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The statistical model

e Given a family of distributions {Ps(-)}rc+ and an observation
Y ~ Pf, we aim to:
@ estimate f;
@ estimate a functional F(f) of f;
© do hypothesis testing: given a partition F = Uj’\’zl}"j, decide which F;
the true function f belongs to.



o The risk of using  to estimate 6(f) is

R(F.£) = v (BaW(d(F(Y), 0(F)))

where W is a nondecreasing function on [0, c0) with W(0) = 0, and
d(-,-) is some metric

@ The minimax approach

R(f,F) = sup R(f, f)
feF

R*(F) = |nf R(f,F)



Nonparametric regression

Problem: recover a function f : [0,1]¢ — R in a given set F C Ly([0,1]9)
via noisy observations

y,':f-(X,')—i-Uf,', i=12,---.n
Some options:
e Grid {x;}7_;: deterministic design (equidistant grid, general case),
random design
Noise {&;}7_,: iid NV(0,1), general iid case, with dependence
Noise level o: known, unknown
Function space: Holder ball, Sobolev space, Besov space

Risk function: risk at a point, integrated risk (Lq risk, 1 < g < oo,
with normalization)

1
R(F.F) = (Ef Jioge 1) = fA(x)]qu> . 1<q<oo
Ey (esssupyepoe |F(x) = F(3)]) =00



Equivalence between models

Under mild smoothness conditions, Brown et al. proved the asymptotic
equivalence between the following models:

@ Regression model: for iid A/(0,1) noise {&i}7;,
y,':f(l./n)—i-dfi, =12, ,n

@ Gaussian white noise model:

o

Vn

@ Poisson process: generate N = Poi(n) iid samples from common
density g (g = 2,0 = 1/2)

@ Density estimation model: generate n iid samples from common
density g (g = 2,0 = 1/2)

dY: = f(t)dt + —=dBs, te€0,1]



Bias-variance decomposition

Deterministic error (bias) and stochastic error of an estimator £(-):
b(x) = E¢f(x) — f(x)
s(x) = F(x) — Eff(x)

Analysis of the Lg risk:
@ For1 < g <o

1

A N 1
Ro(F.£) = (Eellf = £13)" = (Ellb+s[g)7
1
< l16llg + (E[s]3)
e For g = oc:

Roo(F, ) < [|blloc + El|s]loc



The first example

Consider the following regression model:
yi:f(i/n)—i_ofi: i:1’27"'7n

where {&}7_; iid A(0,1), and f € H;(L) for some known s € (0, 1] and
L > 0, and the Holder ball is defined as

Hi(L) = {f € C[0,1] : [f(x) = f(y)| < LIx —y[*,Vx,y €[0,1]}.



A window estimate

To estimate the value of f at x, consider the window
By =[x — h/2,x + h/2], then a natural estimator takes the form

where n(By) denotes the number of point x; in By.

@ Bias:
|b(x)| = [Eff(x) — F(x)| = Z f(xi) —
IX,GBX
x)| < n(BX) Y Lk —x* < LK
/x,EB i:x;€Bx
@ Stochastic term:
S(X):f(x)_EfF(X) (B ) Z §I
i:x;€Byx



Optimal window size: 1 < g < 0

OIS LB, s =g Y &

ix;€Byx
Bounding the integrated risk:

A 1
Rq(f,f) < [bllg + (Ellsl[g)e

o
<Lk +
v nh

The optimal window size h* should satisfy L(h*)® =

g

N ie.,
1
B — (E‘Tzn) *1and the resulting risk is
X o2\ = s
Rl i) S L( ) =
n



Optimal window size: g = oo

|b(x)| < Lh®, s(x

IX,EBX

Fact: for N(0,1) rv {&}M, (possibly correlated), there exists a constant
C such that for any w > 1,

( max [&| > CwVIn > < exp< 2Inl\/l>

1<i<M 2

e Proof: apply the union bound and P(|A(0,1)| > x) < 2exp(—x2/2).
e Corollary: E|[s]|cc < 04/ ':,? (M = O(n?)).

Optimal window size and risk
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Bias-variance tradeoff

Bias/Variance tradeoff

Bias squared. - - ~

|
ha

Figure 1: Bias-variance tradeoff
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General Holder ball

Consider the following regression problem:
Y. = f(XL) + O-§L7 f S Hg([—)7 L= (i17 i2) Ty Id) S {17 27 e 7m}d

where
o X(iy,iny e yig) — (il/m, i2/m, ce ,id/m), n=m
o {&} areiid NV(0,1) noises
@ The general Holder ball #3(L) is defined as

d

H(L) = {f - [0,1]9 — R, |DX(f)(x) — D*(F)(x)| < L|x — x’]a,Vx,X’}

where s = k + a, k € N, € (0,1], and D*(f)(-) is the vector
function comprised of all partial derivatives of f with order k.

e s > 0: modulus of smoothness
e d: dimensionality
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Local polynomial approximation

As before, consider the cube By centered at x with edge size h, where
h — 0,nh? — co.
@ Simple average no longer works!
@ Local polynomial approximation: for x, € By, design weights w,(x)
such that if the true f € 735, i.e., polynomial of full degree k and of d
variables, we have

fx)= Y w(x)f(x)

L:x, € By

There exists weights {w,(x)},.x,ep, Which depends continuously on x and

C2 C2
< G, < =
”WL(X)“]- A | HWL(X)H2 = n(BX) \/W

where (i, G, are two universal constants depending only on k and d.
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The estimator

Based on the weights {w,(x)}, construct a linear estimator

)= 3wy,

1:x, € By
@ Bias:
bC) =] D wi(x)f(x) — f(x)
1:x, €By
= inf D w(x)(F(x) = p(x)) = (F(x) = p(x))
PEP] L:x, € By
< (X4 w(x)[1) inf [[f = plleo,s,
pePy
@ Stochastic error:
o 1
s(x)| =0 w,(x)&,| < . w,(x)&,
Sl=e)| 2, Wit S G T 2 WS




Rate of convergence

@ Bounding the bias: by Taylor expansion,

) D*f(n,) — D¥f(x) P
_ — < [h®
p!€n7£g If = Plloc.s, < max P (z—x)"| S Lh
Hence, ||b|lq S Lh* for 1 < g < o0
@ Bounding the stochastic error: as before,
(Ellsl9)* < (1<q<o0) ElslaSoy/nr
o (1S9<) =7\ e

The optimal window size h* and the corresponding risk is given by

1 s
. n 2s+d ~ n 2s+d, 1<g<oo
h x{ L Re(Fr ML) x{

(Inn) 25+d (Inn) 2s+d’ q=0o0

and the resulting estimator is minimax rate-optimal (see later).
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Why approximation?

The general linear estimator takes the form
ﬁin(X) = Z WL(X))/L
e{1,2,-- ,m}d
Observations:
@ The estimator #;, is unbiased for f if and only if
Fx) =Y w(x)f(x), Vvxe[o,1]?
L
e Plugging in x = x, yields that z = {f(x,)} is a solution to
(WL(XK) - 6LK)L,I€Z =0
@ Denote by {sz)}yzl all linearly independent solutions to the previous
equation, then
fi(x) :ZWL(X)ZL(k), k=1,---,M

L

constitutes an approximation basis for H$(L).
16 /53



Why polynomial?

Definition (Kolmogorov n-width)

For a linear normed space (X, || - ||) and subset K C X, the Kolmogorov
n-width of K is defined as

dn(K) = dn(K, X) = inf sup |nf Ix =yl
Vi xeK YE

where V,, C X has dimension < n.

Theorem (Kolmogorov n-width for #3(L))

s
d.

dn(HS(L), C[0,1]9) < n™

The piecewise polynomial basis in each cube with edge size h achieves the
optimal rate (so other basis does not help):

doqyn-a(H5(L), C[0,1]9) < (h=9)~a = h°
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Methods in nonparametric regression

Function space (this lecture):
o Kernel estimates: f(x) = >, Kn(x = x,)y. (Nadaraya, Watson, ...)

e Local polynomial kernel estimates: f(x) = ZQ/’:;L dk(x)ck(x), where

(lx), - e(x)) = argmine 32, (v — Skl ck(x)u(x))*Kn(x — x,)
(Stone, ...)

o Penalized spline estimates: f = argming ||y, — gl[3 + [|g®) |3
(Speckman, Ibragimov, Khas'minski, ...)

o Nonlinear estimates (Lepski, Nemirovski, ...)
Transformed space (next lecture):
e Fourier transform: projection estimates (Pinsker, Efromovich, ...)

@ Wavelet transform: shrinkage estimates (Donoho, Johnstone, ...)
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Regression in Sobolev space

Consider the following regression problem:
Yo =f(x)+0&, FeSKP(L),e= (i, i+ ,ig) € {1,2,--- ,m}?
where
o X(ivyiay e yig) = (il/m, i2/m, s ,id/m), n=m
o {&} areiid N(0,1) noises
o The Sobolev ball SXP(L) is defined as

d

SEP(L) = {f 10,11 = R, ID*(F)llp < L

where DX(f)(-) is the vector function comprised of all partial
derivatives (in terms of distributions) of f with order k.
Parameters:
@ d: dimensionality
o k: order of differentiation
@ p: p > d to ensure continuous embedding SS’P(L) c C[o, 1)
° g

norm of the risk
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Minimax lower bound

Theorem (Minimax lower bound)

The minimax risk in Sobolev ball regression problem over all estimators is

k
n % g<(1+2)p
Ry(SKP(L),n) > dlprdla d
(Inn) (k=d/p)td qz(l_i_%)p

Theorem (Linear minimax lower bound)

The minimax risk in Sobolev ball regression problem over all linear
estimators is

k

n 2k+d, gsp
. ___k=d/ptd/q
Rcl;n(Sg’p(/_), n) Z n 2(’<—d/p-%—d/q)+d p<q<oo
b= d/P+d/q

(In n)42(k d/p+d/q)+d g= o0
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Start from linear estimates

Consider the linear estimator given by local polynomial approximation with
window size h as before:

@ Stochastic error:

1 o [Inn
(EHSHg)" S Vnhd (1<g<o), ElsfleSo hd

@ Bias: corresponds to polynomial approximation error

For f € Sg’p(L), there exists constant C > 0 such that

1
[DKHf(x) = DM (y)| < Clx — y[' =9/ ( / |Dkf(z)|f’dz> " xyesB
B
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Linear estimator: bias

Upper bound of the bias: Taylor polynomial yields
1
001 s w2 ([ J0¥aPa )
By

q
— ||b]2 S h(kd/")q/ (/ ]Dkf(z)\pdz>P dx
[0,1]¢ By

Note that

/ / |D*f(2)|Pdzdx = hd/ |D*f(x)|Pdx < h?LP
[0.1)¢ /B, [0,1]¢

o Case q/p < 1: ||b||g < hk=d/P)a . [ap%5 — [Ihk9 (regular case)
o Case q/p > 1: ||b||d < htk=d/P)a . [apd = | Ip(k=d/p+d/a)a (sparse
case)
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Linear estimator: optimal risk

In summary, we have

Lhk, < ., <00
16la S 9  kaimrara o llsllg S QY
Lh prdld. p<g<oo o\/ =, g=00

Theorem (Optimal linear risk)

k

n- 2k+d g<p
A __ k=d/p+d/q _
Rq(ﬂ}kn,Sg’p(L)) < p W=djprd/aFd, p < g < oo
k—d/p

(52) 5, g =oc

Alternative proof:

Theorem (Sobolev embedding)

For d < p < g, we have Sg’p(L) C Sg_d/erd/q’q(L’).
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Minimax lower bound: tool

Theorem (Fano's inequality)
Suppose Hy, - - -

, Hyn are probability distributions (hypotheses) on sample
space (2, F), and there exists decision rule D : Q — {1,2,--- , N} such
that Hj(w : D(w) =1) > 0;,1 <i < N. Then

N Dii(Fi||Fj) > ( Zé) In(N —1) —In2

Apply to nonparametric regression:
@ Suppose convergence rate r, is attainable, construct N functions
(hypotheses) fi,-- -, fy € F such that ||f; — fj||q > 4r, for any i # j

@ Decision rule: after obtalnlng f. choose j such that ||f — fillg < 2r,
@ As a result, §; > 1/2, and Fano's inequality gives

1 > 1
o @5&; i) = fi(x)I? = S In(N 1) —In2
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Minimax lower bound: sparse case

Suppose g > (1 + %)p.
e Fix a smooth function g supported on [0, 1]¢
Divide [0,1]? into h~9 disjoint cubes with size h, and construct
N = h~9 hypotheses: f; supported on j-th cube, and equals h*g(x/h)
on that cube (with translation)
To ensure f € SAP(L), set s =k —d/p
For i # j, rm = ||fi — fillg < hk—d/p+d/qa and

Z |f;(XL) _ f_}(XL)|2 - h2(k—d/p) .nhd = nh2(k—d/p)+d

@ Fano's inequality gives

k—d/p+d/q

In n\ 2(k=d/p)+d
np2k=d/P)td > In N < Inh ! =1, > <>
n
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Minimax lower bound: regular case

Suppose g < (1 + 275‘)p.

o Fix smooth function g supported on [0, 1]9, and set gx(x) = h°g(x/h)

o Divide [0,1]¢ into h=¢ disjoint cubes with size h, and construct
N =2’ hypotheses: f; = Zf’:—: €igh,i,» where gy, ; is the translation
of gp to i-th cube

o Can choose M = 29(h™9) hypotheses such that for i # j, f; differs f;
on at least ©(h~9) cubes

o To ensure f € SKP(L), set s = k

o Fori#j, ry<|fi—fq = h*, and

SR = F0a) = 12 n = nht
L
@ Fano's inequality gives
k
1\ Ztd
nh? > InM=h"9=r,> <>
n
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Construct minimax estimator

Why linear estimator fails in the sparse case?
@ Too much variance in the flat region!
@ Suppose we know that the true function f is supported at a cube with
size h, we have
Ibllg S Wtlmdla, (@]s)g) S ——
kd/pid/q
then h < n 26— araTa yields the optimal risk ©(n~ 2(k=d/p)+d)

. hd/a

Nemirovski's construction

|

In both cases, construct f as the solution to the following optimization

problem

IZ(g

L1:x,€B

f=arg mklr:( lg = ylls = arg mkID(L) Beg

where B is the set of all cubes in [0, 1] with nodes belonging to {x,}.
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Estimator analysis

Question 1: given a linear estimator f at x of window size h, which size H
of B € B achieves the maximum of ’ZLXLEB f(x.)—wl/v/n(B)?

o If W < h, the value < max{+/n(B)|bn(x)|,|N(0,1)|} increases with
h/

o If K > h, the value is close to zero
@ Hence, h" < h achieves the maximum
Question 2: what window size h* at x achieves min||f, — y||5?
@ Answer: h* achieves the bias-variance balance locally at x
@ The 1/\/@ term helps to achieve the spatial homogeneity

Theorem (Optimality of the estimator)

i k_ k—=d/pt+d/q
In n)mln{2k+d’2k d7pyrd

n

Ro(F, S5P(L)) (

Hence f is minimax rate-optimal (with a logarithmic gap in regular case).
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Proof of the optimality

First observation:
If = fls < |If —yls+If —ylls < 2|¢]s < Vinn
ande2f—fe SS’p(2L).

Definition (Regular cube)

A cube B C [0,1]9 is called a regular cube if
e(B) = C[h(B)]*~?/PQ(e, B)

where C > 0 is a suitably chosen constant, e(B) = maxyep |e(x)|, h(B) is
the edge size of B, and

Qe, B) = (/B |Dkf(x)ypdx)’l’ .

One can show that [0,1]¢ can be (roughly) partitioned into maximal
regular cubes with > replaced by = (i.e., balanced bias and variance).
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Property of regular cubes

If cube B is regular, we have

1
sup  ———| Y e(x)|SVinn—e(B) S
pesece /n(B) Ly

AN

Proof:

@ Since B is regular, there exists a polynomial ex(x) in B of d variables
and degree no more than k such that e(B) > 4|le — ex||«,B

@ On one hand, |ex(x)| < 5e(B)/4, and Markov's inequality for
polynomial implies that ||Dek|lo < e(B)/h(B)

@ On the other hand, |ex(xp)| > 3e(B)/4 for some xq € B, the
derivative bound implies that there exists B’ C B, h(B") < h(B) such
that |ex(x)| > e(B)/2 on B’

@ Choosing this B’ in the assumption completes the proof
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Upper bound for the L, risk

Since [0, 1]9 can be (roughly) partitioned into regular cubes {B;}3°, such
that e(B;) < [h(B))]*P/9Q(e, B;), we have

lellg = Z/B le(x)|7dx < ) [h(B)]"e%(B)
P i—1

The previous lemma asserts that e(B;) < ,/n[h'(”é’)]d, and we cancel out
h(B;), e(B;) and get

Inn % da—2)
ety () > e, 5) T
i=1
a(k=d/p+d/q) e 2)

In n\ 2(—=d/p)+d pQ(k—d/p)+d)
< Q(e, B)
(%) (St r)

if > q* = (1+2K)p. For 1 < g < q* we use |le[lqg < |le]lg~- QE.D.
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Data-driven window size

Consider again a linear estimate with window size h locally at x, recall that

oN(0,1)

fx—fxﬁinf f — Plloo.B(x) +
[7(x) = F(x)] 5H Plloc,Bu(x) N

peP

@ The optimal window size h(x) should balance these two terms

@ The stochastic term can be upper bounded (with overwhelming
probability) by s,(h) = WO’\/% depending only on known
parameters and h, where the constant w > 0 is large enough

@ But the bias term depends on the unknown local property of f on
Bp(x)!
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Bias-variance tradeoff: revisit

Bias/Variance tradeoff

Bias squared. - - ~

|
ha

Figure 2: Bias-variance tradeoff
33/53



Lepski's adaptive scheme

Construct a family of local polynomial approximation estimators {fh} with
all window size h € (0,1). Then use f;,)(x) as the estimate of f(x), where

h(x) 2 sup{h € (0,1) : |fn(x) — fw(x)| < 4sa(H'),¥H € (0, h)}.

Denote by h*(x) the optimal window size where two errors are equal:
bn(h*) = sp(h*)
o Existence of h(x): clearly h*(x) satisfies the condition, for #’ € (0, h*)
[fhs () = i ()| < [fae () = F1 4 |F = Fiw (x)]
< bp(h*) + sp(h*) + bp(h') + sn(h') < 4s,(H'),
e Performance of h(x):
]f;,(x)(x) —f] < |7?h*(x)( ) —fl+ |’r X)(X) fh*(x (x)|
< bp(h*) + sp(h*) + 4sp(h*) = 6s,(h")
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Lepski's estimator is adaptive!

Properties of Lepski's scheme:
o Adaptive to parameters: agnostic to p, k, L
@ Spatially adaptive: still work when there is spatial inhomogeneity /
only estimate a portion of f

Theorem (Adaptive optimality)

Suppose that the modulus of smoothness k is upper bounded by a known
hyper-parameter S:

k d/P+d/¢7}

Sk
s ok, Inn min{ 5% a 2(k—d/p)+d
R, S5 (L) 5 (1

and f is adaptively optimal in the sense that

» Rl S57(L)

su 2 (In n)ﬁ.
f k<S,p>d,L>0infz, Ry(f*,S p(L))
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Covering of the ideal window

By the property of the data-driven window size h(x), it suffices to consider
the ideal window size h*(x) satisfying

sn(h*(x)) = [0 ()]~ PQF, By (1 (x))

Lemma

There exists {x;}M, and a partition {V;}M, of [0,1]? such that
O Cubes {Bh*(xi)(x,-)}f‘il are pairwise disjoint
@ For every x € V;, we have

1
h*(X) Z 5 max{h*(Xi), HX — XIHOO}

and Bh*(x)(x) N Bh*(x,-)(xi) 75 @
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Analysis of the estimator

Using the covering of the local windows, we have

||ff|135/[01 sl () e = /\sn ))]7dx

)

Recall: s,(h) < \/'"TZ and h*(x) > max{h*(x;), ||x — xi|lloc }/2 for x € V;,

n

n) / [max{h*(xi), [[x = xilloo Y1742 dx

(
s <n> / rd = max{h*(x;), r}] 99/ dr
(

Plugging in s,(h*(x)) = [h*(x)]*=9/PQ(, Bp«(x)(x)) and use the
disjointness of {Bj«(,,)(x x)}M . completes the proof. Q.E.D.
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Experiment: Blocks

Bids
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Observations Recovered signal

Figure 3: Blocks: original, noisy and reconstructed signal
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Experiment: Bumps
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Figure 4: Bumps: original, noisy and reconstructed signal
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Experiment: Heavysine
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Figure 5: Heavysine: original, noisy and reconstructed signal
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Experiment: Doppler
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Figure 6: Doppler: original, noisy and reconstructed signal
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Further generalization

Is (spatially local) Sobolev ball large enough?
@ Do not include the very simple function f(x) = sinwx for w large!
e Cannot recover "modulated signal”, e.g., f(x) = g(x)sin(wx + ¢) for
g € S54P(L)
Some observations:
e For f(x) = sinwx, we have (;—){22 —|—w2) f(x)=0
e For f(x) = g(x)sin(wx + ¢), we write f(x) = fy(x) + f_(x), where

_ 8(x) exp(£i(wx + ¢))
() = 2
and by induction we have
d _ .\ lg™ N, _ L
H<dx Fiv) f09) =7 <]
P
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General regression model

Definition (Signal satisfying differential inequalities)

Function f : [0,1] — R belongs to the class W/*P(L), if and only if
f= Zf’=1 f;, and there exist monic polynomials r1, - - - , r; of degree k such

that

<L

/
£ (2)
im1 X/ lp

e For example, S{(’p(L) C WHEP(L) with r(z) = Z¥.

General regression problem: recover f € W/kP(L) from noisy observations

y,-:f(i/n)—i—af,', i:172)"'7n7 5[%/\/’(0)1)

where we only know:
@ Noise level o
@ An upper bound S > kl
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Recovering approach

The risk function

o Note that now we cannot recover the whole function f (e.g., f =0
and f(x) = sin(2mnx) correspond to the same model)

o The discrete g-norm: [|f — f|lq = (2 o0, |F(i/n) — f(i/n)|9)
Recovering approach

@ Discretization: transform differential inequalities to inequalities of
finite difference

Q-

@ Sequence estimation: given a window size, recover the discrete
sequence satisfying an unknown difference inequality

@ Adaptive window size: apply Lepski's trick to choose the optimal
window size adaptively
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Discretization: from derivative to difference

Lemma

For any f € Ck71[0,1] and any monic polynomial r(z) of degree k, there
corresponds another monic polynomial 7(z) of degree k such that

_ d
[1(A) fallp < 1 k“/pllr(&)fllp

where f, = {f(i/n)}!_;, and (A¢): = ¢¢_1 is the backward shift operator.

Applying to our regression problem:
@ The sequence f, can be written as f, = Zle foi

@ There correspond monic polynomials 7); of degree k such that
/
D mi(A)faillp S L=< H/P
i=1
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Sequence estimation: window estimate

Given a sequence of observations {y;}, consider using {y:} ;<7 to
estimate f,[0], where T is the window size

o The estimator: £,[0] = ZtT:_T W_tYt
@ On one hand, the filter {w;} ;<7 should have a small L norm to
suppress the noise

@ On the other hand, if n(A)f, = 0 with a known 7, the filter should be
designed such that the error term only consists of the stochastic error

The approach

The filter {w;} <7 is the solution to the following optimization problem:

-
. Cc
min || F Z W_tYits — Vs st |F(wr)| < —=
- VT

= |s|I<T

o0

where F({¢:}|¢<7) denotes the discrete Fourier transform of {¢¢}¢<7-
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Frequency domain
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Figure 7: The observations (upper panel) and the noises (lower panel)
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Performance analysis

Iff, = Zle fn,i and there exist monic polynomials n; of degree k such
that 32i_y |1i(A)fa,illp, < € we have

|610] — A[0]] S T+ V/Pe + —9\;(?5)

where ©7(€) is the supremum of O(T?) N(0,1) random variables and is
thus of order \/In T.

@ This result is a uniform result (n; is unknown), and the VIn T gap is
avoidable to achieve the uniformity.

@ Plugging in e < n_k+1/p||f\|p75 from the discretization step yields

. Tk or
] = ] < (D)2 + & 8
where B is a segment with center m/n and length < T.
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Polynomial multiplication

Begin with the Holder ball case, where we know that [|(1 — A)kf,|le < €

@ Write convolution as polynomial multiplication, we have
1—wr(z) =1—3 ;<7 wez" can be divided by (1 — z)k

. 1-— WT(A)

(1= wr(A)p =~ ((1-A)p=0, VpePf!

e Moreover, |wr|1 <1, ||wrll2 S l/ﬁ and || F(wr)ll1 < l/ﬁ

There exists {n¢}|s<7 such that n7(z) = > ;<7 mez" =1 — wi(z) such
that || F(w3)|l1 S 1/V/T, and for each i = 1,2,--- ,/, we have

n7(z) = mi(2)pi(z)  with  [pille S T*!

If we knew 77(z), we could just use £[0] = [wi(A)y]o to estimate £,[0]
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Optimization solution

Performance of f,:

!f—f*\ZI(l—W*r( Nf+wr(A )§!<\77T( )|+ wr(A)E]

<Z!?7T )il + [wr (A Z!p: ni(A)) + [wr(A)E]

N ©
IF(F = ) loo S VT (T“/”e + %) » T (B)flloe S T*/Pe

Observation: by definition || F(f — f,)lc0 < [|F(f — £)[|o0, thus
IF((L = wr(A) oo < IF(F = fa)lloo + 17 (wr(2)E) oo
- © (f))
k=1/p T
< VT (T €+ T
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Performance analysis

Stochastic error:

|s| = [wr (A)&o| < [IF(wr)[F(E)lloo < e\;(;)

Bias:

|b] = [[(1 = wr(A))f]ol
<@ = wr(A)nr(B)flo| +[[(1 — wr(A))wr(A)f]ol
< In7(A)flloo + 1F (7 (2) oo HIF (wr) 2
+ I = wr(2)F) oo |7 (wr) I

< Thk= 1/p +@\;(}£)
T

and we're done. Q.E.D.
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Adaptive window size

Apply Lepski’s trick to select T[m] = nh[m]:
~ ~ ~ I
hlm] = sup{h € (0.1) : [Fomlm] — fo.ow[m]| < C\/ =2 VK € (0, )}

Suppose S > ki, we have

. k k—=1/p+l/q
a Inn mm{2k+1’2(k71/p)+1}
Ro(FWHeP(L)) < (—n )

and f is adaptively optimal in the sense that

£ I,k,p
” RalFWH40(1))

S
) sup : = Z (In )=+
f ki<S,p>0,L>0 infp, Rg(F*, Whkr(L))
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