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The statistical model

Given a family of distributions {Pf (·)}f ∈F and an observation
Y ∼ Pf , we aim to:

1 estimate f ;
2 estimate a functional F (f ) of f ;
3 do hypothesis testing: given a partition F = ∪Nj=1Fj , decide which Fj

the true function f belongs to.
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The risk

The risk of using f̂ to estimate θ(f ) is

R(f̂ , f ) = Ψ−1
(
Ef Ψ(d(f̂ (Y ), θ(f ))

)
where Ψ is a nondecreasing function on [0,∞) with Ψ(0) = 0, and
d(·, ·) is some metric

The minimax approach

R(f̂ ,F) = sup
f ∈F

R(f̂ , f )

R∗(F) = inf
f̂
R(f̂ ,F)
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Nonparametric regression

Problem: recover a function f : [0, 1]d → R in a given set F ⊂ L2([0, 1]d)
via noisy observations

yi = f (xi ) + σξi , i = 1, 2, · · · , n

Some options:

Grid {xi}ni=1: deterministic design (equidistant grid, general case),
random design

Noise {ξi}ni=1: iid N (0, 1), general iid case, with dependence

Noise level σ: known, unknown

Function space: Hölder ball, Sobolev space, Besov space

Risk function: risk at a point, integrated risk (Lq risk, 1 ≤ q ≤ ∞,
with normalization)

Rq(f̂ , f ) =


(
Ef

∫
[0,1]d |f̂ (x)− f (x)|qdx

) 1
q
, 1 ≤ q <∞

Ef

(
ess supx∈[0,1]d |f̂ (x)− f (x)|

)
, q =∞

.

4 / 53



Equivalence between models

Under mild smoothness conditions, Brown et al. proved the asymptotic
equivalence between the following models:

Regression model: for iid N (0, 1) noise {ξi}ni=1,

yi = f (i/n) + σξi , i = 1, 2, · · · , n

Gaussian white noise model:

dYt = f (t)dt +
σ√
n
dBt , t ∈ [0, 1]

Poisson process: generate N = Poi(n) iid samples from common
density g (g = f 2, σ = 1/2)

Density estimation model: generate n iid samples from common
density g (g = f 2, σ = 1/2)
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Bias-variance decomposition

Deterministic error (bias) and stochastic error of an estimator f̂ (·):

b(x) = Ef f̂ (x)− f (x)

s(x) = f̂ (x)− Ef f̂ (x)

Analysis of the Lq risk:

For 1 ≤ q <∞:

Rq(f̂ , f ) =
(
Ef ‖f̂ − f ‖qq

) 1
q

=
(
Ef ‖b + s‖qq

) 1
q

. ‖b‖q +
(
E‖s‖qq

) 1
q

For q =∞:

R∞(f̂ , f ) ≤ ‖b‖∞ + E‖s‖∞
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The first example

Consider the following regression model:

yi = f (i/n) + σξi , i = 1, 2, · · · , n

where {ξi}ni=1 iid N (0, 1), and f ∈ Hs
1(L) for some known s ∈ (0, 1] and

L > 0, and the Hölder ball is defined as

Hs
1(L) = {f ∈ C [0, 1] : |f (x)− f (y)| ≤ L|x − y |s ,∀x , y ∈ [0, 1]} .

7 / 53



A window estimate

To estimate the value of f at x , consider the window
Bx = [x − h/2, x + h/2], then a natural estimator takes the form

f̂ (x) =
1

n(Bx)

∑
i :xi∈Bx

yi ,

where n(Bx) denotes the number of point xi in Bx .

Bias:

|b(x)| = |Ef f̂ (x)− f (x)| =

∣∣∣∣∣∣ 1

n(Bx)

∑
i :xi∈Bx

f (xi )− f (x)

∣∣∣∣∣∣
≤ 1

n(Bx)

∑
i :xi∈Bx

|f (xi )− f (x)| ≤ 1

n(Bx)

∑
i :xi∈Bx

L|xi − x |s ≤ Lhs

Stochastic term:

s(x) = f̂ (x)− Ef f̂ (x) =
σ

n(Bx)

∑
i :xi∈Bx

ξi
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Optimal window size: 1 ≤ q <∞

|b(x)| ≤ Lhs , s(x) =
σ

n(Bx)

∑
i :xi∈Bx

ξi

Bounding the integrated risk:

Rq(f̂ , f ) . ‖b‖q + (E‖s‖qq)
1
q

. Lhs +
σ√
nh

The optimal window size h∗ should satisfy L(h∗)s = σ√
nh∗

, i.e.,

h∗ =
(
σ2

L2n

) 1
2s+1

, and the resulting risk is

Rq(f̂ ∗,Hs
1(L)) . L

(
σ2

L2n

) s
2s+1

� n−
s

2s+1
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Optimal window size: q =∞

|b(x)| ≤ Lhs , s(x) =
σ

n(Bx)

∑
i :xi∈Bx

ξi

Fact: for N (0, 1) rv {ξi}Mi=1 (possibly correlated), there exists a constant
C such that for any w ≥ 1,

P
(

max
1≤i≤M

|ξi | ≥ Cw
√

lnM

)
≤ exp

(
−w2 lnM

2

)
Proof: apply the union bound and P(|N (0, 1)| > x) ≤ 2 exp(−x2/2).

Corollary: E‖s‖∞ . σ
√

ln n
nh (M = O(n2)).

Optimal window size and risk

h∗ �
(

ln n

n

)− 1
2s+1

, R∞(f̂ ∗,Hs
1(L)) .

(
ln n

n

)− s
2s+1
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Bias-variance tradeoff

Figure 1: Bias-variance tradeoff
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General Hölder ball

Consider the following regression problem:

yι = f (xι) + σξι, f ∈ Hs
d(L), ι = (i1, i2, · · · , id) ∈ {1, 2, · · · ,m}d

where

x(i1,i2,··· ,id ) = (i1/m, i2/m, · · · , id/m), n = md

{ξι} are iid N (0, 1) noises

The general Hölder ball Hs
d(L) is defined as

Hs
d(L) =

{
f : [0, 1]d → R, |Dk(f )(x)− Dk(f )(x ′)| ≤ L|x − x ′|α, ∀x , x ′

}
where s = k + α, k ∈ N, α ∈ (0, 1], and Dk(f )(·) is the vector
function comprised of all partial derivatives of f with order k .

s > 0: modulus of smoothness
d : dimensionality
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Local polynomial approximation

As before, consider the cube Bx centered at x with edge size h, where
h→ 0, nhd →∞.

Simple average no longer works!

Local polynomial approximation: for xι ∈ Bx , design weights wι(x)
such that if the true f ∈ Pk

d , i.e., polynomial of full degree k and of d
variables, we have

f (x) =
∑

ι:xι∈Bx

wι(x)f (xι)

Lemma

There exists weights {wι(x)}ι:xι∈Bx which depends continuously on x and

‖wι(x)‖1 ≤ C1, ‖wι(x)‖2 ≤
C2√
n(Bx)

=
C2√
nhd

where C1,C2 are two universal constants depending only on k and d .
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The estimator

Based on the weights {wι(x)}, construct a linear estimator

f̂ (x) =
∑

ι:xι∈Bx

wι(x)yι

Bias:

|b(x)| =

∣∣∣∣∣∣
∑

ι:xι∈Bx

wι(x)f (xι)− f (x)

∣∣∣∣∣∣
= inf

p∈Pk
d

∣∣∣∣∣∣
∑

ι:xι∈Bx

wι(x)(f (xι)− p(xι))− (f (x)− p(x))

∣∣∣∣∣∣
≤ (1 + ‖wι(x)‖1) inf

p∈Pd
k

‖f − p‖∞,Bx

Stochastic error:

|s(x)| = σ

∣∣∣∣∣∣
∑

ι:xι∈Bx

wι(x)ξι

∣∣∣∣∣∣ . σ√
nhd
·

∣∣∣∣∣∣ 1

‖wι(x)‖2

∑
ι:xι∈Bx

wι(x)ξι
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Rate of convergence

Bounding the bias: by Taylor expansion,

inf
p∈Pd

k

‖f − p‖∞,Bx ≤ max
z∈Bx

∣∣∣∣Dk f (ηz)− Dk f (x)

k!
(z − x)k

∣∣∣∣ . Lhs

Hence, ‖b‖q . Lhs for 1 ≤ q ≤ ∞
Bounding the stochastic error: as before,(

E‖s‖qq
) 1

q .
σ√
nhd

(1 ≤ q <∞), E‖s‖∞ . σ

√
ln n

nhd

Theorem

The optimal window size h∗ and the corresponding risk is given by

h∗ �

{
n−

1
2s+d

( n
ln n )−

1
2s+d

, Rq(f̂ ∗,Hs
d(L)) �

{
n−

s
2s+d , 1 ≤ q <∞

( n
ln n )−

s
2s+d , q =∞

and the resulting estimator is minimax rate-optimal (see later).
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Why approximation?

The general linear estimator takes the form

f̂lin(x) =
∑

ι∈{1,2,··· ,m}d
wι(x)yι

Observations:

The estimator f̂lin is unbiased for f if and only if

f (x) =
∑
ι

wι(x)f (xι), ∀x ∈ [0, 1]d

Plugging in x = xι yields that z = {f (xι)} is a solution to
(wι(xκ)− δικ)ι,κz = 0

Denote by {z(k)
ι }Mk=1 all linearly independent solutions to the previous

equation, then

fk(x) =
∑
ι

wι(x)z(k)
ι , k = 1, · · · ,M

constitutes an approximation basis for Hs
d(L).
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Why polynomial?

Definition (Kolmogorov n-width)

For a linear normed space (X , ‖ · ‖) and subset K ⊂ X , the Kolmogorov
n-width of K is defined as

dn(K ) ≡ dn(K ,X ) = inf
Vn

sup
x∈K

inf
y∈Vn

‖x − y‖

where Vn ⊂ X has dimension ≤ n.

Theorem (Kolmogorov n-width for Hs
d(L))

dn(Hs
d(L),C [0, 1]d) � n−

s
d .

The piecewise polynomial basis in each cube with edge size h achieves the
optimal rate (so other basis does not help):

dΘ(1)h−d (Hs
d(L),C [0, 1]d) � (h−d)−

s
d = hs
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Methods in nonparametric regression

Function space (this lecture):

Kernel estimates: f̂ (x) =
∑

ι Kh(x − xι)yι (Nadaraya, Watson, ...)

Local polynomial kernel estimates: f̂ (x) =
∑M

k=1 φk(x)ck(x), where

(c1(x), · · · , ck(x)) = arg minc
∑

ι(yι −
∑M

k=1 ck(x)φk(xι))2Kh(x − xι)
(Stone, ...)

Penalized spline estimates: f̂ = arg ming ‖yι − g‖2
2 + ‖g (s)‖2

2

(Speckman, Ibragimov, Khas’minski, ...)

Nonlinear estimates (Lepski, Nemirovski, ...)

Transformed space (next lecture):

Fourier transform: projection estimates (Pinsker, Efromovich, ...)

Wavelet transform: shrinkage estimates (Donoho, Johnstone, ...)
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Regression in Sobolev space

Consider the following regression problem:

yι = f (xι) + σξι, f ∈ Sk,pd (L), ι = (i1, i2, · · · , id) ∈ {1, 2, · · · ,m}d

where

x(i1,i2,··· ,id ) = (i1/m, i2/m, · · · , id/m), n = md

{ξι} are iid N (0, 1) noises

The Sobolev ball Sk,pd (L) is defined as

Sk,pd (L) =
{
f : [0, 1]d → R, ‖Dk(f )‖p ≤ L

}
where Dk(f )(·) is the vector function comprised of all partial
derivatives (in terms of distributions) of f with order k .

Parameters:

d : dimensionality

k : order of differentiation

p: p ≥ d to ensure continuous embedding Sk,pd (L) ⊂ C [0, 1]d

q: norm of the risk
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Minimax lower bound

Theorem (Minimax lower bound)

The minimax risk in Sobolev ball regression problem over all estimators is

Rq(Sk,pd (L), n) &

n−
k

2k+d , q < (1 + 2k
d )p

( ln n
n )

k−d/p+d/q
2(k−d/p)+d , q ≥ (1 + 2k

d )p

Theorem (Linear minimax lower bound)

The minimax risk in Sobolev ball regression problem over all linear
estimators is

R lin
q (Sk,pd (L), n) &


n−

k
2k+d , q ≤ p

n
− k−d/p+d/q

2(k−d/p+d/q)+d , p < q <∞

( ln n
n )

k−d/p+d/q
2(k−d/p+d/q)+d , q =∞
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Start from linear estimates

Consider the linear estimator given by local polynomial approximation with
window size h as before:

Stochastic error:

(
E‖s‖qq

) 1
q .

σ√
nhd

(1 ≤ q <∞), E‖s‖∞ . σ

√
ln n

nhd

Bias: corresponds to polynomial approximation error

Fact

For f ∈ Sk,pd (L), there exists constant C > 0 such that

|Dk−1f (x)− Dk−1f (y)| ≤ C |x − y |1−d/p
(∫

B
|Dk f (z)|pdz

) 1
p

, x , y ∈ B
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Linear estimator: bias

Upper bound of the bias: Taylor polynomial yields

|b(x)| . hk−d/p
(∫

Bx

|Dk f (z)|pdz
) 1

p

=⇒ ‖b‖qq . h(k−d/p)q

∫
[0,1]d

(∫
Bx

|Dk f (z)|pdz
) q

p

dx

Note that∫
[0,1]d

∫
Bx

|Dk f (z)|pdzdx = hd
∫

[0,1]d
|Dk f (x)|pdx ≤ hdLp

Case q/p ≤ 1: ‖b‖qq . h(k−d/p)q · Lqhd ·
q
p = Lqhkq (regular case)

Case q/p > 1: ‖b‖qq . h(k−d/p)q · Lqhd = Lqh(k−d/p+d/q)q (sparse
case)
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Linear estimator: optimal risk

In summary, we have

‖b‖q .

{
Lhk , q ≤ p

Lhk−d/p+d/q, p < q ≤ ∞
, ‖s‖q .


σ√
nhd

, q <∞

σ
√

ln n
n , q =∞

Theorem (Optimal linear risk)

Rq(f̂ ∗lin,S
k,p
d (L)) .


n−

k
2k+d , q ≤ p

n
− k−d/p+d/q

2(k−d/p+d/q)+d , p < q <∞(
ln n
n

) k−d/p
2(k−d/p)+d , q =∞

Alternative proof:

Theorem (Sobolev embedding)

For d ≤ p < q, we have Sk,pd (L) ⊂ Sk−d/p+d/q,q
d (L′).
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Minimax lower bound: tool

Theorem (Fano’s inequality)

Suppose H1, · · · ,HN are probability distributions (hypotheses) on sample
space (Ω,F), and there exists decision rule D : Ω→ {1, 2, · · · ,N} such
that Hi (ω : D(ω) = i) ≥ δi , 1 ≤ i ≤ N. Then

max
1≤i ,j≤N

DKL(Fi‖Fj) ≥

(
1

N

N∑
i=1

δi

)
ln(N − 1)− ln 2

Apply to nonparametric regression:

Suppose convergence rate rn is attainable, construct N functions
(hypotheses) f1, · · · , fN ∈ F such that ‖fi − fj‖q > 4rn for any i 6= j

Decision rule: after obtaining f̂ , choose j such that ‖f̂ − fj‖q ≤ 2rn
As a result, δi ≥ 1/2, and Fano’s inequality gives

1

2σ2
max

1≤i ,j≤N

∑
ι

|fi (xι)− fj(xι)|2 ≥
1

2
ln(N − 1)− ln 2
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Minimax lower bound: sparse case

Suppose q ≥ (1 + 2k
d )p.

Fix a smooth function g supported on [0, 1]d

Divide [0, 1]d into h−d disjoint cubes with size h, and construct
N = h−d hypotheses: fj supported on j-th cube, and equals hsg(x/h)
on that cube (with translation)

To ensure f ∈ Sk,pd (L), set s = k − d/p

For i 6= j , rn � ‖fi − fj‖q � hk−d/p+d/q, and∑
ι

|fi (xι)− fj(xι)|2 � h2(k−d/p) · nhd = nh2(k−d/p)+d

Fano’s inequality gives

nh2(k−d/p)+d & lnN � ln h−1 =⇒ rn &

(
ln n

n

) k−d/p+d/q
2(k−d/p)+d
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Minimax lower bound: regular case

Suppose q < (1 + 2k
d )p.

Fix smooth function g supported on [0, 1]d , and set gh(x) = hsg(x/h)

Divide [0, 1]d into h−d disjoint cubes with size h, and construct

N = 2h
−d

hypotheses: fj =
∑h−d

i=1 εigh,i , where gh,i is the translation
of gh to i-th cube

Can choose M = 2Θ(h−d ) hypotheses such that for i 6= j , fi differs fj
on at least Θ(h−d) cubes

To ensure f ∈ Sk,pd (L), set s = k

For i 6= j , rn � ‖fi − fj‖q � hk , and∑
ι

|fi (xι)− fj(xι)|2 � h2k · n = nh2k

Fano’s inequality gives

nh2k & lnM � h−d =⇒ rn &

(
1

n

) k
2k+d
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Construct minimax estimator

Why linear estimator fails in the sparse case?

Too much variance in the flat region!
Suppose we know that the true function f is supported at a cube with
size h, we have

‖b‖q . hk−d/p+d/q,
(
E‖s‖qq

)1/q
.

1√
nhd
· hd/q

then h � n
− 1

2(k−d/p)+d yields the optimal risk Θ(n
− k−d/p+d/q

2(k−d/p)+d )

Nemirovski’s construction

In both cases, construct f̂ as the solution to the following optimization
problem

f̂ = arg min
g∈Sk,pd (L)

‖g − y‖B = arg min
g∈Sk,pd (L)

max
B∈B

1√
n(B)

|
∑
ι:xι∈B

(g(xι)− yι)|

where B is the set of all cubes in [0, 1]d with nodes belonging to {xι}.
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Estimator analysis

Question 1: given a linear estimator f̂ at x of window size h, which size h′

of B ∈ B achieves the maximum of |
∑

ι:xι∈B f̂ (xι)− yι|/
√

n(B)?

If h′ � h, the value � max{
√
n(B)|bh(x)|, |N (0, 1)|} increases with

h′

If h′ � h, the value is close to zero

Hence, h′ � h achieves the maximum

Question 2: what window size h∗ at x achieves min ‖f̂h − y‖B?

Answer: h∗ achieves the bias-variance balance locally at x

The 1/
√

n(B) term helps to achieve the spatial homogeneity

Theorem (Optimality of the estimator)

Rq(f̂ ,Sk,pd (L)) .

(
ln n

n

)min{ k
2k+d

,
k−d/p+d/q
2(k−d/p)+d

}

Hence f̂ is minimax rate-optimal (with a logarithmic gap in regular case).
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Proof of the optimality

First observation:

‖f̂ − f ‖B ≤ ‖f̂ − y‖B + ‖f − y‖B ≤ 2‖ξ‖B �
√

ln n

and e , f̂ − f ∈ Sk,pd (2L).

Definition (Regular cube)

A cube B ⊂ [0, 1]d is called a regular cube if

e(B) ≥ C [h(B)]k−d/pΩ(e,B)

where C > 0 is a suitably chosen constant, e(B) = maxx∈B |e(x)|, h(B) is
the edge size of B, and

Ω(e,B) =

(∫
B
|Dk f (x)|pdx

) 1
p

.

One can show that [0, 1]d can be (roughly) partitioned into maximal
regular cubes with ≥ replaced by = (i.e., balanced bias and variance).
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Property of regular cubes

Lemma

If cube B is regular, we have

sup
B′∈B,B′⊂B

1√
n(B ′)

|
∑

ι:xι∈B′
e(xι)| .

√
ln n =⇒ e(B) .

√
ln n

n(B)

Proof:

Since B is regular, there exists a polynomial ek(x) in B of d variables
and degree no more than k such that e(B) ≥ 4‖e − ek‖∞,B
On one hand, |ek(x)| ≤ 5e(B)/4, and Markov’s inequality for
polynomial implies that ‖Dek‖∞ . e(B)/h(B)

On the other hand, |ek(x0)| ≥ 3e(B)/4 for some x0 ∈ B, the
derivative bound implies that there exists B ′ ⊂ B, h(B ′) � h(B) such
that |ek(x)| ≥ e(B)/2 on B ′

Choosing this B ′ in the assumption completes the proof
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Upper bound for the Lq risk

Since [0, 1]d can be (roughly) partitioned into regular cubes {Bi}∞i=1 such
that e(Bi ) � [h(Bi )]k−p/dΩ(e,Bi ), we have

‖e‖qq =
∞∑
i=1

∫
Bi

|e(x)|qdx ≤
∞∑
i=1

[h(Bi )]deq(Bi )

The previous lemma asserts that e(Bi ) ≤
√

ln n
n[h(Bi )]d

, and we cancel out

h(Bi ), e(Bi ) and get

‖e‖qq .

(
ln n

n

) q(k−d/p+d/q)
2(k−d/p)+d

∞∑
i=1

Ω(e,Bi )
d(q−2)

2(k−d/p)+d

≤
(

ln n

n

) q(k−d/p+d/q)
2(k−d/p)+d

( ∞∑
i=1

Ω(e,Bi )
p

) d(q−2)
p(2(k−d/p)+d)

if q ≥ q∗ = (1 + 2k
d )p. For 1 ≤ q < q∗ we use ‖e‖q ≤ ‖e‖q∗ . Q.E.D.
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Data-driven window size

Consider again a linear estimate with window size h locally at x , recall that

|f̂ (x)− f (x)| . inf
p∈Pk

d

‖f − p‖∞,Bh(x) +
σN (0, 1)√

nhd

The optimal window size h(x) should balance these two terms

The stochastic term can be upper bounded (with overwhelming

probability) by sn(h) = wσ
√

ln n
nhd

depending only on known

parameters and h, where the constant w > 0 is large enough

But the bias term depends on the unknown local property of f on
Bh(x)!
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Bias-variance tradeoff: revisit

Figure 2: Bias-variance tradeoff
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Lepski’s trick

Lepski’s adaptive scheme

Construct a family of local polynomial approximation estimators {f̂h} with
all window size h ∈ (0, 1). Then use f̂ĥ(x)(x) as the estimate of f (x), where

ĥ(x) , sup{h ∈ (0, 1) : |f̂h(x)− f̂h′(x)| ≤ 4sn(h′),∀h′ ∈ (0, h)}.

Denote by h∗(x) the optimal window size where two errors are equal:
bn(h∗) = sn(h∗)

Existence of ĥ(x): clearly h∗(x) satisfies the condition, for h′ ∈ (0, h∗)

|f̂h∗(x)− f̂h′(x)| ≤ |f̂h∗(x)− f |+ |f − f̂h′(x)|
≤ bn(h∗) + sn(h∗) + bn(h′) + sn(h′) ≤ 4sn(h′),

Performance of ĥ(x):

|f̂ĥ(x)(x)− f | ≤ |f̂h∗(x)(x)− f |+ |f̂ĥ(x)(x)− f̂h∗(x)(x)|

≤ bn(h∗) + sn(h∗) + 4sn(h∗) = 6sn(h∗)
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Lepski’s estimator is adaptive!

Properties of Lepski’s scheme:

Adaptive to parameters: agnostic to p, k , L

Spatially adaptive: still work when there is spatial inhomogeneity /
only estimate a portion of f

Theorem (Adaptive optimality)

Suppose that the modulus of smoothness k is upper bounded by a known
hyper-parameter S:

Rq(f̂ ,Sk,pd (L)) .

(
ln n

n

)min{ k
2k+d

,
k−d/p+d/q
2(k−d/p)+d

}

and f̂ is adaptively optimal in the sense that

inf
f̂

sup
k≤S ,p>d ,L>0

Rq(f̂ ,Sk,pd (L))

inf f̂ ∗ Rq(f̂ ∗,Sk,pd (L))
& (ln n)

S
2S+d .
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Covering of the ideal window

By the property of the data-driven window size ĥ(x), it suffices to consider
the ideal window size h∗(x) satisfying

sn(h∗(x)) � [h∗(x)]k−d/pΩ(f ,Bh∗(x)(x))

Lemma

There exists {xi}Mi=1 and a partition {Vi}Mi=1 of [0, 1]d such that

1 Cubes {Bh∗(xi )(xi )}Mi=1 are pairwise disjoint

2 For every x ∈ Vi , we have

h∗(x) ≥ 1

2
max{h∗(xi ), ‖x − xi‖∞}

and Bh∗(x)(x) ∩ Bh∗(xi )(xi ) 6= ∅

36 / 53



Analysis of the estimator

Using the covering of the local windows, we have

‖f̂ − f ‖qq .
∫

[0,1]d
|sn(h∗(x))|qdx =

M∑
i=1

∫
Vi

|sn(h∗(x))|qdx

Recall: sn(h) �
√

ln n
nhd

and h∗(x) ≥ max{h∗(xi ), ‖x − xi‖∞}/2 for x ∈ Vi ,

‖f̂ − f ‖qq .

(
ln n

n

)q M∑
i=1

∫
Vi

[max{h∗(xi ), ‖x − xi‖∞}]−dq/2dx

.

(
ln n

n

)q M∑
i=1

∫ ∞
0

rd−1[max{h∗(xi ), r}]−dq/2dr

.

(
ln n

n

)q M∑
i=1

[h∗(xi )]d−dq/2

Plugging in sn(h∗(x)) � [h∗(x)]k−d/pΩ(f ,Bh∗(x)(x)) and use the

disjointness of {Bh∗(xi )(x)}Mi=1 completes the proof. Q.E.D.
37 / 53



Experiment: Blocks

Figure 3: Blocks: original, noisy and reconstructed signal
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Experiment: Bumps

Figure 4: Bumps: original, noisy and reconstructed signal
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Experiment: Heavysine

Figure 5: Heavysine: original, noisy and reconstructed signal
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Experiment: Doppler

Figure 6: Doppler: original, noisy and reconstructed signal
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Further generalization

Is (spatially local) Sobolev ball large enough?

Do not include the very simple function f (x) = sinωx for ω large!

Cannot recover “modulated signal”, e.g., f (x) = g(x) sin(ωx + φ) for

g ∈ Sk,pd (L)

Some observations:

For f (x) = sinωx , we have
(

d2

dx2 + ω2
)
f (x) = 0

For f (x) = g(x) sin(ωx + φ), we write f (x) = f+(x) + f−(x), where

f±(x) =
g(x) exp(±i(ωx + φ))

±2i

and by induction we have∥∥∥∥∥
(

d

dx
∓ iω

)k

f±(x)

∥∥∥∥∥
p

=
‖g (k)‖p

2
≤ L

2
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General regression model

Definition (Signal satisfying differential inequalities)

Function f : [0, 1]→ R belongs to the class W l ,k,p(L), if and only if
f =

∑l
i=1 fi , and there exist monic polynomials r1, · · · , rl of degree k such

that

l∑
i=1

∥∥∥∥ri ( d

dx

)
fi

∥∥∥∥
p

≤ L.

For example, Sk,p1 (L) ⊂ W1,k,p(L) with r1(z) = zk .

General regression problem: recover f ∈ W l ,k,p(L) from noisy observations

yi = f (i/n) + σξi , i = 1, 2, · · · , n, ξi
iid∼ N (0, 1)

where we only know:

Noise level σ

An upper bound S ≥ kl
43 / 53



Recovering approach

The risk function

Note that now we cannot recover the whole function f (e.g., f ≡ 0
and f (x) = sin(2πnx) correspond to the same model)

The discrete q-norm: ‖f̂ − f ‖q = ( 1
n

∑n
i=1 |f̂ (i/n)− f (i/n)|q)

1
q

Recovering approach

Discretization: transform differential inequalities to inequalities of
finite difference

Sequence estimation: given a window size, recover the discrete
sequence satisfying an unknown difference inequality

Adaptive window size: apply Lepski’s trick to choose the optimal
window size adaptively
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Discretization: from derivative to difference

Lemma

For any f ∈ C k−1[0, 1] and any monic polynomial r(z) of degree k, there
corresponds another monic polynomial η(z) of degree k such that

‖η(∆)fn‖p . n−k+1/p‖r(
d

dx
)f ‖p

where fn = {f (i/n)}ni=1, and (∆φ)t = φt−1 is the backward shift operator.

Applying to our regression problem:

The sequence fn can be written as fn =
∑l

i=1 fn,i

There correspond monic polynomials ηi of degree k such that

l∑
i=1

‖ηi (∆)fn,i‖p . Ln−k+1/p
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Sequence estimation: window estimate

Given a sequence of observations {yt}, consider using {yt}|t|≤T to
estimate fn[0], where T is the window size

The estimator: f̂n[0] =
∑T

t=−T w−tyt

On one hand, the filter {wt}|t|≤T should have a small L2 norm to
suppress the noise

On the other hand, if η(∆)fn ≡ 0 with a known η, the filter should be
designed such that the error term only consists of the stochastic error

The approach

The filter {wt}|t|≤T is the solution to the following optimization problem:

min

∥∥∥∥∥∥F
{ T∑

t=−T
w−tyt+s − ys

}
|s|≤T

∥∥∥∥∥∥
∞

s.t. ‖F(wT )‖1 ≤
C√
T

where F({φt}|t|≤T ) denotes the discrete Fourier transform of {φt}|t|≤T .
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Frequency domain

Figure 7: The observations (upper panel) and the noises (lower panel)
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Performance analysis

Theorem

If fn =
∑l

i=1 fn,i and there exist monic polynomials ηi of degree k such

that
∑l

i=1 ‖ηi (∆)fn,i‖p,T ≤ ε, we have

|fn[0]− f̂n[0]| . T k−1/pε+
ΘT (ξ)√

T

where ΘT (ξ) is the supremum of O(T 2) N (0, 1) random variables and is
thus of order

√
lnT.

This result is a uniform result (ηi is unknown), and the
√

lnT gap is
avoidable to achieve the uniformity.
Plugging in ε � n−k+1/p‖f ‖p,B from the discretization step yields

|fn[m]− f̂n[m]| . (
T

n
)k−1/p‖f ‖p,B +

ΘT (ξ)√
T

where B is a segment with center m/n and length � T .
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Polynomial multiplication

Begin with the Hölder ball case, where we know that ‖(1−∆)k fn‖∞ ≤ ε
Write convolution as polynomial multiplication, we have
1− wT (z) = 1−

∑
|t|≤T wtz

t can be divided by (1− z)k

(1− wT (∆))p =
1− wT (∆)

(1−∆)k
· (1−∆)kp = 0, ∀p ∈ Pk−1

1

Moreover, ‖wT‖1 . 1, ‖wT‖2 . 1/
√
T , and ‖F(wT )‖1 . 1/

√
T

Lemma

There exists {ηt}|t|≤T such that ηT (z) =
∑
|t|≤T ηtz

t ≡ 1− w∗T (z) such

that ‖F(w∗T )‖1 . 1/
√
T , and for each i = 1, 2, · · · , l , we have

ηT (z) = ηi (z)ρi (z) with ‖ρi‖∞ . T k−1

If we knew ηT (z), we could just use f̂ ∗n [0] = [w∗T (∆)y ]0 to estimate fn[0]

49 / 53



Optimization solution

Performance of f̂ ∗n :

|f − f̂ ∗n | = |(1− w∗T (∆))f + w∗T (∆)ξ| ≤ |ηT (∆)f |+ |w∗T (∆)ξ|

≤
l∑

i=1

|ηT (∆)fi |+ |w∗T (∆)ξ| =
l∑

i=1

|ρi (∆)(ηi (∆)fi )|+ |w∗T (∆)ξ|

Fact

‖F(f − f̂ ∗n )‖∞ .
√
T

(
T k−1/pε+

ΘT (ξ)√
T

)
, ‖ηT (∆)f ‖∞ . T k−1/pε

Observation: by definition ‖F(f − f̂n)‖∞ ≤ ‖F(f − f̂ ∗n )‖∞, thus

‖F((1− wT (∆))f )‖∞ ≤ ‖F(f − f̂n)‖∞ + ‖F(wT (∆)ξ)‖∞

.
√
T

(
T k−1/pε+

ΘT (ξ)√
T

)
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Performance analysis

Stochastic error:

|s| = |[wT (∆)ξ]0| ≤ ‖F(wT )‖1‖F(ξ)‖∞ .
ΘT (ξ)√

T

Bias:

|b| = |[(1− wT (∆))f ]0|
≤ |[(1− wT (∆))ηT (∆)f ]0|+ |[(1− wT (∆))w∗T (∆)f ]0|
≤ ‖ηT (∆)f ‖∞ + ‖F(ηT (∆)f )‖∞‖‖F(wT )‖1

+ ‖F((1− wT (∆))f )‖∞‖F(w∗T )‖1

. T k−1/pε+
ΘT (ξ)√

T

and we’re done. Q.E.D.
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Adaptive window size

Apply Lepski’s trick to select T̂ [m] = nĥ[m]:

ĥ[m] = sup{h ∈ (0, 1) : |f̂n,nh[m]− f̂n,nh′ [m]| ≤ C

√
ln n

nh′
, ∀h′ ∈ (0, h)}

Theorem

Suppose S ≥ kl, we have

Rq(f̂ ,W l ,k,p(L)) .

(
ln n

n

)min
{

k
2k+1

,
k−1/p+1/q
2(k−1/p)+1

}

and f̂ is adaptively optimal in the sense that

inf
f̂

sup
kl≤S ,p>0,L>0

Rq(f̂ ,W l ,k,p(L))

inf f̂ ∗ Rq(f̂ ∗,W l ,k,p(L))
& (ln n)

S
2S+1 .
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