShrink

Performance of VisuShrink estimator:

Eg[0V°V — 0|2 < 20€% + (2Inn, + 1) Z Z min{@ﬁk, Y+ +¢é
Jo<j<je k

< In(1/e) Z me{ k,62}+0(62|n(1/6))

Jo<i<je k

Since ©3, (L) is solid and orthosymmetric, we have:

Theorem (Donoho-Johnstone'94)

The VisuShrink estimator is near optimal and adaptive:

sup  El|60VSY — 0|2 < In(1/€) -inf  sup  Eyl|f — 6]
geez,q(L) 6 0ee;,q(L)
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Unconditional basis is the best basis

Definition (Unconditional basis)

{fi}ies is an unconditional basis for (F, || - ||) if and only if there exists a
universal constant C such that for any J C [ and \; € [-1,1],

I Nfill < YAl

iel ieJ

@ In transformed space ©, unconditional basis is equivalent to
10’ C © C ® for some ¢y, ¢ > 0 and solid orthosymmetric ©’

@ Wavelet basis is an unconditional basis for Besov space

Optimality in terms of the ideal truncated estimator: for unconditional
basis {f;} (resp. ©) and any other basis {f/} (resp. ©)

sup R7(0) < inf sup Ef||f—f|* < Sup Eg[|6V"V=0||> < In(1/€)- sup R (6')
0c© 9’ co’
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Block thresholding

Instead of individual truncation, length-L block truncation can also be
implemented, with ideal risk

n/L
RBT(Q) = Z min{HGBJHZ, LEZ}
Jj=1

@ Use James-Stein estimator HAJ/\ =(1- |2)+yJ in each block

Hyl

Theorem (Oracle inequality, Cai'99)

Eq0* — 0|2 < ARgT(0) + 4ne®P(x? > AL)

@ VisuShrink corresponds to L =1, A~ 2Inn
@ It can be better to use L = Inn, A = 4.50524
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© Estimation via wavelet transform

@ SureShrink estimator
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Minimax Bayes estimation

Consider the Gaussian mean estimation model in ©F, /(L) with

1

. +7_l
16115, = lltiolle, + 11277272 1Billg, lle, < L

Minimax Bayes estimation:

o Replace the hard constraint 6§ € ©F, (L) with an “in mean”
constraint, i.e.

T e (L), ik = (EelflP )Y 00D
@ The minimax Bayes estimation:

inf  sup  E Eglld—0]°= sup infE,Eg||d — 0>
0 mTe0s (L) TT€EOS (L) 0

where the supremum is taken with respect to all prior 7.
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Solution to the minimax Bayes estimation

Due to convexity we have the following lemma.

Separable rules are minimax, i.e., it suffices to consider independent priors
to different 60 . Moreover, 7; , does not depend on k.

Denote by t; the identical value shared by all 7; s, the minimax Bayes
estimation problem reduces to

max Y Ypprg(tie) sty (DT <9

J=Jo J=Jo

where

pp(T,€) =inf  sup E Eg(f — 6)>
0 mE|0|P<TP

is the minimax Bayes risk in the univariate model y = 0 + €z.
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Thresholding estimators are near minimax!

Theorem (Minimax estimation over ¢, balls)

In the Gaussian mean estimation over {q balls, the soft- and
hard-thresholding estimators with proper thresholds are near minimax:

inf sup Eol[{ni(y)} — 0> Sinf sup Ryllf — 6]
{ti} o:]|0llo<L 9 o:[l6]lg<L

where x = s, h.

Applying to the previous problem and using the equivalence of minimax
estimation and minimax Bayes estimation, we have the following theorem.

Theorem (Donoho-Johnstone’'98)

The thresholding estimators with proper thresholds depending only on
resolution level j are near minimax over ©;, (L) (x = s, h):

inf sup  Eol{nS(yx)} — 012 Sinf sup  Eolld — 6|2
{ti} geos (L) €05 4(L)




Choice of the threshold

Compare to the VisuShrink:

@ By using t; = e€y/2In n. in each resolution level, the resulting
VisuShrink estimator is near optimal with a logarithmic gap

@ Can remove the logarithmic gap by choosing a better threshold!

Theorem (Cai'12)

g 2 o
Choosing jo, je with 200 < ¢~ 241 2 =< €72, the thresholding estimator

Yj .k J=Jo
Oj(y) = { mE(yjk) Jo<Jj <l
0 J > Je

with t; = e\/2(j — jo) In2 is near minimax over ©, .(L) within constants.

v

e Not adaptive (jo depends on s)!
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SURE: Stein's unbiased risk estimator

Idea: estimate the risk of the thresholding estimator, and then choose a
threshold to minimize the estimated risk

Definition

Stein’s unbiased risk estimator In Gaussian mean estimation model
yi=0;+ez;,1<i<d,if g(y) 2 0(y) -y is weakly differentiable, then

Ply) = (d+2V - g(y))e® + [lg(y)I?

satisfies that Eg?(y) = Eg(A(y) — 0)? for any 0 € ©.

Soft thresholding: for each resolution level j, divide all {y;«,0 < k < 2}
randomly into two half samples /, /’, and

t = i 1—2-1(lyi (| < t))e? : t)2.
: argrpzlgkze:l/( (lyjikl < )+ (lyjul At)

Use t; as the thresholding for half sample /. t;/ is obtained similarly.
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Performance of SureShrink estimator

Stein’s unbiased risk estimator for soft-thresholding:
@ Bias: zero by definition
@ Variance: small by measure concentration, for SURE can be expressed
as a sum of independent random variables

Theorem (Performance of SureShrink estimator)

Ifs>1/p—1/2,
sup Bg|0°URE — 0| < (14 0(1)) - inf sup  Eol[{n (vx)} — 0l
€03 (L) {1}9695 (L)
<inf sup Igll0—0)°
6 0ces (L)

Practical implementation:
@ do not split samples
e when Zk(yfk — €2) is small, use the usual €,/2/In2 threshold to

sufficiently filter out the noise
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Minimax L, risk over Besov balls

Theorem (Minimax L risk)

The minimax Ly risk of estimating function from Besov ball B; (L),
s > 1/p (to ensure continuous embedding), is

inf sup Ef|f — f|? =< ez
freBs (L)
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Minimax linear L, risk over Besov balls

Define QHull(©) = {n : n? € conv(6?,0 € ©)}

Lemma (Donoho-Liu-MacGibbon'90)

inf supEg[|0™ — ]|> =inf sup Eg|d"™ — 9|2
dlin 0co 6'in gc QHull(©)

Furthermore, if QHull(®©) is solid and orthosymmetric,

inf  sup  Egl|d — 0|

inf  sup  Eg||d™ —0]? < in
0 0cQHull(©)

f'n 9 QHull(©)

]

Theorem (Minimax linear L, risk)

_ oy ) 4(s=1/p+1/(pV2))
inf sup  Ef|[f"" — || x €261V
Fiin FeBs (L)

° QHuII(@Z’q) — @Z\*/é{j\jrzl/(pva

@ Linear estimator is strictly suboptimal when p < 2
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© Estimation via wavelet transform

@ General L, risk
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Estimation with L, risk

Target: the normalized minimax risk over Besov balls

R (Bjq(L),€) = | inf sup Efllf —f];
f feBs (L)

for 1 < r < oo, and standard extension for r = cc.

o For general r # 2, the estimation in function space B;, ,(L) is no
longer equivalent to that in sequence space ©3, ,(L)

@ Some phenomena never occur when r = 2: for Sobolev ball
estimation, the phase transition point between dense regime and

sparse regime is r = M > 2 due to p > d (see previous lecture)
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Throughout we assume s > 1/p —1/r and r < 0.

Theorem (Minimax L, risk)

(2)55 r<(2s+1)p

R:(B5q(L),€) = { (In(1/e)) = (In(1/e)) 2 r = (25 + 1)p
s—1/ /r

(2In(1/e)) 1751 r> (25 +1)p

Theorem (Minimax linear L, risk)

()55 r<p

Riin(Bs (L), €) =< = 1/pt1/r
" BaglL) {(ez)2<s_mcm e
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Three different zones

Homogeneous zone: r < p

e Optimal rate is (62)%“

@ Linear estimator attains the optimal rate
Intermediate zone: p < r < (2s+1)p

e Optimal rate is (62)%“

@ Linear estimator cannot attain the optimal rate
Sparse zone: r > (2s + 1)p (implies r > 21)

o Optimal rate is worse that (€2)%+1

@ Linear estimator cannot attain the optimal rate
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Wavelet thresholding estimate for p < r

The estimator

Denote by &jk,BAjk empirical wavelet coefficients, consider the following
estimator:

g, |G b<i<i
"o j> e

and f =Y, Gk + ooy ok Bikbik-

The choice of parameters:
o Gross level jo: variance not too large, i.e., €200/2 < Ry (Bg (L), €)
s—1/p+1/r

q CBrg

o Detailed level j: bias not too large, by B, we have
2—je(s—1/p+1/r) - R;*(Bf,q(L),e)

@ Threshold: t; = Key/j — jo for some constant K

Theorem (Donoho-Johnstone-Kerkyacharian-Picard'96)

This estimator is minimax order-optimal!

57 /72



Adaptive estimation

Suppose that the modulus of smoothness satisfies that s < spax
o Gross level jy: 200 =< em
o Detailed level j.: 2< < n/Inn
@ Threshold: still use tj = e\/j — jo

Theorem (Adaptation results)

The adaptive estimator achieves the minimax risk order when
r > (2s+ 1)p, and possesses a logarithmic gap (In(1/€))z+1 when
r<(2s+1)p.

Extension: apply Lepski's trick to choose the threshold ¢;!
e Fully adaptive without logarithmic gap! (Juditsky'97)
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© Estimation via wavelet transform

@ Experiments
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Original signal

20 1(a) Qlocks 60 1(b) I?umps
10+ B 40+ il
0 20+ il
1% 05 1 % 05 1

10 1(c) He;aviSi ne 20 1(d) Dpppler
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Noisy signal

3(a) Noig/ Blocks

3(b) Noig/ Bumps

30 60
20
10
0
1% 05 % 05
20 3(c) Noisy‘ HeaviSine 20 3(d) Noisy Doppler

61/72



Reconstructed signal by VisuShrink

20 9(a) VisuShrink[BIocks] 60 9 (b) VisuShri nk[Bumps]
10+ 1
0
0 05 1 2% 05 1
10 9 (c) Visushri pk[HeaviSi nej 20 9 (d) VisuShrj nk[Doppler]
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Estimation over special function spaces

Holder ball: Hi(L) = B3, (L)

Estimation over Holder ball

RE(H5(L),€) = (2)mm

Sobolev ball: BX, € S1° c B .,

Estimation over Sobolev ball

(€2)7st r< (2k+1)p

RA(SEP(L), €) = k1 prr
' (2In(1/e))T=T705 > (2k + 1)p

Functions with bounded variation: B} ; C BV C B}

Estimation of functions with bounded variation

1

(e2)3 r<3

RI(BV(L),€) = {(Ez In(1/¢)




Other settings

Non-equidistant grid in fixed design:

@ Suppose x; = H71(i/n) in regression model (or transform the noise to
Standard Brownian motion via time change in the Gaussian white
noise model)

e Cai'98: if H(-) is Lipschitz, can estimate f o H(-) and then recover f

@ Unknown H can be estimated by interpolation

Non-Gaussian noise:
@ Suffice to impose tail conditions for the noise in the sequential model

o Juditsky'97: for any A € [, cieq/In(1/€)], it holds

E[|z[P1(|z| > é)] < AP e><p(—7/\2 )
- 27T C3€2
Unknown noise level:

@ Donoho-Johnstone’94: estimate the noise level using the median of

the empirical wavelet coefficient at the finest level
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High-dimensional results

Consider the isotropic Besov ball qud(L) in d dimensional space.
Assume s > d/p —d/r and r < cc.

Theorem (Minimax L, risk)

(2)5% r<(1+2s/d)p
Ry (B g.a(L),€) < 4 (€2 ln(l/e))”f('g(l/e))z W r=(1+2s/d)p
(€2 In(1/e)) Se-drarta r> (1+2s/d)p

@ Minimax risk achieved by product wavelet basis

Theorem (Minimax linear L, risk)

(2)55 r<p

leB €) < s— r
(pq, (L) €) {(62)2(5—%% r>p
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Properties of wavelet thresholding estimator

Properties of wavelet thresholding estimator Fo:

@ As smooth as the truth: unconditional basis property yields

Jim Prillfallss, < Cllflls;,} =1

g —

for some constant C.
@ Near optimal for spatial adaptation
@ Near optimal for estimating the function at a point

@ Near optimal for estimating the function under global loss
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Optimality of unconditional basis

Three norms:

e Asymptotics of compression: ||0]|c.m = sup, 0™ >, [0(k) 2

e Asymptotics of estimation: ||0]le, = \/sup(; §2r 3", min{62,62}
o Weak (P ball: ||0||wee = supy kl/p|0(k)\

r = 55—+

Three norms are equivalent when p = ﬁ,

Critical exponent of ©: p*(©) = inf{p: ||0||wer < 0,70 € O}

Theorem (Optimality of unconditional basis)

If © is £ bounded, solid and orthosymmetric, then for any orthogonal
transformation U : £?> — (2, we have p*(U®) > p*(©).

e Example: p*(©py) =2/3 < 1= p*(Unr©Opyv), where Uyr
transforms wavelet basis to Fourier basis.
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Wavelet transform on bounded interval

The Daubechies’ father wavelet ¢(-) has support [0,2N — 1], what if we
are only interested in [0, 1]?

@ Boundary adjustment: for each resolution level j, set
pik(x) = 22p(2x — k)

for 0 < k <2 — 2N as usual, and suitably add 2N wavelets to ensure
span(pjk, 0 < k < 2/) contain polynomials of degree no more than
N — 1. Same applies to mother wavelets.

@ Discrete wavelet transform: implemented by a sequence of finite
filtering steps instead of matrix multiplication, with complexity O(n)

Local property of wavelets

If f € H35 and ¢(-) has |s]| vanishing moments, we have

‘ / f — 2772 F(k/2)| < 277641/
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Multiresolution analysis

Asymptotic equivalence of models under mild conditions:
@ Gaussian white noise model:

o

NG

@ Density estimation model: generate n iid samples from common
density g with support [0,1] (g = 2,0 = 1/2)

dY: = f(t)dt + —=dBs, te[0,1]

Proof depends heavily on multiresolution analysis (see Brown et al'04)!
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General modulus of smoothness

Definition (Ditzian-Totik modulus of smoothness)

wi (f,t)p = sup ||A} \f
Lp( )P 0<h2t” he(x) HP

Trigonometric approximation on [0,1] (¢ = 1):
@ Denote by E,,T(f)p the best approximation error in L, norm using
trigonometric series of degree no more than n
o Direct inequality: E, (), < C,aw"(f,n™1),
e Converse: w'(f,n™ 1), < Con™ "> ]_; k" LET (),
Polynomial approximation on [0, 1] (¢ = /x(1 — x)):
@ Denote by E,(f), the best approximation error in L, norm using
algebraic polynomials of degree no more than n
o Direct inequality: E,(f), < D,1wi(f, n1),
o Converse: wi(f,n" 1), < Dron™" Y 0y k" 1EL(F)p
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General K-functionals

Definition (General K-functional)

The general K-functional K, ,(f,t), is defined as

Krago(f7 t)P =

inf  |If —gllp+ tleg]ln
glr=b .

€A.Cio

Theorem (Equivalence of K-functional and modulus of smoothness)

Under mild conditions on ¢, we have

w;(f, it = WGl e

Bias analysis of plug-in estimator: for np ~ B(n, p) and any f,

[Eof(p) — f(p)| < giené E,g(8) — g(p)| +2IIF — gl
f, giencr';2 n_l”p(l — p)g//(p)Hoo + Hf — g”oo 5 wé(f, ,7—1/2)0o

where ¢(x) = /x(1 — x). /72
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