
Information Theory for Statistics and Learning
(Transcribed from handwritten course notes by GPT 5.2 Pro. Beware of transcription errors.)

Yanjun Han

January 17, 2026



ii



Contents

1 Lecture 1: Entropy & Mutual Information 1

1.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Why entropy? Source coding (i.i.d. case) . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Kraft–McMillan theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Source coding theorem (uniquely decodable codes) . . . . . . . . . . . . . . . 3

1.2 Asymptotic equipartition property (AEP) . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Source coding with error probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Joint entropy and mutual information . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Some consequences (Shannon-type inequalities) . . . . . . . . . . . . . . . . . 5

1.5 Channel coding and channel capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.2 Shannon’s channel coding theorem (statement) . . . . . . . . . . . . . . . . . 7

1.5.3 Achievability idea: random coding and typicality . . . . . . . . . . . . . . . . 7

1.6 Weak converse via Fano’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Applying Fano to channel coding (weak converse) . . . . . . . . . . . . . . . . 8

2 Lecture 2: KL Divergence 9

2.1 Kullback–Leibler (KL) divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Data processing inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Applications of DPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Dual representations of KL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Application 1: transportation inequalities . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Application 2: variational inference . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Application 3: adaptive data analysis . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Special topic: PAC-Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Lecture 3: f-divergences 21

3.1 f -divergence: definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Why f -divergence? Binary hypothesis testing . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Why not just total variation? Tensorization . . . . . . . . . . . . . . . . . . . 24

3.3.2 Popular f -divergences that do tensorize . . . . . . . . . . . . . . . . . . . . . 25

3.4 Similarities and differences between f -divergences . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Locally χ2-like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 In parametric models: Fisher information . . . . . . . . . . . . . . . . . . . . 25

iii



iv CONTENTS

3.5 f -divergence as “average statistical information” . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Bayes error and statistical information . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Different guarantees on contiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Dual representations of f -divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Joint range: inequalities between two f -divergences . . . . . . . . . . . . . . . . . . . 30

3.9 Special topic: a chain rule for H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9.1 Interpolating distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9.2 Completing the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Lecture 4: Large Deviations, Hypothesis Testing 35

4.1 Large deviations in finite alphabets: method of types . . . . . . . . . . . . . . . . . . 35

4.2 Information projection, exponential tilting, and CGF . . . . . . . . . . . . . . . . . . 37

4.3 Large deviations in general alphabets: Cramér’s theorem . . . . . . . . . . . . . . . . 37

4.3.1 Probabilistic proof (sketch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.2 Information-theoretic proof (sketch) . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Simple hypothesis testing and Neyman–Pearson . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 Neyman–Pearson lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Asymptotics: Chernoff regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.1 Proof of the corollary and achievability (notes) . . . . . . . . . . . . . . . . . 40

4.6 Converse: weak vs strong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Special topic: Stein’s regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7.1 Next-order term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7.2 Strong converse for channel coding (sketch) . . . . . . . . . . . . . . . . . . . 43

4.7.3 Reduction to hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7.4 Converse for finite blocklength (sketch) . . . . . . . . . . . . . . . . . . . . . 45

5 Lecture 5: Functional (In)equalities 47

5.1 From Shannon-type inequalities to functional inequalities . . . . . . . . . . . . . . . 47

5.2 Proof of EPI via Fisher information (Stam 1959) . . . . . . . . . . . . . . . . . . . . 48

5.2.1 A detour: Fisher information . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.2 de Bruijn’s identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.3 Proof of EPI in dimension d = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.4 General d ≥ 2 by induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.5 Example: the entropic CLT (Barron 1986) . . . . . . . . . . . . . . . . . . . . 50

5.3 Information and estimation in the Gaussian model: I–MMSE . . . . . . . . . . . . . 51

5.3.1 Two lemmas from filtering theory . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.2 Returning to the proof of the general identity . . . . . . . . . . . . . . . . . . 52

5.3.3 Why is I–MMSE useful in statistics? . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.4 An example: sparse mean estimation . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.5 Tensorization of I–MMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Area theorem for the BEC and sharp thresholds . . . . . . . . . . . . . . . . . . . . 55

5.4.1 Area theorem: a tensorization-flavored identity . . . . . . . . . . . . . . . . . 55

5.5 Special topic: symmetric linear codes achieve BEC capacity . . . . . . . . . . . . . . 56

5.5.1 Proof ingredient I: Boolean function sharp thresholds . . . . . . . . . . . . . 57

5.5.2 Proof ingredient II: area theorem + sharp threshold ⇒ capacity . . . . . . . 58



CONTENTS v

6 Lecture 6: Statistical decision theory & classical asymptotics 59
6.1 Statistical decision theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Comparison of estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Bayes risk vs minimax risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4.1 Binomial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4.2 Gaussian location model with bowl-shaped loss . . . . . . . . . . . . . . . . . 63
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Lecture 1: Entropy & Mutual Information

Remark 1.1 (Logarithm convention). For information-theoretic quantities in this lecture, log denotes
log2 (so entropies are measured in bits).

1.1 Entropy

Definition 1.2 (Entropy). Let X be a discrete random variable taking values in an alphabet X
with pmf p. Its entropy H(X) (or H(p)) is

H(X) =
∑
x∈X

p(x) log
1

p(x)
. (1.1)

Remark 1.3. 1. 0 ≤ H(X) ≤ log |X |. (One way to see the upper bound is via Jensen’s inequality.)

2. If |X | = ∞, then H(X) may be finite or infinite.

3. For continuous (or more general) random variables, one chooses a reference measure µ such
that X has a density f w.r.t. µ, and defines the differential entropy

h(X) =

∫
f(x) log

1

f(x)
dµ(x). (1.2)

The value of h(X) depends on the choice of µ.

4. (Base of log.) For IT applications in this lecture, use base 2 (bits). In many other settings one
uses natural logs (nats).

1.1.1 Why entropy? Source coding (i.i.d. case)

Shannon (1948) showed that entropy characterizes the fundamental limit of source coding.

Source coding problem. Given:

(1) an input alphabet X (e.g. English letters {a, b, . . . , z}),

(2) a known pmf p on X (the source distribution),

find a map (code)

f : X → {0, 1}∗ :=
⋃
n≥1

{0, 1}n, (1.3)

such that

1



2 Lecture 1: Entropy & Mutual Information

(1) f is uniquely decodable: from the concatenation f(x1) · · · f(xn) one can uniquely recover both
n and (x1, . . . , xn) ∈ X n;

(2) the expected code length is minimized:

E
[
ℓ(f(X))

]
=
∑
x∈X

p(x) ℓ
(
f(x)

)
, (1.4)

where ℓ(·) is the length (in bits) of a binary string.

Example 1.4. Let X = {a, b, c} and p = (14 ,
1
2 ,

1
4).

(a) The code a 7→ 0, b 7→ 10, c 7→ 11 is uniquely decodable (e.g. 1001011 decodes to babc).

(b) The code a 7→ 0, b 7→ 1, c 7→ 10 is not uniquely decodable (e.g. 10 could be c or ba).

(c) The code a 7→ 10, b 7→ 0, c 7→ 11 is uniquely decodable and has smaller expected length:

2 · 1
4 + 1 · 1

2 + 2 · 1
4 = 1.5 bits < 1.75 bits for (a).

1.1.2 Kraft–McMillan theorem

Given a length profile {ℓx}x∈X , when does there exist a uniquely decodable code f with ℓ(f(x)) = ℓx?

Theorem 1.5 (Kraft–McMillan (Kraft inequality)). A necessary and sufficient condition is∑
x∈X

2−ℓx ≤ 1. (1.5)

Proof sketch. Sufficiency. If
∑

x 2
−ℓx ≤ 1, one can construct a full binary tree whose leaves include

X with depth(x) = ℓx. Assigning each symbol the bitstring along its root-to-leaf path produces a
prefix code, hence uniquely decodable.

Necessity. Assume w.l.o.g. that |X | <∞ and ℓmax := maxx ℓ(f(x)) <∞. For any m ∈ N,(∑
x∈X

2−ℓ(f(x))
)m

=
∑

x1,...,xm∈X
2−(ℓ(f(x1))+···+ℓ(f(xm)))

=
∑

x1,...,xm∈X
2−ℓ(f(x1)···f(xm))

=

mℓmax∑
t=1

2−tNt,

where Nt counts the number of m-tuples whose concatenated codeword has total length t. By
unique decodability, distinct m-tuples yield distinct binary strings, so Nt ≤ 2t. Hence

(∑
x∈X

2−ℓ(f(x))
)m

≤
mℓmax∑
t=1

1 = mℓmax.

Taking m→ ∞ gives
∑

x 2
−ℓ(f(x)) ≤ 1.
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1.1.3 Source coding theorem (uniquely decodable codes)

Theorem 1.6 (Source coding theorem for uniquely decodable codes).

H(X) ≤ min
uniquely decodable f

E
[
ℓ(f(X))

]
< H(X) + 1. (1.6)

Proof sketch. Upper bound. Set ℓx :=
⌈
log 1

p(x)

⌉
. Then {ℓx} satisfies Kraft’s inequality, and

∑
x∈X

p(x) ℓx <
∑
x∈X

p(x)
(
log 1

p(x) + 1
)

= H(X) + 1.

Lower bound. Minimizing
∑

x p(x)ℓx subject to
∑

x 2
−ℓx ≤ 1 (allowing real lengths) yields the

optimum ℓ⋆x = log 1
p(x) , giving value H(X). (One can verify this via Lagrange multipliers.)

Remark 1.7. 1. The gap between H(X) and H(X) + 1 can be significant (e.g. if H(X) = 1.5
bits). In practice the alphabet is often a “super-symbol” alphabet, e.g. X = {a, . . . , z}256, in
which case H(X) ≫ 1 bit.

2. Information theory often provides robust results when a small error probability is allowed;
purely combinatorial arguments (like Kraft counting) typically do not extend as cleanly.

1.2 Asymptotic equipartition property (AEP)

Another way to write entropy is

H(X) = EX∼p

[
log

1

p(X)

]
. (1.7)

(A mild warning: the distribution p appears both in the expectation and inside the logarithm.)

Let X1, . . . , Xn be i.i.d. ∼ p. If H(X) <∞, then by the law of large numbers,

1

n
log

1

p(X1, . . . , Xn)
=

1

n

n∑
i=1

log
1

p(Xi)

a.s.−−−→
n→∞

E
[
log

1

p(X)

]
= H(X). (1.8)

For ε > 0, define the typical set

T εn :=
{
xn ∈ X n : p(xn) ∈

[
2−n(H(X)+ε), 2−n(H(X)−ε)]}. (1.9)

Theorem 1.8 (AEP). The typical set T εn satisfies:

(1) P
(
(X1, . . . , Xn) ∈ T εn

)
→ 1 as n→ ∞.

(2) (1− o(1)) 2n(H(X)−ε) ≤ |T εn| ≤ 2n(H(X)+ε).

Remark 1.9. In words: for i.i.d. samples, the joint distribution of X1, . . . , Xn is “roughly” uniform
over about 2nH(X) typical sequences.
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1.3 Source coding with error probability

Consider an encoder/decoder pair

(X1, . . . , Xn)
encoder−−−−→ Y ∈ {0, 1}∗ decoder−−−−→ (X̂1, . . . , X̂n),

with a block error guarantee P((X1, . . . , Xn) ̸= (X̂1, . . . , X̂n)) ≤ δ.

Theorem 1.10 (Source coding theorem with error probability). (1) Achievability. There exist
encoder/decoder pairs such that 1

nE[ℓ(Y )] ≤ H(p) + o(1) and δ = o(1).

(2) Converse. If δ = o(1), then any encoder/decoder pair must satisfy 1
nE[ℓ(Y )] ≥ H(p)− o(1).

Proof sketch. Achievability. Encode only the typical sequences in T εn: enumerate the elements of T εn
and transmit the index; declare an error otherwise. By AEP, P((X1, . . . , Xn) /∈ T εn) → 0. Moreover,

ℓ(Y ) ≤ log |T εn| ≤ n(H(p) + ε) deterministically.

Since ε > 0 is arbitrary, this gives 1
nE[ℓ(Y )] ≤ H(p) + o(1).

Converse. Fix ε > 0. Define

A := {Xn : ℓ(Y ) > n(H(p)− 2ε)},

B := {Xn : Xn = X̂n}.

By AEP and a union bound, P(T εn ∩B) ≥ 1− δ − o(1). Also,

|T εn ∩B ∩Ac| ≤ |{y ∈ {0, 1}∗ : ℓ(y) ≤ n(H(p)− 2ε)}|

=

n(H(p)−2ε)∑
k=1

2k < 2 · 2n(H(p)−2ε).

Each xn ∈ T εn has probability at most 2−n(H(p)−ε), hence

P(T εn ∩B ∩Ac) ≤ 2−n(H(p)−ε) |T εn ∩B ∩Ac| < 2 · 2−nε.

Therefore P(T εn ∩A ∩B) ≥ 1− δ − o(1)− 2 · 2−nε = 1− o(1), so P(A) ≥ 1− o(1). Finally,

1

n
E[ℓ(Y )] ≥ (H(p)− 2ε)P(A) ≥ (1− o(1))(H(p)− 2ε).

Letting ε ↓ 0 yields the converse.

1.4 Joint entropy and mutual information

Definition 1.11 (Joint and conditional entropies). For a pair (X,Y ), define

H(X,Y ) := EX,Y
[
log

1

p(X,Y )

]
, (1.10)

H(Y | X) := EX,Y
[
log

1

p(Y | X)

]
= H(X,Y )−H(X). (1.11)
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Definition 1.12 (Mutual information).

I(X;Y ) := H(X) +H(Y )−H(X,Y ) (1.12)

= H(Y )−H(Y | X) (1.13)

= EX,Y
[
log

p(X,Y )

p(X)p(Y )

]
. (1.14)

Lemma 1.13 (Non-negativity of mutual information). I(X;Y ) ≥ 0. Equivalently, conditioning
reduces entropy: H(X) ≥ H(X | Y ).

Typicality/AEP proof sketch. A one-line proof uses KL divergence, but we follow the typicality
argument.

For ε > 0, define

T εn(X) :=
{
(xn, yn) :

∣∣∣ 1
n

n∑
i=1

log
1

pX(xi)
−H(X)

∣∣∣ ≤ ε
}
,

T εn(Y ) :=
{
(xn, yn) :

∣∣∣ 1
n

n∑
i=1

log
1

pY (yi)
−H(Y )

∣∣∣ ≤ ε
}
,

T εn(X,Y ) :=
{
(xn, yn) :

∣∣∣ 1
n

n∑
i=1

log
1

pXY (xi, yi)
−H(X,Y )

∣∣∣ ≤ ε
}
,

and the joint typical set T εn := T εn(X) ∩ T εn(Y ) ∩ T εn(X,Y ).
If (X1, Y1), . . . , (Xn, Yn) are i.i.d. ∼ pXY , then LLN + union bound give P((Xn, Y n) ∈ T εn) → 1,

and hence |T εn| ≥ (1− o(1))2n(H(X,Y )−ε).
Now draw (X̃1, Ỹ1), . . . , (X̃n, Ỹn) i.i.d. ∼ pXpY (independent). Then

1 ≥ P((X̃n, Ỹ n) ∈ T εn)

=
∑

(xn,yn)∈T ε
n

pX(x
n)pY (y

n)

≥ (1− o(1))2n(H(X,Y )−ε) · 2−n(H(X)+ε) · 2−n(H(Y )+ε)

= (1− o(1))2−n(I(X;Y )+3ε).

Thus I(X;Y ) + 3ε ≥ 0, and letting ε ↓ 0 yields I(X;Y ) ≥ 0.

1.4.1 Some consequences (Shannon-type inequalities)

The non-negativity I(X;Y ) ≥ 0 is a fundamental inequality used to prove many others. For instance:

(1) H(X1, . . . , Xn) =
∑n

k=1H(Xk | X1, . . . , Xk−1) ≤
∑n

k=1H(Xk).

(2) If PY n|Xn =
∏n
i=1 PYi|Xi

, then

I(Xn;Y n) = H(Y n)−H(Y n | Xn) ≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi | Xi) =
n∑
i=1

I(Xi;Yi).

(3) If PXn =
∏n
i=1 PXi , then

I(Xn;Y n) = H(Xn)−H(Xn | Y n) ≥
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi | Yi) =
n∑
i=1

I(Xi;Yi).

All inequalities that can be derived from monotonicity H(X) ≤ H(X,Y ) and submodularity
H(XA) +H(XB) ≥ H(XA∪B) +H(XA∩B) are often called Shannon-type inequalities.
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1.5 Channel coding and channel capacity

Channel model. A message m ∼ Unif({1, . . . ,M}) is encoded into a channel input Xn ∈ X n,
passed through a memoryless channel PY |X so that PY n|Xn =

∏n
i=1 PYi|Xi

, and decoded into
m̂ ∈ {1, . . . ,M}.

Given a block error guarantee P(m ̸= m̂) ≤ δ, the goal is to maximize the communication rate

Rn :=
logM

n
(bits per channel use). (1.15)

Definition 1.14 (Channel capacity). The (Shannon) channel capacity is

C = C(PY |X) := max
PX

I(X;Y ), where PXY = PXPY |X . (1.16)

Equivalently: choose an input distribution PX that maximizes the mutual information between
input and output.

1.5.1 Examples

Binary symmetric channel (BSC). For X = Y = {0, 1} and crossover probability ε ∈ [0, 1],

PY |X =

(
1− ε ε
ε 1− ε

)
.

One has

I(X;Y ) = H(Y )−H(Y | X) ≤ 1− h2(ε), (1.17)

with equality iff PX = (12 ,
1
2). Here

h2(ε) := ε log
1

ε
+ (1− ε) log

1

1− ε
(1.18)

is the binary entropy function.

Binary erasure channel (BEC). For X = {0, 1}, Y = {0, 1,⊥}, and erasure probability ε,

PY |X =

0 1 ⊥
0 1− ε 0 ε
1 0 1− ε ε

.

Then

I(X;Y ) = H(X)−H(X | Y )

= H(X)− P(Y ̸= ⊥)H(X | Y ̸= ⊥)− P(Y = ⊥)H(X | Y = ⊥)

= H(X)− 0− εH(X)

= (1− ε)H(X) ≤ 1− ε,

with equality iff PX = (12 ,
1
2).
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1.5.2 Shannon’s channel coding theorem (statement)

Theorem 1.15 (Shannon’s channel coding theorem). Fix any ε > 0.

(1) Achievability. If Rn < C − ε, then there exist encoders/decoders such that P(m ≠ m̂) → 0 as
n→ ∞.

(2) (Weak) converse. If Rn > C+ε, then for every encoder/decoder sequence, lim infn→∞ P(m ̸=
m̂) > 0.

(A strong converse strengthens the second statement to P(m ̸= m̂) → 1; see later lectures.)

1.5.3 Achievability idea: random coding and typicality

Generate a random codebook Xn
(1), . . . , X

n
(M) i.i.d. ∼ P⊗n

X . To send message m, transmit Xn
(m).

Given the channel output Y n, decode by finding the unique m̂ such that (Xn
(m̂), Y

n) is jointly typical;

if none (or not unique), declare an error.
Assuming the true message is m = 1, successful decoding occurs if:

(1) (Xn
(1), Y

n) is jointly typical;

(2) none of (Xn
(2), Y

n), . . . , (Xn
(M), Y

n) is jointly typical.

By LLN, event (1) holds with probability 1 − o(1). Moreover, since (Xn
(2), Y

n) ∼ P⊗n
X ⊗ P⊗n

Y

(independent), the typicality bound implies P((Xn
(2), Y

n) jointly typical) ≤ 2−n(I(X;Y )−3ε). A union
bound gives

P(event (2)) ≥ 1−M · 2−n(I(X;Y )−3ε).

If logM < n(I(X;Y ) − 4ε), then P(m̂ = 1) ≥ 1 − o(1). Optimizing over PX yields rates below
capacity.

Remark 1.16. Random coding was historically surprising (algebraic codes dominated early intuition)
and helped motivate the probabilistic method. The typicality decoder is computationally expensive;
capacity-achieving efficient codes (e.g. spatially coupled LDPC codes and polar codes) were developed
much later.

1.6 Weak converse via Fano’s inequality

Lemma 1.17 (Data processing inequality for mutual information). If X−Y −Z forms a Markov
chain (i.e. PXY Z = PXPY |XPZ|Y ), then

I(X;Y ) ≥ I(X;Z). (1.19)

Proof. Using Shannon-type identities,

I(X;Y )− I(X;Z) = H(X | Z)−H(X | Y ) = H(X | Z)−H(X | Y, Z) = I(X;Y | Z) ≥ 0.

Theorem 1.18 (Fano’s inequality (one convenient form)). If X ∼ Unif([M ]), then

P(X ̸= Y ) ≥ 1− I(X;Y ) + log 2

logM
. (1.20)
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Proof. Let E := 1{X ̸= Y } and pe := P(E = 1) = P(X ̸= Y ). Then

H(X | Y ) = H(X | Y,E) + I(X;E | Y )

≤ H(X | Y,E) +H(E)

≤ P(E = 1)H(X | Y,E = 1) + P(E = 0)H(X | Y,E = 0) + log 2

≤ pe logM + log 2.

On the other hand, sinceX is uniform, H(X | Y ) = H(X)−I(X;Y ) = logM−I(X;Y ). Rearranging
yields the claim.

1.6.1 Applying Fano to channel coding (weak converse)

If the communication rate satisfies Rn > C + ε, then applying Fano’s inequality to (m, m̂) gives

P(m ̸= m̂) ≥ 1− I(m; m̂) + log 2

logM

≥ 1− I(Xn;Y n) + log 2

logM
(Markov chain m−Xn − Y n − m̂)

≥ 1−
∑n

i=1 I(Xi;Yi) + log 2

logM
(memoryless channel bound)

≥ 1− nC + log 2

logM
(definition of C).

Since logM = nRn > n(C + ε), the right-hand side tends to ε/(C + ε) > 0, establishing the weak
converse.



Lecture 2: KL Divergence

2.1 Kullback–Leibler (KL) divergence

Definition 2.1 (KL divergence / relative entropy). Let P and Q be probability measures on the
same measurable space. The Kullback–Leibler divergence (or relative entropy) of P with respect to
Q is

DKL(P∥Q) :=

{
EX∼P

[
log dP

dQ(X)
]
, if P ≪ Q,

+∞, otherwise.

Remark 2.2. 1. The definition covers both discrete and continuous cases. If p, q are pmfs on a
countable set X ,

DKL(P∥Q) =
∑
x∈X

p(x) log
p(x)

q(x)
.

If p, q are densities with respect to a common reference measure µ,

DKL(P∥Q) =

∫
p(x) log

p(x)

q(x)
µ(dx).

2. This is a divergence rather than a distance: in general DKL(P∥Q) ̸= DKL(Q∥P ). Hence we
write DKL(P∥Q) instead of DKL(P,Q).

3. Information-theoretic origin (redundancy). In the discrete case,

DKL(P∥Q) =
∑
x

p(x) log
1

q(x)
−H(P ),

where H(P ) =
∑

x p(x) log
1

p(x) is Shannon entropy. Thus DKL(P∥Q) equals the expected code
length when using a code optimal for Q minus the optimal expected code length for source P .

2.1.1 Basic properties

Proposition 2.3 (Property I: nonnegativity). For any P,Q, DKL(P∥Q) ≥ 0, with equality if and
only if P = Q.

Proof. Assume P ≪ Q and write Z := dP
dQ . Then EQ[Z] = 1 and

DKL(P∥Q) = EP [logZ] = EQ[Z logZ].

9
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The function φ(t) = t log t is convex on R+ and satisfies φ(1) = 0. By Jensen’s inequality,

DKL(P∥Q) = EQ[φ(Z)] ≥ φ(EQ[Z]) = φ(1) = 0.

Moreover, equality holds if and only if Z = 1 Q-a.s., i.e. P = Q. If P ̸≪ Q, then DKL(P∥Q) = +∞
by definition.

Remark 2.4 (Mutual information as a KL divergence). For random variables (X,Y ) with joint law
PXY and marginals PX , PY ,

I(X;Y ) = E
[
log

dPXY
d(PX ⊗ PY )

(X,Y )

]
= DKL

(
PXY ∥PX ⊗ PY

)
≥ 0.

Equality holds if and only if PXY = PX ⊗ PY , i.e. X and Y are independent.

Proposition 2.5 (Property II: joint convexity). The map (P,Q) 7→ DKL(P∥Q) is jointly convex.

Proof sketch. In the discrete/density setting, DKL(P∥Q) =
∫
ϕ
(
p
q

)
q, where ϕ(u) = u log u. Equiva-

lently, one may use the joint convexity of (x, y) 7→ x log x
y on R2

+. Indeed, for f(x, y) = x log(x/y),

∇2f(x, y) =

(
1
x − 1

y

− 1
y

x
y2

)
⪰ 0.

Proposition 2.6 (Property III: chain rule). Let Xn = (X1, . . . , Xn). Then

DKL(PXn∥QXn) =

n∑
i=1

EPXi−1

[
DKL

(
PXi|Xi−1∥QXi|Xi−1

)]
.

Proof. Write the likelihood ratio via conditional distributions: PXn

QXn
=
∏n
i=1

PXi|Xi−1

QXi|Xi−1
. Taking logs

and expectations under PXn gives

DKL(PXn∥QXn) = EPXn

[
n∑
i=1

log
PXi|Xi−1(Xi | Xi−1)

QXi|Xi−1(Xi | Xi−1)

]
=

n∑
i=1

EPXi−1

[
DKL

(
PXi|Xi−1∥QXi|Xi−1

)]
.

2.1.2 Data processing inequality

Theorem 2.7 (Data processing inequality (DPI)). Let PX , QX be distributions on X and let PY |X
be a Markov kernel (channel) from X to Y. Let PY , QY be the output laws induced by the same
channel: PY = PXPY |X and QY = QXPY |X . Then

DKL(PX∥QX) ≥ DKL(PY ∥QY ).

(In words: distributions become “closer” after processing.)

Proof (method 1: convexity / Jensen). Assume PX ≪ QX (otherwise DKL(PX∥QX) = +∞ and
the claim is trivial). Let

LX(x) :=
dPX
dQX

(x).
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Define the joint laws PXY = PXPY |X and QXY = QXPY |X . Then PXY ≪ QXY and

dPXY
dQXY

(x, y) =
dPX
dQX

(x) = LX(x).

Let

LY (y) :=
dPY
dQY

(y).

We claim that

LY (Y ) = EX∼QX|Y

[
LX(X) | Y

]
QY -a.s.

(this is the “exercise” step in the handwritten notes). Indeed, for any bounded measurable g,

EQY
[g(Y )LY (Y )] = EPY

[g(Y )] = EPXY
[g(Y )]

= EQXY
[g(Y )LX(X)] = EQY

[
g(Y )EQX|Y [LX(X) | Y ]

]
,

which identifies LY as the conditional expectation.

Now use φ(t) = t log t (convex on R+). Then

DKL(PY ∥QY ) = EPY
[logLY (Y )] = EQY

[LY (Y ) logLY (Y )] = EQY
[φ(LY (Y ))]

= EQY

[
φ
(
EQX|Y [LX(X) | Y ]

)]
≤ EQY

EQX|Y [φ(LX(X)) | Y ] (Jensen)

= EQX
[φ(LX(X))] = EPX

[logLX(X)] = DKL(PX∥QX).

Proof (method 2: chain rule). Form the joint laws PXY = PXPY |X and QXY = QXPY |X . Since
the conditional distributions coincide, the chain rule gives

DKL(PXY ∥QXY ) = DKL(PX∥QX) + EPX

[
DKL(PY |X∥PY |X)

]
= DKL(PX∥QX).

Applying the chain rule in the other direction,

DKL(PXY ∥QXY ) = DKL(PY ∥QY ) + EPY

[
DKL(PX|Y ∥QX|Y )

]
≥ DKL(PY ∥QY ).

Combining yields DKL(PX∥QX) ≥ DKL(PY ∥QY ).

2.1.3 Applications of DPI

Example 2.8 (DPI for mutual information). If X − Y − Z is a Markov chain, then

I(X;Y ) ≥ I(X;Z).

Proof. Using the KL representation of mutual information, I(X;Y ) = DKL(PXY ∥PX ⊗ PY ). Under
the Markov condition X − Y − Z, both PXZ and PX ⊗ PZ are obtained from PXY and PX ⊗ PY ,
respectively, by applying the same channel PZ|Y . By DPI,

DKL(PXY ∥PX ⊗ PY ) ≥ DKL(PXZ∥PX ⊗ PZ),

which is I(X;Y ) ≥ I(X;Z).
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Example 2.9 (Fano’s inequality (one form)). If X ∼ Unif([M ]) and Y is any estimator of X, then

P(X ̸= Y ) ≥ 1− I(X;Y ) + log 2

logM
.

Proof. Let A = 1{X = Y }. Under PXY , A ∼ Bern(P(X = Y )). Under PX ⊗PY , since X is uniform
and independent of Y , PPX⊗PY

(X = Y ) = 1/M , hence A ∼ Bern(1/M). By DPI,

I(X;Y ) = DKL(PXY ∥PX ⊗ PY ) ≥ DKL

(
Bern(P(X = Y ))∥Bern(1/M)

)
.

Writing p = P(X = Y ) = 1− P(X ̸= Y ) and expanding the Bernoulli KL,

DKL(Bern(p)∥Bern(1/M)) = p log
p

1/M
+ (1− p) log

1− p

1− 1/M
≥ p logM − log 2.

Rearranging yields the stated bound.

Example 2.10 (A contiguity bound). For any event A,

PP (A) log
PP (A)
ePQ(A)

≤ DKL(P∥Q).

In particular, if DKL(P∥Q) = O(1) and PQ(A) → 0, then PP (A) → 0.

Proof. Apply DPI to the mapping x 7→ 1{x ∈ A}. Then

DKL(P∥Q) ≥ DKL

(
Bern(PP (A))∥Bern(PQ(A))

)
≥ PP (A) log

PP (A)
ePQ(A)

,

where the last inequality is a standard lower bound on Bernoulli KL.

2.1.4 Dual representations of KL

Theorem 2.11 (Donsker–Varadhan variational formula).

DKL(P∥Q) = sup
f

{
EP [f ]− logEQ[ef ]

}
,

where the supremum is over measurable f such that EQ[ef ] <∞.

Proof. (≤) Take f = log dP
dQ . Then EQ[ef ] = 1 and the objective equals EP [f ] = DKL(P∥Q).

(≥) For any f , replace f by f − c so that EQ[ef ] = 1. Define a probability measure Q̃ by

Q̃(dx) = ef(x)Q(dx). Then

DKL(P∥Q)− EP [f ] = EP
[
log

dP

ef dQ

]
= DKL(P∥Q̃) ≥ 0.

Thus EP [f ]− logEQ[ef ] ≤ DKL(P∥Q) for all f .

Theorem 2.12 (Gibbs variational principle). For any measurable f with EQ[ef ] <∞,

logEQ[ef ] = sup
P

{
EP [f ]−DKL(P∥Q)

}
.

Proof. (≥) Take P (dx) = ef(x)Q(dx)
EQ[ef ]

.

(≤) Follows from the Donsker–Varadhan formula.
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2.2 Applications

2.2.1 Application 1: transportation inequalities

Example 2.13 (Pinsker’s inequality from Donsker–Varadhan). Restrict Donsker–Varadhan to
functions of the form f = λg with ∥g∥∞ ≤ 1. Then

DKL(P∥Q) ≥ sup
λ∈R, ∥g∥∞≤1

{
λEP [g]− logEQ[eλg]

}
.

Using Hoeffding’s lemma for bounded g, logEQ[eλg] ≤ λEQ[g] + λ2

2 . Hence

DKL(P∥Q) ≥ sup
λ,∥g∥∞≤1

{
λ(EP [g]− EQ[g])− λ2

2

}
=

1

2

(
sup

∥g∥∞≤1
(EP [g]− EQ[g])

)2
= 2TV(P,Q)2.

This is Pinsker’s inequality.

Example 2.14 (Bobkov–Gotze: a T1 transportation inequality). Let (X , d) be a metric space. The
following are equivalent:

(1) For all 1-Lipschitz f and all λ ∈ R,

EQ
[
exp(λ(f − EQ[f ]))

]
≤ exp

(
λ2C
2

)
.

(2) For all P ≪ Q,
W1(P,Q) ≤

√
2C DKL(P∥Q).

Here the Wasserstein-1 distance is

W1(P,Q) = inf
π∈Π(P,Q)

E(X,Y )∼π[d(X,Y )] = sup
f 1-Lip

{
EP [f ]− EQ[f ]

}
.

Proof (sketch). (1)⇒(2): Restrict Donsker–Varadhan to f = λ f0 with f0 1-Lipschitz and apply (1)
to control logEQ[eλf0 ]. Optimizing over λ gives DKL(P∥Q) ≥W1(P,Q)2/(2C).

(2)⇒(1): By Gibbs variational principle,

logEQ[eλ(f−EQf)] = sup
P

{
λ(EP f−EQf)−DKL(P∥Q)

}
≤ sup

P

{
λ(EP f−EQf)−

(EP f−EQf)
2

2C

}
≤ λ2C

2 .

2.2.2 Application 2: variational inference

Setting. Consider a model family pθ(x
n, yn) where both pθ(x

n) and pθ(y
n | xn) are tractable. We

observe yn but not xn (missing data / latent variables). The marginal likelihood

pθ(y
n) =

∫
pθ(x

n) pθ(y
n | xn) dxn

is often intractable.

Theorem 2.15 (Evidence lower bound (ELBO)).

log pθ(y
n) = sup

q
EXn∼q

[
log

pθ(X
n, yn)

q(Xn)

]
.
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Proof. Apply the Gibbs variational principle with f(xn) = log pθ(y
n | xn) and base measure pθ(x

n):

log pθ(y
n) = logEpθ(xn)

[
elog pθ(y

n|xn)]
= sup

q

{
Eq[log pθ(yn | Xn)]−DKL(q∥pθ(xn))

}
= sup

q
Eq
[
log

pθ(X
n, yn)

q(Xn)

]
.

Example 2.16 (Ising model: variational lower bound on logZ). Let y ∈ {±1}n and

p(y) =
1

Z
exp

∑
i<j

Aijyiyj +
∑
i

biyi

 .

Then

logZ = log

2nEY∼Unif({±1}n) exp

∑
i<j

AijYiYj +
∑
i

biYi


= n log 2 + sup

p

{
Ep
[∑
i<j

AijYiYj +
∑
i

biYi
]
−DKL

(
p∥Unif({±1}n)

)}
= sup

p

{
Ep
[∑
i<j

AijYiYj +
∑
i

biYi
]
+H(p)

}
.

Relaxing p to a product form p =
∏n
i=1Bern(pi) yields a tractable lower bound.

Example 2.17 (EM algorithm as coordinate ascent on the ELBO). The maximum-likelihood
estimator satisfies

argmax
θ

log pθ(y
n) = argmax

θ
sup
q

Eq
[
log

pθ(X
n, yn)

q(Xn)

]
.

Successive maximization gives:

• E-step: for fixed θ = θ(t), the maximizer is q(t)(xn) = pθ(t)(x
n | yn).

• M-step: for fixed q = q(t), update

θ(t+1) ∈ argmax
θ

EXn∼q(t)
[
log pθ(X

n, yn)
]
.

For exponential families pθ(x, y) ∝ exp(⟨θ, T (x, y)⟩ −A(θ)), this reduces to computing conditional
sufficient statistics in the E-step and a standard MLE update in the M-step.

Example 2.18 (VAE: ELBO with reparameterization). A typical VAE generative model is

Xi ∼ N (0, I), Yi | Xi ∼ N (µθ(Xi), σ
2
θ(Xi)I),

with µθ, σθ parameterized by neural nets. Choose an approximate posterior

qϕ(x | y) = N (µϕ(y), σ
2
ϕ(y)I).

Then the ELBO suggests optimizing over (θ, ϕ). In practice one:
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1. Replaces expectations under qϕ by Monte Carlo samples Xij ∼ N (µϕ(yi), σ
2
ϕ(yi)I), j =

1, . . . ,M .

2. Computes ∇θ from the explicit form of log pθ(x, y).

3. Computes ∇ϕ via the reparameterization trick: if X ∼ N (µϕ, σ
2
ϕI) and ε ∼ N (0, I), then

X = µϕ + σϕε and

∇ϕE[f(X)] = ∇ϕEε[f(µϕ + σϕε)] = Eε[∇ϕf(µϕ + σϕε)] ≈
1

M

M∑
j=1

∇ϕf(µϕ + σϕεj).

2.2.3 Application 3: adaptive data analysis

Problem. Let Xn = (X1, . . . , Xn) be i.i.d. from P , and let {ϕt : X → R} be a class of functions.
For fixed t define

Pnϕt :=
1

n

n∑
i=1

ϕt(Xi), Pϕt := E[ϕt(X)].

What if the index T is chosen adaptively, i.e. T = T (Xn)?

Example 2.19 (Russo–Zou (2016)). Assume each ϕt(X) is σ2-sub-Gaussian under P . Then∣∣∣E[PnϕT ]− E[PϕT ]
∣∣∣ ≤√2σ2

n
I(Xn;T ).

Proof. Condition on T .

E[PnϕT | T ] = EPXn|T

[
1

n

n∑
i=1

ϕT (Xi)

]
, E[PϕT | T ] = EPXn

[
1

n

n∑
i=1

ϕT (Xi)

]
.

By Donsker–Varadhan, for any λ ∈ R,

DKL(PXn|T ∥PXn) ≥ λE
[
PnϕT | T

]
− logE

[
exp
(
λPnϕT

)∣∣∣T]
= λ

(
E[PnϕT | T ]− E[PϕT | T ]

)
− logE

[
exp
(
λ(PnϕT − E[PϕT | T ])

)∣∣∣T] .
The sub-Gaussian assumption implies logE[exp(λ(PnϕT − E[PϕT | T ])) | T ] ≤ λ2σ2

2n . Therefore,

DKL(PXn|T ∥PXn) ≥ sup
λ∈R

{
λ∆− λ2σ2

2n

}
=
n∆2

2σ2
, ∆ := E[PnϕT | T ]− E[PϕT | T ].

Taking expectations in T and using I(Xn;T ) = E
[
DKL(PXn|T ∥PXn)

]
yields the claim.

2.3 Special topic: PAC-Bayes

Theorem 2.20 (PAC-Bayes inequality). Let X ∼ P and let {fθ : X → R} be a class of functions
indexed by θ. Fix any prior distribution π on θ. Then with probability at least 1− δ (over X ∼ P ),
for all distributions ρ on θ,

Eθ∼ρ
[
fθ(X)− ψ(θ)

]
≤ DKL(ρ∥π) + log

1

δ
, ψ(θ) := logEX∼P

[
efθ(X)

]
.
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Proof. By Markov’s inequality, it suffices to show

EX∼P

[
sup
ρ

exp
(
Eθ∼ρ[fθ(X)− ψ(θ)]−DKL(ρ∥π)

)]
≤ 1.

By the Gibbs variational principle, the inner supremum equals logEθ∼πefθ(X)−ψ(θ). Hence the
left-hand side becomes

EX∼P

[
exp

(
logEθ∼πefθ(X)−ψ(θ)

)]
= EX∼PEθ∼π

[
efθ(X)−ψ(θ)]

= Eθ∼π
[
EX∼P

[
efθ(X)−ψ(θ)]] = 1.

Example 2.21 (Why call it “PAC-Bayes”? (a quadratic PAC-Bayes bound)). Let F be a class of

functions f : X → [0, 1] and let X1, . . . , Xn
i.i.d.∼ P . Write

Pnf :=
1

n

n∑
i=1

f(Xi), Pf := EX∼P [f(X)].

For fixed f , Hoeffding’s inequality implies the usual concentration bound

(Pnf − Pf)2 ≤ 1

2n
log

2

δ
with prob. ≥ 1− δ.

PAC-Bayes gives a “soft” uniform version: fixing any prior π on F , with probability at least 1− δ,
simultaneously for all distributions ρ on F ,

Ef∼ρ
[
(Pnf − Pf)2

]
≤
DKL(ρ∥π) + log 2

δ

2n
.

Proof. Apply the PAC-Bayes inequality to the random variable Xn = (X1, . . . , Xn) and to the
function class

Ff (X
n) := λ (Pnf − Pf)2, f ∈ F ,

where λ > 0 is a parameter. Then, with probability at least 1− δ, for all posteriors ρ,

Ef∼ρ
[
λ(Pnf − Pf)2 − logE exp

(
λ(Pnf − Pf)2

)]
≤ DKL(ρ∥π) + log

1

δ
. (2.1)

Now fix f . Since f(Xi) ∈ [0, 1], the centered average Zf := Pnf − Pf is sub-Gaussian at scale
1/n. A standard computation for sub-Gaussian random variables yields the “square-mgf” bound

logE exp
(
λZ2

f

)
≤ 1

2
log

1

1− λ/(4n)
for λ < 4n.

Plug this into (2.1). Choosing λ = 2n (so that λ < 4n) gives

Ef∼ρ
[
2n (Pnf − Pf)2

]
≤ DKL(ρ∥π) + log

1

δ
+

1

2
log 2 ≤ DKL(ρ∥π) + log

2

δ
.

Dividing by 2n yields the claim.
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Example 2.22 (A Gaussian norm bound via PAC-Bayes). If X ∼ N (0,Σ), then with probability
at least 1− δ,

∥X∥2 ≤
√
Tr(Σ) +

√
2 ∥Σ∥op log

1

δ
.

Proof. We start from the dual characterization

∥X∥2 = sup
∥v∥2=1

⟨v,X⟩ .

Fix parameters λ > 0 and σ2 > 0. Let the prior on θ ∈ Rd be π = N (0, σ2I). For each v with
∥v∥2 = 1, define a posterior

ρv := N (v, σ2I).

Apply PAC-Bayes with the function fθ(X) = λ ⟨θ,X⟩. Then, with probability at least 1 − δ,
simultaneously for all v,

Eθ∼ρv
[
λ ⟨θ,X⟩ − logE exp

(
λ ⟨θ,X⟩

)]
≤ DKL(ρv∥π) + log

1

δ
. (2.2)

We now compute the three terms explicitly. First, since X ∼ N (0,Σ),

logE exp
(
λ ⟨θ,X⟩

)
=
λ2

2
θ⊤Σθ.

Second,

DKL(ρv∥π) = DKL

(
N (v, σ2I) ∥N (0, σ2I)

)
=

∥v∥22
2σ2

=
1

2σ2
.

Third, Eθ∼ρv [⟨θ,X⟩] = ⟨Eθ,X⟩ = ⟨v,X⟩ and

Eθ∼ρv [θ⊤Σθ] = v⊤Σv + σ2Tr(Σ).

Plugging into (2.2) yields, for all v with ∥v∥2 = 1,

λ ⟨v,X⟩ − λ2

2

(
v⊤Σv + σ2Tr(Σ)

)
≤ 1

2σ2
+ log

1

δ
,

or equivalently

⟨v,X⟩ ≤ λ

2

(
v⊤Σv + σ2Tr(Σ)

)
+

1

λ

( 1

2σ2
+ log

1

δ

)
. (2.3)

Now optimize over σ2. For fixed λ, the σ2-dependent part in (2.3) is

λ

2
σ2Tr(Σ) +

1

λ
· 1

2σ2
.

This is minimized at

σ2 =
1

λ
√

Tr(Σ)
,

in which case the minimum value equals
√

Tr(Σ). Hence (2.3) becomes

⟨v,X⟩ ≤
√
Tr(Σ) +

λ

2
v⊤Σv +

log(1/δ)

λ
.
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Using v⊤Σv ≤ ∥Σ∥op and taking the supremum over ∥v∥2 = 1 gives

∥X∥2 ≤
√
Tr(Σ) +

λ

2
∥Σ∥op +

log(1/δ)

λ
.

Finally, optimize over λ > 0 by choosing

λ =

√
2 log(1/δ)

∥Σ∥op
,

which yields

∥X∥2 ≤
√
Tr(Σ) +

√
2 ∥Σ∥op log

1

δ
.

Example 2.23 (Sample covariance (effective rank bound)). Let X1, . . . , Xn be i.i.d. with E[Xi] = 0,
E[XiX

⊤
i ] = Σ, and assume ⟨v,Xi⟩ is sub-Gaussian with variance proxy v⊤Σv for every v ∈ Rd. Let

Σ̂ = 1
n

∑n
i=1XiX

⊤
i . Then with probability at least 1− δ,

∥∥∥Σ̂− Σ
∥∥∥
op

≤ C ∥Σ∥op

(√
r(Σ) + log(1/δ)

n
+
r(Σ) + log(1/δ)

n

)
,

where r(Σ) = Tr(Σ)/ ∥Σ∥op is the effective rank and C is a universal constant.

Proof. Throughout the proof, C denotes a large universal constant which may change from line to
line.

Step 1: reduce to bilinear forms. Recall∥∥∥Σ̂− Σ
∥∥∥
op

= sup
∥u∥2=∥v∥2=1

u⊤(Σ̂− Σ)v.

Fix u, v with ∥u∥2 = ∥v∥2 = 1.

Step 2: construct truncated-Gaussian posteriors. Let fu be the density of N (u, σ2I)
conditioned on the event

(x− u)⊤Σ(x− u) ≤ r2,

and define the product posterior on (θ, θ′) ∈ Rd × Rd by

ρu,v := fu ⊗ fv.

By symmetry of the conditioning set around u (resp. v), Eθ∼fu [θ] = u and Eθ′∼fv [θ′] = v. Therefore,

E(θ,θ′)∼ρu,v
[
θ⊤(Σ̂− Σ)θ′

]
= u⊤(Σ̂− Σ)v.

Let
p := P

(
Z⊤ΣZ ≤ r2

)
, Z ∼ N (0, σ2I).

By Markov’s inequality,

p ≥ 1− E[Z⊤ΣZ]

r2
= 1− σ2Tr(Σ)

r2
.
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Step 3: compute the KL term. Let the prior be

π := N (0, σ2I)⊗N (0, σ2I).

Write φu for the density of N (u, σ2I). Then

fu(x) =
φu(x)1{(x− u)⊤Σ(x− u) ≤ r2}

p
.

A direct calculation gives

DKL

(
fu∥N (0, σ2I)

)
= DKL

(
N (u, σ2I)∥N (0, σ2I)

)
+ log

1

p
=

∥u∥22
2σ2

+ log
1

p
=

1

2σ2
+ log

1

p
.

Hence

DKL(ρu,v∥π) =
1

σ2
+ 2 log

1

p
.

Step 4: apply PAC-Bayes. Apply PAC-Bayes to the random sample Xn = (X1, . . . , Xn),
parameter (θ, θ′), and the function

Fθ,θ′(X
n) := λ θ⊤(Σ̂− Σ)θ′,

where λ > 0. Then with probability at least 1− δ,

E(θ,θ′)∼ρu,v

[
λθ⊤(Σ̂− Σ)θ′ − logE exp

(
λθ⊤(Σ̂− Σ)θ′

)]
≤ DKL(ρu,v∥π) + log

1

δ
. (2.4)

Step 5: bound the log-mgf term (Bernstein-type control). Under the stated sub-Gaussian
assumption on ⟨w,Xi⟩, one has the estimate (as in the handwritten notes)

logE exp
(
λθ⊤(Σ̂− Σ)θ′

)
≤ Cλ2

n

(
θ⊤Σθ + θ′⊤Σθ′

)2
, for λ ≤ n

C
(
θ⊤Σθ + θ′⊤Σθ′

) . (2.5)

Using (2.5) in (2.4) and dividing by λ yields

u⊤(Σ̂− Σ)v ≤ Cλ

n
Eρu,v

(
θ⊤Σθ + θ′⊤Σθ′

)2
+

1

λ

( 1

σ2
+ 2 log

1

p
+ log

1

δ

)
(2.6)

provided λ satisfies the condition in (2.5).

Step 6: control θ⊤Σθ under the truncation. If θ ∼ fu, then (θ − u)⊤Σ(θ − u) ≤ r2. Hence,
using the triangle inequality in the seminorm x 7→

√
x⊤Σx,

√
θ⊤Σθ ≤

√
u⊤Σu+

√
(θ − u)⊤Σ(θ − u) ≤

√
∥Σ∥op + r,

so
θ⊤Σθ ≤ (

√
∥Σ∥op + r)2.

The same bound holds for θ′ ∼ fv. Consequently,(
θ⊤Σθ + θ′⊤Σθ′

)2 ≤ C (
√
∥Σ∥op + r)4.
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Also, the condition in (2.5) is ensured if

λ ≤ n

C(
√
∥Σ∥op + r)2

.

Taking the supremum over u, v in (2.6), we obtain∥∥∥Σ̂− Σ
∥∥∥
op

≤ Cλ

n
(
√

∥Σ∥op + r)4 +
1

λ

( 1

σ2
+ 2 log

1

p
+ log

1

δ

)
(2.7)

for all λ ≤ n
C(
√

∥Σ∥op+r)2
.

Step 7: choose r and σ2. Choose

r2 = 2 ∥Σ∥op , σ2 =
∥Σ∥op
Tr(Σ)

=
1

r(Σ)
.

Then

p ≥ 1− σ2Tr(Σ)

r2
= 1−

∥Σ∥op
2 ∥Σ∥op

=
1

2
,

so log 1
p ≤ log 2. Moreover, (

√
∥Σ∥op + r)4 ≍ ∥Σ∥2op. Absorbing constants into C, (2.7) becomes

∥∥∥Σ̂− Σ
∥∥∥
op

≤ C

(
λ

n
∥Σ∥2op +

1

λ

(
r(Σ) + log

1

δ

))
for λ ≤ n

C ∥Σ∥op
.

Step 8: optimize over λ. Let a := r(Σ) + log 1
δ . If a/n ≤ 1, choose

λ ≍ n

∥Σ∥op

√
a

n
.

If a/n > 1, choose λ ≍ n
∥Σ∥op

. In both cases,

∥∥∥Σ̂− Σ
∥∥∥
op

≤ C ∥Σ∥op
(√

a

n
+
a

n

)
= C ∥Σ∥op

(√
r(Σ) + log(1/δ)

n
+
r(Σ) + log(1/δ)

n

)
,

which is the claimed bound.



Lecture 3: f-divergences

3.1 f-divergence: definition and examples

Definition 3.1 (f -divergence (Csiszár, 1963)). Let f : (0,∞) → R be convex with f(1) = 0. For
two probability measures P,Q on the same measurable space with P ≪ Q, the f -divergence is

Df (P∥Q) ≜ EQ
[
f
( dP

dQ

)]
.

Remark 3.2 (Normalizations and the case P ̸≪ Q). 1. Some definitions additionally assume f ′(1) =
0. This is without loss of generality: if c ∈ R then f(x) and f(x) + c(x− 1) induce the same
f -divergence, since EQ[ dPdQ − 1] = 0.

2. If dP
dQ = 0, define f(0) ≜ f(0+). If P ̸≪ Q, pick a dominating measure µ with densities p = dP

dµ

and q = dQ
dµ , and define

Df (P∥Q) ≜
∫
{q>0}

q f
(p
q

)
dµ + f(∞)P (q = 0), f(∞) ≜ lim

x→∞

f(x)

x
.

Examples

Below are standard choices of f and the resulting divergences.

1. Total variation. f(x) = 1
2 |x− 1|.

Df (P∥Q) = TV(P,Q) =
1

2

∫
| dP − dQ|.

2. Squared Hellinger distance. f(x) = (
√
x− 1)2.

Df (P∥Q) = H2(P,Q) =

∫
(
√

dP −
√

dQ)2.

3. Kullback–Leibler divergence. f(x) = x log x.

Df (P∥Q) = DKL(P∥Q) =

∫
log
( dP

dQ

)
dP.

4. χ2-divergence. f(x) = (x− 1)2.

Df (P∥Q) = χ2(P∥Q) =

∫
( dP − dQ)2

dQ
= EQ

[( dP

dQ
− 1
)2]

.

21
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5. Le Cam distance. f(x) = (1−x)2
2(1+x) .

Df (P∥Q) = LC(P,Q) =
1

2

∫
( dP − dQ)2

dP + dQ
.

6. Jensen–Shannon divergence. f(x) = x log x+ (x+ 1) log 2
x+1 .

Df (P∥Q) = JS(P,Q) = DKL

(
P
∥∥∥ P +Q

2

)
+DKL

(
Q
∥∥∥ P +Q

2

)
.

3.2 Basic properties

Theorem 3.3 (Non-negativity). For any convex f with f(1) = 0 and any P ≪ Q,

Df (P∥Q) ≥ 0.

Proof. By Jensen’s inequality,

Df (P∥Q) = EQ
[
f
( dP

dQ

)]
≥ f

(
EQ
[ dP
dQ

])
= f(1) = 0.

Theorem 3.4 (Joint convexity). The map (P,Q) 7→ Df (P∥Q) is jointly convex.

Proof. Fix a convex f : (0,∞) → R and define its perspective transform

ψ(x, y) ≜ y f

(
x

y

)
, (x, y) ∈ R2

>0.

Assume first that f is twice differentiable and write t ≜ x/y. A direct calculation gives

∂2ψ

∂x2
=

1

y
f ′′(t),

∂2ψ

∂x∂y
= − x

y2
f ′′(t),

∂2ψ

∂y2
=
x2

y3
f ′′(t).

Hence

∇2ψ(x, y) =

(
1
yf

′′(x/y) − x
y2
f ′′(x/y)

− x
y2
f ′′(x/y) x2

y3
f ′′(x/y)

)
⪰ 0,

since f ′′ ≥ 0 and the matrix has rank one. Therefore ψ is convex on R2
>0. (For a general convex f ,

the same conclusion holds by standard approximation.)
Now let P,Q admit densities p, q with respect to a common dominating measure µ. For λ ∈ [0, 1],

define
pλ ≜ λp1 + (1− λ)p2, qλ ≜ λq1 + (1− λ)q2.

Pointwise convexity of ψ gives

qλ f

(
pλ
qλ

)
= ψ(pλ, qλ) ≤ λψ(p1, q1) + (1− λ)ψ(p2, q2) = λq1f

(
p1
q1

)
+ (1− λ)q2f

(
p2
q2

)
.

Integrating over µ yields

Df (λP1 + (1− λ)P2 ∥λQ1 + (1− λ)Q2) ≤ λDf (P1∥Q1) + (1− λ)Df (P2∥Q2),

which is joint convexity.
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Theorem 3.5 (Data processing inequality). Let PX , QX be distributions on X and let PY |X be a
Markov kernel. If PY , QY are the induced marginals, then

Df (PX∥QX) ≥ Df (PY ∥QY ).

Proof. Write L ≜ dPX
dQX

. For the channel (Markov kernel) PY |X , the induced marginals satisfy

dPY (y) =

∫
PY |X(y | x) dPX(x), dQY (y) =

∫
PY |X(y | x) dQX(x).

Using dPX = L dQX , we can rewrite

dPY (y) =

∫
PY |X(y | x)L(x) dQX(x).

Consequently, whenever dQY (y) > 0,

dPY
dQY

(y) =

∫
PY |X(y | x)L(x) dQX(x)∫
PY |X(y | x) dQX(x)

= EQ[L(X) | Y = y],

where the conditional expectation is with respect to the joint law QXY ≜ QXPY |X . Therefore

Df (PY ∥QY ) = EQY

[
f
(
EQ[L | Y ]

)]
.

By Jensen’s inequality (since f is convex),

EQY

[
f
(
EQ[L | Y ]

)]
≤ EQY

[
EQ
[
f(L) | Y

]]
= EQ[f(L)] = EQX

[
f
( dPX
dQX

)]
= Df (PX∥QX).

This proves Df (PX∥QX) ≥ Df (PY ∥QY ).

PX PY
PY |X

QX QY
PY |X

3.3 Why f-divergence? Binary hypothesis testing

Consider simple hypothesis testing:

H0 : X ∼ P, H1 : X ∼ Q,

with a (possibly randomized) test T : X → {0, 1}. The errors are

Type I: P (T (X) = 1), Type II: Q(T (X) = 0).

Theorem 3.6 (Total variation and the best sum of errors).

inf
T

(
P (T (X) = 1) +Q(T (X) = 0)

)
= 1− TV(P,Q).



24 Lecture 3: f -divergences

Proof. First recall the standard identity

TV(P,Q) = sup
A

(
P (A)−Q(A)

)
, (3.1)

where the supremum ranges over measurable sets A. Indeed, if P,Q have densities p, q w.r.t. a
common dominating measure µ, then

TV(P,Q) =
1

2

∫
|p− q| dµ =

∫
{p≥q}

(p− q) dµ = P (A∗)−Q(A∗), A∗ ≜ {p ≥ q},

which proves (3.1).

Now fix any (possibly randomized) test T : X → {0, 1} and let

A ≜ {x : T (x) = 0}.

Then

P (T (X) = 1) +Q(T (X) = 0) = P (Ac) +Q(A) = 1− P (A) +Q(A) = 1− (P (A)−Q(A)).

Taking the infimum over tests T is therefore equivalent to taking the supremum over sets A:

inf
T

(
P (T (X) = 1) +Q(T (X) = 0)

)
= 1− sup

A
(P (A)−Q(A)) = 1− TV(P,Q),

where we used (3.1). Finally, equality is attained by the deterministic test T ∗(x) = 1{x /∈ A∗} for
any set A∗ achieving the supremum in (3.1).

Remark 3.7 (Interpretation of total variation). 1. TV(P,Q) = 0 iff P = Q (totally indistinguish-
able).

2. TV(P,Q) = 1 iff P ⊥ Q (perfectly distinguishable).

3. TV(P,Q) < 1 means partially indistinguishable.

This quantity is central in minimax lower bounds.

3.3.1 Why not just total variation? Tensorization

1. TV(P,Q) can be hard to compute.

2. TV does not tensorize well: in general,

TV(P⊗n, Q⊗n) ≤ nTV(P,Q)

is the best possible inequality in full generality, but it is often loose.

Example. How large is TV(Ber(12)
⊗n,Ber(12 + δ)⊗n)? The bound TV(P⊗n, Q⊗n) ≤ nTV(P,Q)

yields an nδ-type upper bound, whereas Pinsker’s inequality gives

TV(P⊗n, Q⊗n) ≤
√

1
2DKL(P⊗n∥Q⊗n) =

√
n
2DKL(P∥Q) = O(

√
n δ),

which is much tighter for small δ.
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3.3.2 Popular f-divergences that do tensorize

For product measures
⊗

i Pi and
⊗

iQi:

1. Squared Hellinger:

1− 1

2
H2
(⊗

i

Pi,
⊗
i

Qi

)
=
∏
i

(
1− 1

2
H2(Pi, Qi)

)
.

2. KL:
DKL

(⊗
i

Pi

∥∥∥ ⊗
i

Qi

)
=
∑
i

DKL(Pi∥Qi).

3. χ2:

χ2
(⊗

i

Pi

∥∥∥ ⊗
i

Qi

)
+ 1 =

∏
i

(
χ2(Pi∥Qi) + 1

)
.

Remark 3.8 (Optional: Rényi divergences unify these). Rényi divergence (order λ ̸= 1) is

Dλ(P∥Q) ≜
1

λ− 1
logEQ

[( dP

dQ

)λ]
.

It tensorizes:
Dλ

(⊗
i

Pi∥
⊗
i

Qi
)
=
∑
i

Dλ(Pi∥Qi).

For λ = 1
2 , 1, 2 this relates to Hellinger affinity, KL, and χ2, respectively.

3.4 Similarities and differences between f-divergences

3.4.1 Locally χ2-like

Assume f ′′(1) exists and P and Q are “close” (heuristically, dP
dQ ≈ 1). Then a Taylor expansion

gives

Df (P∥Q) = EQ
[
f
( dP

dQ

)]
≈ EQ

[
f(1) + f ′(1)

( dP

dQ
− 1
)
+
f ′′(1)

2

( dP

dQ
− 1
)2]

.

Since f(1) = 0 and EQ[ dPdQ − 1] = 0,

Df (P∥Q) ≈ f ′′(1)

2
χ2(P∥Q).

3.4.2 In parametric models: Fisher information

Let (Pθ)θ∈Θ be a regular parametric model with θ ∈ Rd and (for a dominating µ) densities fθ =
dPθ
dµ .

For h ∈ Rd and small t,

χ2(Pθ+th∥Pθ) =
∫

(fθ+th − fθ)
2

fθ
dµ ≈ t2 h⊤

(∫ ḟθ(x)ḟθ(x)
⊤

fθ(x)
dµ(x)

)
h = t2 h⊤I(θ)h,

where ḟθ(x) = ∇θfθ(x) and I(θ) ∈ Rd×d is the Fisher information matrix:

I(θ) =

∫
ḟθ(x)ḟθ(x)

⊤

fθ(x)
dµ(x) = E

[
(∇θ log fθ(X))(∇θ log fθ(X))⊤

]
= E

[
−∇2

θ log fθ(X)
]
.
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3.5 f-divergence as “average statistical information”

3.5.1 Bayes error and statistical information

In binary hypothesis testing with prior P(H0) = π ∈ (0, 1), the Bayes error is

Bπ(P,Q) = inf
T

(
π P (T (X) = 1) + (1− π)Q(T (X) = 0)

)
=

∫
(π dP ) ∧

(
(1− π) dQ

)
,

where x ∧ y ≜ min{x, y}.
The associated statistical information is the improvement from prior to posterior:

Iπ(P,Q) ≜ π ∧ (1− π)−Bπ(P,Q).

One can check that Iπ(P,Q) is an f -divergence:

Iπ(P,Q) = EQ
[
fπ

( dP

dQ

)]
, fπ(t) ≜ π ∧ (1− π)−

(
πt
)
∧ (1− π).

Theorem 3.9 (Liese–Vajda, 2006). For any f-divergence, there exists a (finite) measure Γf on
(0, 1) such that for all P,Q,

Df (P∥Q) =

∫ 1

0
Iπ(P,Q) Γf ( dπ).

Remark 3.10. Every f -divergence is an average statistical information, with different weights placed
on π.

Proof. Assume f(1) = 0 and, without loss of generality, f ′(1) = 0. For a convex f , its (distributional)
second derivative is a nonnegative measure f ′′( dx) on (0,∞). (When f ∈ C2, one has f ′′( dx) =
f ′′(x) dx.)

A standard calculus identity (which one can check first for f ∈ C2 and then extend by approxi-
mation) is:

f(t) =

∫ t

1
(t− x) f ′′( dx) =

∫ 1

0
(x− t ∧ x) f ′′( dx) +

∫ ∞

1
(t− t ∧ x) f ′′( dx). (3.2)

Define

f̃(t) ≜
∫ 1

0
(x− t ∧ x) f ′′( dx) +

∫ ∞

1
(1− t ∧ x) f ′′( dx).

Then, for any t > 0, subtracting from (3.2) gives

(f − f̃)(t) =

∫ ∞

1
(t− 1) f ′′( dx) = (t− 1) f(∞),

which is affine in t. Hence for L ≜ dP
dQ (so that EQ[L] = 1),

EQ
[
(f − f̃)(L)

]
= f(∞)EQ[L− 1] = 0,

and therefore

Df (P∥Q) = EQ[f(L)] = EQ[f̃(L)]. (3.3)
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Next, for any x > 0 and any t > 0,

(1 ∧ x)− (t ∧ x) = (1 + x)

(
1

1 + x
∧ x

1 + x
− t

1

1 + x
∧ x

1 + x

)
= (1 + x) f 1

1+x
(t), (3.4)

where fπ(t) = π ∧ (1− π)− (πt) ∧ (1− π) is the f generating Iπ. Combining (3.3) and (3.4) gives∫ ∞

0
(1 + x) I 1

1+x
(P,Q) f ′′( dx) = EQ

[∫ ∞

0
(1 + x) f 1

1+x
(L) f ′′( dx)

]
= EQ[f̃(L)] = Df (P∥Q).

Finally, define Γf as the pushforward of the measure (1 + x)f ′′( dx) under the map

(0,∞) ∋ x 7−→ 1

1 + x
∈ (0, 1).

Then the last display is exactly

Df (P∥Q) =

∫ 1

0
Iπ(P,Q) Γf ( dπ),

which proves the theorem.

3.6 Different guarantees on contiguity

Definition 3.11 (Contiguity). A sequence of measures {Pn} is contiguous with respect to {Qn}
(written {Pn} ◁ {Qn}) if for any events An,

Qn(An) → 0 =⇒ Pn(An) → 0.

Remark 3.12. • TV. If TV(Pn, Qn) → 0 then {Pn} ◁ {Qn}. Indeed, for any event An,

Pn(An) = Qn(An)+
(
Pn(An)−Qn(An)

)
≤ Qn(An)+sup

A
|Pn(A)−Qn(A)| = Qn(An)+TV(Pn, Qn).

So Qn(An) → 0 and TV(Pn, Qn) → 0 imply Pn(An) → 0.

• KL. If DKL(Pn∥Qn) ≤ C, contiguity already holds. In fact, for any event An,

Pn(An) log
Pn(An)

eQn(An)
≤ DKL(Pn∥Qn) ≤ C. (3.5)

Proof of (3.5): Let p ≜ Pn(An) and q ≜ Qn(An). Apply the data processing inequality for KL
to the mapping x 7→ 1{x ∈ An} to get

DKL(Pn∥Qn) ≥ DKL

(
Bern(p) ∥Bern(q)

)
= p log

p

q
+ (1− p) log

1− p

1− q
.

Using the inequality log u ≥ 1− 1
u (valid for all u > 0) with u = 1−p

1−q , we have

(1− p) log
1− p

1− q
≥ (1− p)

(
1− 1− q

1− p

)
= q − p.

Therefore
DKL(Pn∥Qn) ≥ p log

p

q
+ q − p = p log

p

e q
+ q ≥ p log

p

e q
,
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which is exactly (3.5). To conclude contiguity, suppose qn → 0. If pn ̸→ 0, then there exists
ε > 0 and infinitely many n such that pn ≥ ε. For those n,

C ≥ pn log
pn
eqn

≥ ε log
ε

eqn
−−−→
n→∞

∞,

a contradiction. Hence pn → 0.

• χ2. If χ2(Pn∥Qn) ≤ C, one gets a stronger quantitative control. Let p ≜ Pn(An) and
q ≜ Qn(An). By data processing for χ2 under the same indicator map,

χ2(Pn∥Qn) ≥ χ2
(
Bern(p) ∥Bern(q)

)
=

(p− q)2

q(1− q)
.

Thus
(Pn(An)−Qn(An))

2

Qn(An)(1−Qn(An))
≤ χ2(Pn∥Qn) ≤ C.

Since 1− q ≤ 1, this implies (p− q)2 ≤ Cq, and hence

Pn(An) ≤ Qn(An) +
√
C Qn(An).

Different f -divergences give different “powers” for establishing contiguity results, due to different
growth of f(t) as t→ ∞. In this context, a popular choice is to upper bound χ2(Pn∥Qn), known as
the second moment method.

3.7 Dual representations of f-divergence

Definition 3.13 (Convex conjugate). For a convex function f on R, its convex conjugate is

f∗(y) ≜ sup
x

(xy − f(x)).

Remark 3.14 (Standard properties). 1. f∗ is convex.

2. f∗∗ = f .

3. (Young) f(x) + f∗(y) ≥ xy.

Theorem 3.15 (Dual form of f -divergence).

Df (P∥Q) = sup
g:EQ[f∗(g)]<∞

{
EP [g]− EQ[f∗(g)]

}
.

Proof. Using f(x) = supy(xy − f∗(y)),

Df (P∥Q) = EQ
[
f
( dP

dQ

)]
= EQ

[
sup
y

( dP

dQ
y − f∗(y)

)]
= sup

g

{
EQ
[ dP
dQ

g
]
− EQ[f∗(g)]

}
= sup

g
{EP [g]− EQ[f∗(g)]}.
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Example 1: total variation

For f(x) = 1
2 |x− 1|, one has

f∗(y) =

{
y, |y| ≤ 1

2 ,

+∞, |y| > 1
2 .

Hence

TV(P,Q) = sup
∥g∥∞≤1/2

(
EP [g]− EQ[g]

)
=

1

2
sup

∥g∥∞≤1

∣∣EP [g]− EQ[g]
∣∣.

Example 2: KL and Donsker–Varadhan

For KL, one convenient normalization is f(x) = x log x− x+ 1 (equivalent to x log x up to an affine
term), whose conjugate is f∗(y) = ey − 1. Then

DKL(P∥Q) = sup
g

{
EP [g]−

(
EQ[eg]− 1

)}
.

Since u− 1 ≥ log u, this is weaker than the Donsker–Varadhan variational form. A standard way to
recover Donsker–Varadhan is to optimize over constant shifts:

DKL(P∥Q) = sup
g

sup
a∈R

{
EP [g + a]− EQ[eg+a] + 1

}
= sup

g

{
EP [g]− inf

a∈R

(
eaEQ[eg]− a

)}
= sup

g

{
EP [g]− logEQ[eg]

}
,

where the infimum is attained at a = − logEQ[eg].

Example 3: χ2 and a variance representation

For f(x) = (x− 1)2, the conjugate is f∗(y) = y + y2/4. Hence

χ2(P∥Q) = sup
g

{
EP [g]− EQ

[
g +

g2

4

]}
.

By a scaling/centering trick (optimize over λ(g + c)), one can show

χ2(P∥Q) = sup
g

(EP [g]− EQ[g])2

VarQ(g)
.

Corollary 3.16 (Hammersley–Chapman–Robbins (HCR) lower bound). In a (scalar) parametric
family (Pθ)θ∈R, if an estimator θ̂ is unbiased, then

Varθ(θ̂) ≥ sup
θ′ ̸=θ

(θ − θ′)2

χ2(Pθ′∥Pθ)
.

In particular, taking θ′ → θ recovers the Cramér–Rao bound

Varθ(θ̂) ≥
1

I(θ)
.
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Example 4: Jensen–Shannon and GANs

For f(x) = x log x+ (x+ 1) log 2
x+1 , the conjugate is

f∗(y) =

{
− log(2− ey), y < log 2,

+∞, y ≥ log 2.

Therefore

JS(P,Q) = sup
g≤log 2

{
EP [g] + EQ[log(2− eg)]

}
.

With the reparameterization h = eg/2 ∈ (0, 1),

JS(P,Q) = sup
0<h<1

{
EP [log h] + EQ[log(1− h)]

}
+ log 2.

This is closely related to the classical objective for generative adversarial networks (GANs):

min
G

JS
(
P, PG(Z)

)
= min

G
sup
D

(
EX∼P [logD(X)] + EZ∼N [log(1−D(G(Z)))]

)
,

where G is the generator, D the discriminator, and Z is a noise input.

3.8 Joint range: inequalities between two f-divergences

Definition 3.17 (Joint range). Fix two f -divergences Df and Dg. Define

R ≜ {(Df (P∥Q), Dg(P∥Q)) : P,Q arbitrary probability measures},

and for distributions supported on [k] = {1, . . . , k},

Rk ≜ {(Df (P∥Q), Dg(P∥Q)) : P,Q probability measures on [k]}.

Theorem 3.18 (Harremoës–Vajda, 2011).

R = conv(R2) = R4.

Remark 3.19 (Key implication). To establish an inequality relating Df and Dg (e.g. Pinsker’s
inequality), it suffices to prove it for binary distributions

P = (p, 1− p), Q = (q, 1− q).

Proof. We follow the argument in the notes.

Step 1: R ⊆ conv(R2). Fix any point (Df (P∥Q), Dg(P∥Q)) ∈ R and assume P ≪ Q. Let

L ≜
dP

dQ
,

so L is a random variable taking values in [0,∞) with EQ[L] = 1. Then(
Df (P∥Q), Dg(P∥Q)

)
=
(
EQ[f(L)],EQ[g(L)]

)
.
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Now consider the set

C ≜
{
µ : µ is a probability measure on [0,∞) with

∫
xµ( dx) = 1

}
.

For each µ ∈ C, associate the point

Φ(µ) ≜
(∫

f(x)µ( dx),

∫
g(x)µ( dx)

)
∈ R2.

Clearly C is convex and Φ is affine, and the law of L under Q is an element of C.
We claim that the extreme points of C are exactly the probability measures with mean 1 and

support size at most 2. Indeed, suppose µ ∈ C has support size at least 3. Partition [0,∞) into
three measurable sets A1, A2, A3 such that µ(Ai) > 0 for all i. Define the conditional measures
µi ≜ µ(· | Ai) and write

µ = λ1µ1 + λ2µ2 + λ3µ3, λi ≜ µ(Ai) > 0.

Let m(ν) ≜
∫
x ν( dx) denote the mean. The constraints that µ is a probability measure with mean

1 are exactly
λ1 + λ2 + λ3 = 1, λ1m(µ1) + λ2m(µ2) + λ3m(µ3) = 1.

These are two linear constraints on the three unknowns (λ1, λ2, λ3), hence the feasible set contains
a nontrivial line segment passing through (λ1, λ2, λ3). Therefore µ can be written as a nontrivial
convex combination of two distinct elements of C, so µ is not extreme. Conversely, if µ has support
size ≤ 2 and mean 1, it is straightforward to check it cannot be decomposed nontrivially.

By the Choquet–Bishop–de Leeuw theorem (every point in a metrizable compact convex set is a
barycenter of its extreme points), any µ ∈ C is a convex combination (in the barycentric sense) of
extreme points, and since Φ is affine we obtain that Φ(µ) lies in the convex hull of the set of values
attained by Φ on two-point supported measures. Equivalently, every point in R lies in conv(R2).

Step 2: conv(R2) ⊆ R4. The set R2 ⊂ R2 is connected, hence by the refined Carathéodory
theorem in R2 (the d = 2 case), any point of conv(R2) can be written as a convex combination of
two points in R2. A convex combination of two binary experiments can be realized on an alphabet
of size 4, so the point lies in R4.

Combining the two steps yields R = conv(R2) = R4.

Theorem 3.20 (Carathéodory). Let S ⊂ Rd and x ∈ conv(S). Then there exists S′ = {x1, . . . , xk} ⊂
S such that x ∈ conv(S′) with

1. k ≤ d+ 1 in general;

2. k ≤ d if S has at most d connected components.

Examples of inequalities

1. TV vs. Hellinger:

H2

2
≤ TV ≤

√
H2
(
1− H2

4

)
.

2. TV vs. KL:

TV2 ≤ 1

2
DKL, TV ≤ 1− 1

2
e−DKL .

3. KL vs. χ2:
DKL ≤ log(1 + χ2).
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3.9 Special topic: a chain rule for H2

Theorem 3.21 (Jayram (2009)). For all joint distributions PXn and QXn,

H2(PXn , QXn) ≤ C

n∑
i=1

EP
[
H2(PXi|Xi−1 , QXi|Xi−1)

]
,

where

C =

∞∏
i=1

1

1− 2−i
≈ 3.46.

Remark 3.22 (Proof idea). The proof is surprisingly combinatorial. It suffices to prove the result for
n = 2k; for general 2k−1 < n ≤ 2k, one can pad with dummy coordinates.

Lemma 3.23 (L2 geometry). For arbitrary distributions P0, P1, . . . , Pm,

1

m

∑
1≤i<j≤m

H2(Pi, Pj) ≤
m∑
i=1

H2(Pi, P0).

Proof. This holds for any L2 distance. Writing ∥ · ∥ for the L2 norm,

1

m

∑
1≤i<j≤m

∥Pi − Pj∥2 ≤
m∑
i=1

∥Pi − P0∥2.

Indeed,

2 · LHS =
1

m

m∑
i,j=1

∥Pi − Pj∥2 =
1

m

m∑
i,j=1

∥(Pi − P0)− (Pj − P0)∥2

=
2

m

m∑
i=1

∥Pi − P0∥2 −
2

m

∥∥∥ m∑
i=1

(Pi − P0)
∥∥∥2 ≤ 2

m∑
i=1

∥Pi − P0∥2 = 2 · RHS.

Finally, H2(P,Q) =
∫
(
√

dP −
√

dQ)2 is an L2 distance.

3.9.1 Interpolating distributions

For A ⊆ [n] ≜ {1, . . . , n}, define an interpolation PA via the (conditional) product

PA ≜
n∏
i=1

(
PXi|Xi−1

)
1{i/∈A} (

QXi|Xi−1

)
1{i∈A}

.

Then P∅ = PXn and P [n] = QXn .

Lemma 3.24 (Cut–paste property). Let a, b, c, d ∈ {0, 1}n be the indicator vectors of sets A,B,C,D ⊆
[n]. If a+ b = c+ d (entrywise), then

H2(PA, PB) = H2(PC , PD).
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Proof. Write densities (or Radon–Nikodym derivatives) for the conditional factors. Then

H2(PA, PB) = 2− 2

∫ √
pApB = 2− 2

∫ √√√√ n∏
i=1

P 2−ai−bi
Xi|Xi−1 Q

ai+bi
Xi|Xi−1 .

The right-hand side depends on a + b only, hence is invariant under replacing (A,B) by (C,D)
whenever a+ b = c+ d.

Lemma 3.25 (1-factorization of cliques). For even m, the complete graph Km can be decomposed
into (m− 1) edge-disjoint perfect matchings (“round-robin tournaments”).

1

2

3

4

3.9.2 Completing the proof

Assume n = 2k. We prove by induction on m = 0, 1, . . . , k that for any partition A1, . . . , A2m of [n]
(each of size 2k−m),

2m∑
i=1

H2(PAi , P∅) ≥ cmH2(P [n], P∅), cm ≜
m∏
j=1

(1− 2−j). (3.6)

Base case m = 0. The partition is just A1 = [n], so (3.6) is trivial with c0 = 1.

Induction step m− 1 → m. Assume (3.6) holds for m− 1. Let A1, . . . , A2m be any partition of
[n]. Apply Lemma 3.23 (Lemma 1 in the notes) with P0 = P∅ and Pi = PAi (i ∈ [2m]) to get

2m∑
i=1

H2(PAi , P∅) ≥ 1

2m

∑
1≤s<t≤2m

H2(PAs , PAt).

Using the cut–paste property (Lemma 2 in the notes), for each pair (s, t) we have

H2(PAs , PAt) = H2(PAs∪At , P∅).

Hence
2m∑
i=1

H2(PAi , P∅) ≥ 1

2m

∑
1≤s<t≤2m

H2(PAs∪At , P∅). (3.7)

Now consider the complete graph K2m on vertex set {1, . . . , 2m}. By Lemma 3 (1-factorization
of cliques), K2m can be decomposed into (2m − 1) edge-disjoint perfect matchings E1, . . . , E2m−1.
Therefore the sum over all pairs can be written as

∑
1≤s<t≤2m

H2(PAs∪At , P∅) =

2m−1∑
a=1

∑
(s,t)∈Ea

H2(PAs∪At , P∅).
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Plugging this into (3.7) yields

2m∑
i=1

H2(PAi , P∅) ≥ 1

2m

2m−1∑
a=1

∑
(s,t)∈Ea

H2(PAs∪At , P∅). (3.8)

Fix a matching Ea. The sets {As ∪At : (s, t) ∈ Ea} form a partition of [n] into 2m−1 blocks (each
of size 2k−(m−1)). Applying the induction hypothesis (with m− 1) to this partition gives∑

(s,t)∈Ea

H2(PAs∪At , P∅) ≥ cm−1H
2(P [n], P∅).

Substituting this bound into (3.8) gives

2m∑
i=1

H2(PAi , P∅) ≥ 1

2m

2m−1∑
a=1

cm−1H
2(P [n], P∅) =

2m − 1

2m
cm−1H

2(P [n], P∅) = cmH2(P [n], P∅),

where cm ≜ 2m−1
2m cm−1 = cm−1(1− 2−m). This is exactly (3.6) for m.

Conclusion. Taking m = k in (3.6) (so the partition is into singletons) gives

H2(P [n], P∅) ≤ 1

ck

n∑
i=1

H2(P {i}, P∅) =
1

ck

n∑
i=1

EP
[
H2(PXi|Xi−1 , QXi|Xi−1)

]
.

Letting k → ∞ yields the constant C = limk→∞ 1/ck =
∏
j≥1(1− 2−j)−1.



Lecture 4: Large Deviations, Hypothesis Test-
ing

4.1 Large deviations in finite alphabets: method of types

Suppose P is a pmf on X with |X | < ∞. For X1, . . . , Xn
i.i.d.∼ P , what is the typical “type” of

(X1, . . . , Xn)?

Definition 4.1 (Type). For an “empirical distribution” Q on X , let the type class

TnQ :=
{
(x1, . . . , xn) ∈ X n :

1

n

n∑
i=1

1{xi = x} = Q(x), ∀x ∈ X
}
.

(In other words, TnQ is the set of all length-n sequences with empirical distribution equal to Q.)

Why types? Types encode all necessary information for P (xn).

Lemma 4.2. If xn ∈ TnQ, then

P (xn) = e−n(DKL(Q∥P )+H(Q)).

Proof. Write P (x) = P (X = x). Then

P (xn) =

n∏
i=1

P (xi) =
∏
x∈X

∏
i:xi=x

P (x) =
∏
x∈X

P (x)nQ(x) (xn ∈ TnQ)

= exp
(
n
∑
x∈X

Q(x) logP (x)
)
= exp

(
−n(DKL(Q∥P ) +H(Q))

)
.

Another intriguing property: the number of sequences in a given type is exponential in n, but
the number of different types is only polynomial in n.

Lemma 4.3. The number of different type classes is(
n+ |X | − 1

|X | − 1

)
≤ (n+ 1)|X |−1.

Proof. The number of types equals the number of nonnegative integer solutions to
∑

x∈X nx = n,

which is
(n+|X |−1

|X |−1

)
.

35
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Lemma 4.4. For any type Q,

enH(Q)

(n+ 1)|X |−1
≤ |TnQ| ≤ enH(Q).

(Equivalently, |TnQ|
.
= enH(Q) ignoring polynomial factors.)

Proof. Under Q, every xn ∈ TnQ has probability Q(xn) = e−nH(Q), hence

Q(Xn ∈ TnQ) = |TnQ|e−nH(Q) ≤ 1 ⇒ |TnQ| ≤ enH(Q).

For the lower bound, note that

1 =
∑

types P

Q(Xn ∈ TnP ) ≤ (n+ 1)|X |−1Q(Xn ∈ TnQ) = (n+ 1)|X |−1|TnQ|e−nH(Q),

where we used that the mode of a multinomial(n;Q) has type Q and the number of types is at most
(n+ 1)|X |−1.

Corollary 4.5. For any type Q,

e−nDKL(Q∥P )

(n+ 1)|X |−1
≤ P (Xn ∈ TnQ) ≤ e−nDKL(Q∥P ).

Proof. Combine the previous lemma with P (xn) = e−n(DKL(Q∥P )+H(Q)) for xn ∈ TnQ.

The above corollary, together with the bound on the number of types, yields Sanov’s theorem.

Theorem 4.6 (Sanov’s theorem). Let |X | < ∞ and let P̂ be the empirical distribution (type)
of X1, . . . , Xn ∼ P where P is strictly positive on X . Let E be a closed set of distributions with
non-empty interior. Then

P(P̂ ∈ E) = exp
(
−nmin

Q∈E
DKL(Q∥P ) + o(n)

)
.

Remark 4.7. The map

P 7−→ argmin
Q∈E

DKL(Q∥P )

is called the information projection.

Proof sketch. Upper bound.

P(P̂ ∈ E) =
∑
Q∈E

P (Xn ∈ TnQ) ≤
∑
Q∈E

e−nDKL(Q∥P ) ≤ (n+ 1)|X |−1e−nminQ∈E DKL(Q∥P ).

Lower bound. For any Q ∈ E , P (Xn ∈ TnQ) ≥ (n+ 1)−(|X |−1)e−nDKL(Q∥P ). Choose Q→ Q∗ and use
continuity of Q 7→ DKL(Q∥P ).
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4.2 Information projection, exponential tilting, and CGF

A corollary of Sanov’s theorem is:

Corollary 4.8.

lim
n→∞

1

n
log

1

P
(
1
n

∑n
i=1Xi ≥ v

) = min
Q:EQ[X]≥v

DKL(Q∥P ).

If EP [X] ≥ v, then one can choose Q = P and the right-hand side is 0. Can we find the
minimizer Q∗ if EP [X] < v?

Definition 4.9 (Exponential tilt). For λ ∈ R, the exponential tilt of P along X is

Pλ(dx) = exp
(
λx− ψ(λ)

)
P (dx),

where
ψ(λ) := logEP eλX

is the cumulant generating function (CGF) of X.

Remark 4.10. The family {Pλ} is called an exponential family in statistics, where ψ(λ) is the “log
partition function.” In particular, EPλ

[X] = ψ′(λ), and λ 7→ ψ(λ) is convex.

Theorem 4.11 (“Maximum entropy distribution”). Assume EP [X] < v, and there exists λ ∈ R
such that EPλ

[X] = v. Then

min
Q:EQ[X]≥v

DKL(Q∥P ) = DKL(Pλ∥P ) = λv − ψ(λ) = ψ∗(v),

where ψ∗ is the convex conjugate of ψ.

Proof sketch. Since EP [X] = ψ′(0) < v = ψ′(λ), by convexity of ψ we have λ > 0. If EQ[X] ≥ v,
then

DKL(Q∥P ) = EQ
[
log

dQ

dP

]
= EQ

[
log

dQ

dPλ
+ log

dPλ
dP

]
= DKL(Q∥Pλ) + EQ[λX − ψ(λ)] ≥ λv − ψ(λ).

Also DKL(Pλ∥P ) = EPλ
[λX − ψ(λ)] = λv − ψ(λ). Finally, since v = ψ′(λ),

ψ∗(v) = sup
t∈R

{tv − ψ(t)} = λv − ψ(λ),

by convexity of ψ.

4.3 Large deviations in general alphabets: Cramér’s theorem

Theorem 4.12 (Cramér’s theorem). For i.i.d. X1, . . . , Xn ∼ P with EP [X] < v < ∥X∥∞,

lim
n→∞

1

n
log

1

P
(
1
n

∑n
i=1Xi > v

) = ψ∗(v) = inf
Q:EQ[X]>v

DKL(Q∥P ),

where ψ∗ is the convex conjugate of the CGF ψ(λ) = logEP eλX .

Remark 4.13. This generalizes the previous results to arbitrary alphabets. Two different proofs illus-
trate the connections between (i) probabilistic large deviations (yielding ψ∗(v)) and (ii) information-
theoretic arguments (yielding infQ:EQ[X]>vDKL(Q∥P )).
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4.3.1 Probabilistic proof (sketch)

(Lower bound on the exponent) Chernoff inequality.

P
(

1
n

n∑
i=1

Xi > v
)
≤ inf

λ≥0
e−λnvEP

[
eλ

∑n
i=1Xi

]
= inf

λ≥0
exp
(
−n(λv − ψ(λ))

)
= exp

(
−nψ∗(v)

)
.

(Upper bound on the exponent) Exponential tilting. Since EP [X] < v < ∥X∥∞, there
exists λ = λ(ε) > 0 such that EPλ

[X] = v + ε, where Pλ is the exponential tilt of P . By the law of
large numbers,

Pλ

(
1
n

n∑
i=1

Xi ∈ (v, v + 2ε)
)
= 1− o(1) (n→ ∞).

At the same time, for sequences with 1
n

∑
iXi ∈ (v, v + 2ε),

dPλ
dP

(x1, . . . , xn) = exp
(
λ

n∑
i=1

xi − nψ(λ)
)
≤ exp

(
n(λ(v + 2ε)− ψ(λ))

)
,

so

P
(

1
n

n∑
i=1

Xi ∈ (v, v + 2ε)
)
≥ (1− o(1)) exp

(
−n(λ(v + 2ε)− ψ(λ))

)
.

Letting ε ↓ 0 completes the proof sketch.

4.3.2 Information-theoretic proof (sketch)

Let En := { 1
n

∑n
i=1Xi > v}.

Upper bound. Fix any Q with EQ[X] > v. Then Q(En) = 1− o(1) by the law of large numbers.
Using the binary relative entropy bound,

Q(En) log
Q(En)

P(En)
≤ DKL(Q

⊗n∥P⊗n) = nDKL(Q∥P ),

which implies
1

n
log

1

P(En)
≤ (1 + o(1))DKL(Q∥P ).

Taking the infimum over such Q yields lim sup 1
n log

1
P(En)

≤ infQ:EQ[X]>vDKL(Q∥P ).

Lower bound. Let P̃Xn := PXn|En
(the conditional law given En). Then P̃Xn has mean > v and

1

n
log

1

P(En)
=

1

n
DKL(P̃Xn∥P⊗n).

Moreover,

DKL(P̃Xn∥P⊗n) =

n∑
i=1

EP̃
[
DKL(P̃Xi|Xi−1∥P )

]
≥

n∑
i=1

DKL

(
EP̃ [P̃Xi|Xi−1 ]

∥∥P )
≥ nDKL

( 1
n

n∑
i=1

P̃Xi

∥∥∥P),
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by convexity of KL. Writing P̄ := 1
n

∑n
i=1 P̃Xi , we have EP̄ [X] = EP̃ [

1
n

∑
iXi] > v. Therefore

1

n
DKL(P̃Xn∥P⊗n) ≥ inf

Q:EQ[X]>v
DKL(Q∥P ),

as desired.

4.4 Simple hypothesis testing and Neyman–Pearson

4.4.1 Setup

Simple hypothesis testing:

H0 : X ∼ P, H1 : X ∼ Q.

For a test T = T (X) ∈ {0, 1} (possibly randomized), define

α := P (T = 0) (1− Type I error), β := Q(T = 0) (Type II error).

Definition 4.14. Let R(P,Q) denote the set of all achievable points (α, β) ∈ [0, 1]2 when T ranges
over all possible tests.

Basic properties.

1. R(P,Q) is convex (randomized combination of two tests).

2. (α, α) ∈ R(P,Q) for all α ∈ [0, 1] (take T ∼ Bern(1− α) independent of X).

3. (α, β) ∈ R(P,Q) ⇐⇒ (1− α, 1− β) ∈ R(P,Q) (replace T by 1− T ).

4.4.2 Neyman–Pearson lemma

Likelihood ratio tests (LRT) attain the lower boundary of R(P,Q). Fix a threshold τ ∈ R and define

T ∗(x) =


0, log P (x)

Q(x) > τ,

∈ {0, 1}, log P (x)
Q(x) = τ (randomized),

1, log P (x)
Q(x) < τ.

Then for any other test T ,

α(T ) ≥ α(T ∗) =⇒ β(T ) ≥ β(T ∗).

Proof sketch. α(T ) ≥ α(T ∗) implies EP [T − T ∗] ≤ 0. Moreover, distinguishing the cases dQ
dP ≷ e−τ

yields

EP
[
(dQdP − e−τ )(T − T ∗)

]
≤ 0 ⇒ EP

[dQ
dP (T − T ∗)

]
≤ 0.

But EP [dQdP (T − T ∗)] = EQ[T − T ∗], so EQ[T − T ∗] ≤ 0, i.e. β(T ) ≥ β(T ∗).
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4.5 Asymptotics: Chernoff regime

Consider

H0 : X
n ∼ P⊗n, H1 : X

n ∼ Q⊗n, n→ ∞.

What are all possible values of (E0, E1) such that there exists tests Tn with

1− α(Tn) ≤ e−nE0 ∧ 0.99 and β(Tn) ≤ e−nE1 ∧ 0.99 asymptotically?

In other words, what are the best tradeoffs between (E0, E1), the error exponents on Type I and
Type II errors?

Theorem 4.15 ((E0, E1) tradeoff). Assume P ≪ Q and Q ≪ P . The upper boundary of all
achievable (E0, E1) pairs is given by

E0 = DKL(Pλ∥P ), E1 = DKL(Pλ∥Q), λ ∈ [0, 1],

where Pλ is the (normalized) geometric mixture

Pλ ∝ P 1−λQλ.

Corollary 4.16 (Chernoff information).

max
(E0,E1) achievable

min{E0, E1} = − inf
λ∈(0,1)

log

∫
(dP )1−λ(dQ)λ.

This quantity is denoted C(P,Q) and is called the Chernoff information.

Remark 4.17 (Relation to Hellinger distance). Let H2(P,Q) :=
∫
(
√
dP −

√
dQ)2 (squared Hellinger

distance), so that
∫ √

dP dQ = 1− 1
2H

2(P,Q). Then choosing λ = 1
2 gives

− log
(
1− 1

2H
2(P,Q)

)
≤ C(P,Q) ≤ −2 log

(
1− 1

2H
2(P,Q)

)
.

One inequality uses∫
p1−λqλ = EP

[(q
p

)λ]
≥
(
EP
√
q

p

)2λ
=
(∫ √

pq
)2λ

for λ ≥ 1
2 ,

and symmetrically for λ ≤ 1
2 .

4.5.1 Proof of the corollary and achievability (notes)

For

Pλ =
P 1−λQλ

Z(λ)
, Z(λ) :=

∫
(dP )1−λ(dQ)λ,

we have

DKL(Pλ∥P ) = EPλ

[
log

dPλ
dP

]
= EPλ

[
λ log

dQ

dP
− logZ(λ)

]
,

DKL(Pλ∥Q) = EPλ

[
log

dPλ
dQ

]
= EPλ

[
(1− λ) log

dP

dQ
− logZ(λ)

]
.
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Hence

DKL(Pλ∥P )−DKL(Pλ∥Q) = EPλ

[
log

dQ

dP

]
.

Let λ∗ minimize the convex function λ 7→ logZ(λ) on [0, 1]. Then

0 =
d

dλ
logZ(λ)

∣∣∣
λ=λ∗

= EPλ∗

[
log

dQ

dP

]
,

so DKL(Pλ∗∥P ) = DKL(Pλ∗∥Q) and

DKL(Pλ∗∥P ) = − logZ(λ∗) = − inf
λ∈(0,1)

logZ(λ).

Achievability. A sufficient statistic is

L :=
1

n

n∑
i=1

Li, Li := log
P (Xi)

Q(Xi)
.

A natural test is Tn = 1{L ≤ γ} for some threshold γ ∈ R. By large deviations,

lim
n→∞

1

n
log

1

P (L ≤ γ)
= ψ∗

P (γ) = DKL(P
∗∥P ),

lim
n→∞

1

n
log

1

Q(L > γ)
= ψ∗

Q(γ) = DKL(Q
∗∥Q),

where

ψP (λ) = logEP eλL1 = log

∫
p1+λq−λ (similarly for ψQ),

and

P ∗(dx) = exp
(
λ∗P log p(x)

q(x) − ψP (λ
∗
P )
)
P (dx), EP ∗ [L1] = γ,

Q∗(dx) = exp
(
λ∗Q log p(x)

q(x) − ψQ(λ
∗
Q)
)
Q(dx), EQ∗ [L1] = γ.

Since P ∗, Q∗ lie in the family (Pλ)λ∈[0,1], one concludes P ∗ = Q∗ = Pλ∗ for an appropriate choice of
γ. Thus one asymptotically achieves all pairs

(E0, E1) = (DKL(Pλ∥P ), DKL(Pλ∥Q)), λ ∈ [0, 1].

4.6 Converse: weak vs strong

Suppose some test Tn asymptotically attains

α(Tn) ≥ 1− e−nE0 , β(Tn) ≤ e−nE1 .

Weak converse (by DPI).

DKL(Bern(α)∥Bern(β)) ≤ nDKL(P∥Q), DKL(Bern(β)∥Bern(α)) ≤ nDKL(Q∥P ).

(These are insufficient to establish the tight (E0, E1) tradeoff.)
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Strong converse (on the whole likelihood ratio). For all γ > 0,

α− γβ ≤ P
( n∑
i=1

log
p

q
(Xi) > log γ

)
,

β − α

γ
≤ Q

( n∑
i=1

log
p

q
(Xi) < log γ

)
.

Proof of the first inequality. Let L :=
∑n

i=1 log
p
q (Xi) = log p⊗n

q⊗n (X
n). Then

α− γβ = P⊗n(Tn = 0)− γQ⊗n(Tn = 0) = EQ⊗n

[
(eL − γ)1{Tn = 0}

]
≤ EQ⊗n

[
(eL − γ)1{Tn = 0, L > log γ}

]
≤ EQ⊗n

[
eL 1{L > log γ}

]
= P⊗n(L > log γ).

The second inequality is similar.

Returning to the converse, choose γ = enθ. Then

1− e−nE0 − e−n(E1−θ) ≤ α− γβ ≤ P
( 1
n

n∑
i=1

log
p

q
(Xi) > θ

)
,

so

min{E0, E1 − θ} ≤ ψ∗
P (θ), ∀θ.

If E0 ≥ DKL(Pλ∥P ) + ε and E1 ≥ DKL(Pλ∥Q) + ε, choose

θ = DKL(Pλ∥Q)−DKL(Pλ∥P ) = EPλ

[
log

p

q

]
,

then ψ∗
P (θ) = DKL(Pλ∥P ) and we get a contradiction.

4.7 Special topic: Stein’s regime

Stein’s regime:

H0 : X
n ∼ P⊗n, H1 : X

n ∼ Q⊗n.

There exists a test Tn such that α(Tn) = 1− ε and β(Tn) = e−nE . What is the largest possible E∗
n?

From the Chernoff regime with E0 = 0, we already know

E∗
n = DKL(P∥Q) + o(1) (Stein’s lemma).

4.7.1 Next-order term

Theorem 4.18.

E∗
n = DKL(P∥Q)−

√
V (P∥Q)

n
erfc−1(ε) + o

( 1√
n

)
,

where

erfc(z) := P(N(0, 1) > z) =

∫ ∞

z

1√
2π
e−x

2/2 dx, V (P∥Q) := VarP

(
log

p

q

)
(<∞).
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Proof sketch. Achievability. Consider

Tn = 1

{ 1

n

n∑
i=1

log
p

q
(Xi) ≤ γ

}
.

By CLT under P ,

1√
n

n∑
i=1

(
log

p

q
(Xi)−DKL(P∥Q)

)
d−→ N

(
0, V (P∥Q)

)
.

Thus choosing

γ = DKL(P∥Q)−
√
V (P∥Q)

n
erfc−1(ε)

ensures α(Tn) → 1− ε. For β(Tn), by Markov,

Q
( n∑
i=1

log
p

q
(Xi) > nγ

)
≤ e−nγ EQ

[
e
∑n

i=1 log
p
q
(Xi)
]
= e−nγ .

Converse. If En ≥ DKL(P∥Q) + c√
n
, then the strong converse gives a CLT-based bound implying

c ≤ −
√
V (P∥Q) erfc−1(ε) (up to a vanishing slack).

Remark 4.19. Using Berry–Esseen bounds (under moment conditions), the o(1/
√
n) term can be

improved to O((log n)/n).

4.7.2 Strong converse for channel coding (sketch)

Recall the standard channel coding setup:

• Message m ∼ Unif({1, . . . ,M}).

• Encoder maps m 7→ Xn ∈ X n.

• Channel: PY |X ; output Y
n ∈ Yn.

• Decoder outputs m̂ ∈ {1, . . . ,M}.

• Error probability: P(m̂ ̸= m) ≤ ε.

Communications aim to maximize/minimize the rate

R :=
logM

n
.

In Lec 1, one uses Fano’s inequality (DPI for KL) to prove the weak converse R ≤ (1 + o(1))C if
ε = o(1), where

C = max
PX

I(X;Y ) = max
PX

I(PX ;PY |X).

Theorem 4.20 (Strong converse). For any fixed ε < 1,

R ≤ (1 + o(1))C.

Remark 4.21. This means the communication problem has a “sharp” threshold on the error
probability. When R > 1.001C, then asymptotically one cannot achieve success probability 10−8;
when R < 0.999C, then asymptotically one can suddenly achieve success probability 1− 10−8.
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Idea. The communication problem is not binary hypothesis testing (it is a recovery problem), but
one can reduce recovery to detection: if one can distinguish between different inputs, then one can
also distinguish from the case where input and output are independent.

4.7.3 Reduction to hypothesis testing

Consider two scenarios (joint laws on m,Xn, Y n, m̂):

H0 : Pm,Xn,Y n,m̂ =
1

M
PXn|m PY n|Xn Pm̂|Y n ,

H1 : Qm,Xn,Y n,m̂ =
1

M
PXn|mQY n Pm̂|Y n , ((m,Xn) ⊥ (Y n, m̂)).

Then P (m = m̂) ≥ 1− ε and Q(m = m̂) = 1
M . Moreover,

Pm,Xn,Y n,m̂

Qm,Xn,Y n,m̂
=
PY n|Xn

QY n
=

n∏
i=1

PYi|Xi

QYi
.

Therefore, by the strong converse inequality,

1− ε− γ

M
≤ P

( n∑
i=1

log
PYi|Xi

QYi
> log γ

)
.

Technical difficulty. PXn is often not a product distribution.

Solution via types (finite |X |). When |X | <∞, we can WLOG assume all codewords Xn have
the same type P0. Since there are at most (n+ 1)|X |−1 types, one can find a type class that changes
the error probability to ε+ o(1) while the rate changes by at most O( lognn ).

When Xn has type P0 a.s., choose

QY =
∑
x∈X

P0(x)PY |X=x.

Then

E
[ n∑
i=1

log
PYi|Xi

QYi

]
= n I(P0;PY |X) ≤ nC,

and

Var
( n∑
i=1

log
PYi|Xi

QYi

)
= nEP0

[
Var
(
log

PY |X

QY

∣∣∣X)] ≤ n Var
(
log

PY |X

QY

)
= O(n).

Now choosing γ = 1−ε
2 M and applying Chebyshev’s inequality yields

log γ ≤ nC +O(
√
n) ⇒ R =

logM

n
≤ C +O

( 1√
n

)
.
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4.7.4 Converse for finite blocklength (sketch)

Is there a next-order upper bound on R?

Theorem 4.22. Suppose the capacity-achieving input distribution P ∗
X is unique and |X |, |Y| <∞.

Under regularity conditions,

R ≤ C −
√
V

n
erfc−1(ε) + o

( 1√
n

)
, V := Var

(
log

PY |X

P ∗
Y

)
,

where P ∗
Y is the output distribution induced by P ∗

X .

Proof sketch. Using the previous analysis and the uniqueness of P ∗
X , one only needs to deal with

input type P0 ≈ P ∗
X . Then the result follows from Stein’s regime as long as we can show

EP ∗
X

[
Var
(
log

PY |X

P ∗
Y

∣∣∣X)] = Var
(
log

PY |X

P ∗
Y

)
= V.

This follows from the lemma below.

Lemma 4.23. Any capacity-achieving input P ∗
X satisfies

DKL(PY |X=x∥P ∗
Y ) ≤ C, ∀x ∈ X ,

and
DKL(PY |X=x∥P ∗

Y ) = C, ∀x ∈ supp(P ∗
X).

Proof. Consider the directional derivative of I(PX ;PY |X) at P
∗
X in the direction PX − P ∗

X :

0 ≥ lim
ϵ→0+

I(P ∗
X + ϵ(PX − P ∗

X);PY |X)− I(P ∗
X ;PY |X)

ϵ
= (EPX

− EP ∗
X
)
[
DKL(PY |X∥P ∗

Y )
]
.

Choosing PX = δx yields DKL(PY |X=x∥P ∗
Y ) ≤ C for all x. The second claim follows since C =

EP ∗
X
[DKL(PY |X∥P ∗

Y )] ≤ C, hence equality must hold for all x ∈ supp(P ∗
X).
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Lecture 5: Functional (In)equalities

5.1 From Shannon-type inequalities to functional inequalities

Recall (Shannon-type inequalities). All entropy inequalities that can be derived using:

(1) Monotonicity: H(X) ≤ H(X,Y ).

(2) Submodularity: I(X;Y | Z) ≥ 0.

This lecture covers some non-Shannon-type inequalities.

Definition 5.1 (Differential entropy). For a random vector X with density f on Rd, its differential
entropy is

h(X) := h(f) :=

∫
Rd

−f(x) log f(x) dx.

Notes.

(1) h(X) ∈ R ∪ {±∞}. In particular, it can be negative.

(2) For a scalar a ̸= 0, h(aX) = h(X) + log |a| in dimension d = 1. More generally, if X ∈ Rd,
then h(aX) = h(X) + d log |a|.

(3) The inequality h(X) ≤ h(X,Y ) no longer holds. However, it is still true that

I(X;Y ) = h(X) + h(Y )− h(X,Y ) ≥ 0.

Example 5.2 (Gaussian differential entropy). If X ∼ N (µ,Σ) on Rd, then

f(x) =
1√

(2π)d detΣ
exp

(
− 1

2(x− µ)⊤Σ−1(x− µ)
)
,

so

h(X) = EX∼f

[
1
2 log

(
(2π)d detΣ

)
+ 1

2(X − µ)⊤Σ−1(X − µ)
]

=
d

2
log(2πe) +

1

2
log detΣ.

Easy fact (maximum entropy principle). If Cov(X) = Σ, then h(X) ≤ h(N (0,Σ)).

Proof. 0 ≤ DKL

(
PX ∥N (EX,Σ)

)
= −h(X) + h(N (0,Σ)) (check!).

Theorem 5.3 (Entropy power inequality (EPI)). For independent random vectors X,Y on Rd,

exp
(2
d
h(X + Y )

)
≥ exp

(2
d
h(X)

)
+ exp

(2
d
h(Y )

)
.

47
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Notes.

(1) Equality holds iff X,Y are Gaussian and ΣX = cΣY for some c > 0.

(2) EPI shows that for given values of h(X) and h(Y ), h(X + Y ) is minimized when X,Y are
Gaussian.

5.2 Proof of EPI via Fisher information (Stam 1959)

We present the proof in Stam (1959).

5.2.1 A detour: Fisher information

Definition 5.4 (Fisher information of a location family). For a real-valued random variable X
with density f , the Fisher information is

J(X) :=

∫
R

(f ′(x))2

f(x)
dx.

Recall (parametric Fisher information). In Lec 3, for Y ∼ Pθ with density pθ,

I(θ) := IY (θ) :=

∫ (
∂θpθ

)2
pθ

dx.

These are connected via IY (θ) = J(X) when Y = θ +X.

Properties.

(1) J(aX) = 1
a2
J(X).

(2) DPI. IY (θ) ≤ IX(θ) if θ −X − Y is a Markov chain.

Proof sketch:

IY (θ) = lim
δ→0

1

δ2
χ2
(
PY |θ+δ ∥PY |θ

)
≤ lim

δ→0

1

δ2
χ2
(
PX|θ+δ ∥PX|θ

)
= IX(θ).

Theorem 5.5 (Stam). For independent X1, X2,

1

J(X1 +X2)
≥ 1

J(X1)
+

1

J(X2)
.

Equivalently, for all a, b > 0,

(a+ b)2J(X1 +X2) ≤ a2J(X1) + b2J(X2).

Proof. Write Y1 = aθ +X1, Y2 = bθ +X2. Then

IY1(θ) = IY1/a(θ) = J(X1/a) = a2J(X1).

Therefore,
(a+ b)2J(X1 +X2) = IY1+Y2(θ) ≤ IY1,Y2(θ) = a2J(X1) + b2J(X2),

where the inequality is the data processing inequality.
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5.2.2 de Bruijn’s identity

Theorem 5.6 (de Bruijn). Let Z ∼ N (0, 1) be independent of X. Then for a > 0,

d

da
h(X +

√
aZ) =

1

2
J(X +

√
aZ).

Proof. Let pa = p ∗ N (0, a) be the density of X +
√
aZ. Then

∂pa
∂a

=
1

2
p′′a (∗) (5.1)

( ′′ denotes the second derivative).

To see (5.1), note that for any test function φ,

∂

∂a
Epa [φ] = lim

∆→0

1

∆
E
[
φ(X +

√
a+∆Z)− φ(X +

√
aZ)

]
= lim

∆→0

1

∆
E
[
φ(X +

√
aZ +

√
∆Z ′)− φ(X +

√
aZ)

]
,

where Z ′ is an independent copy of Z. A Taylor expansion gives

φ(X +
√
aZ +

√
∆Z ′)− φ(X +

√
aZ) = φ′(X +

√
aZ)

√
∆Z ′ + 1

2φ
′′(X +

√
aZ)∆ (Z ′)2 + o(∆).

Since E[Z ′] = 0 and E[(Z ′)2] = 1, we obtain

∂

∂a
Epa [φ] =

1

2
Epa [φ′′] =

1

2

∫
φp′′a dx (integration by parts),

which is exactly (5.1).

Therefore,

d

da
h(X +

√
aZ) = −

∫
(1 + log pa)

∂pa
∂a

dx = −1

2

∫
(1 + log pa) p

′′
a dx

=
1

2

∫
(p′a)

2

pa
dx (integration by parts)

=
1

2
J(X +

√
aZ).

5.2.3 Proof of EPI in dimension d = 1

Step 1: smoothing. Let

Xλ = X ∗ N (0, f(λ)), Yλ = Y ∗ N (0, g(λ)),

for some functions f, g (to be chosen later). Using de Bruijn’s identity,

d

dλ

[
e2h(Xλ)

]
= 2e2h(Xλ) J(Xλ) f

′(λ).
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Step 2: a monotone ratio. A direct computation yields

d

dλ

[
e2h(Xλ) + e2h(Yλ)

e2h(Xλ+Yλ)

]
=

2

e2h(Xλ+Yλ)

(
e2h(Xλ)J(Xλ)f

′(λ) + e2h(Yλ)J(Yλ)g
′(λ)

−
(
e2h(Xλ) + e2h(Yλ)

)
J(Xλ + Yλ)

(
f ′(λ) + g′(λ)

))
.

Step 3: choose f ′, g′ . Choosing

f ′(λ) = e2h(Xλ), g′(λ) = e2h(Yλ),

the Stam inequality implies

d

dλ

[
e2h(Xλ) + e2h(Yλ)

e2h(Xλ+Yλ)

]
≥ 0, ∀λ > 0.

As λ→ ∞, both Xλ and Yλ are “more and more Gaussian”, hence the ratio → 1. Therefore, the
ratio at λ = 0 must be ≤ 1, which is exactly the EPI for d = 1.

5.2.4 General d ≥ 2 by induction

Let Xd = (X1, . . . , Xd) and similarly Y d, with Xd ⊥⊥ Y d. Write Xd−1 = (X1, . . . , Xd−1) and Xd

for the last coordinate. Then

h(Xd + Y d) = h(Xd−1 + Y d−1) + h
(
Xd + Yd | Xd−1 + Y d−1

)
≥ h(Xd−1 + Y d−1) + h

(
Xd + Yd | Xd−1, Y d−1

)
(conditioning reduces entropy)

≥ d− 1

2
log
(
e

2
d−1

h(Xd−1) + e
2

d−1
h(Y d−1)

)
(induction hypothesis)

+
1

2
EXd−1,Y d−1 log

(
e2h
(
Xd|Xd−1=xd−1

)
+ e2h

(
Yd|Y d−1=yd−1

))
(X ⊥⊥ Y )

≥ d− 1

2
log
(
e

2
d−1

h(Xd−1) + e
2

d−1
h(Y d−1)

)
+

1

2
log
(
e2h(Xd|Xd−1) + e2h(Yd|Y

d−1)
)

≥ d

2
log
(
e

2
d

(
h(Xd−1)+h(Xd|Xd−1)

)
+ e

2
d

(
h(Y d−1)+h(Yd|Y d−1)

))
(convexity of (x, y) 7→ log(ex + ey) again)

=
d

2
log
(
e

2
d
h(Xd) + e

2
d
h(Y d)

)
,

which is the EPI in dimension d.

5.2.5 Example: the entropic CLT (Barron 1986)

Let X1, X2, . . . be i.i.d. with E[X1] = 0, Var(X1) = 1, and h(X1) > −∞. Let

Tn =
1√
n

n∑
i=1

Xi
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be the standardized sum. Then by EPI,

h(Tn+m) = h

(√
m

n+m

1√
m

m∑
i=1

Xi +

√
n

n+m

1√
n

m+n∑
i=m+1

Xi

)

≥ 1

2
log

(
e2h
(√

m
n+m

Tm
)
+ e2h

(√
n

n+m
Tn
))

=
1

2
log

(
m

n+m
e2h(Tm) +

n

n+m
e2h(Tn)

)
.

In other words, the sequence an := ne2h(Tn) is super-additive:

an+m ≥ an + am, ∀n,m.

Moreover, since Var(Tn) = 1, the maximum entropy principle implies

h(Tn) ≤
1

2
log(2πe), so that

an
n

≤ 2πe.

Therefore an/n must have a limit, i.e. h(Tn) → h∗, and

DKL

(
PTn ∥N (0, 1)

)
= −h(Tn) +

1

2
log(2πe) → D∗.

Barron (1986) shows that D∗ = 0, a result known as the entropic CLT.

5.3 Information and estimation in the Gaussian model: I–MMSE

Let X be a general random variable and

Yγ =
√
γ X + Z, Z ∼ N (0, 1) independent of X,

where γ > 0 is the SNR parameter.

Theorem 5.7 (I–MMSE).

d

dγ
I(X;Yγ) =

1

2
E
[
(X − E[X | Yγ ])2

]
=:

1

2
mmse(X | Yγ).

Notes.

(1) Perhaps the most surprising part is that this is an equality.

(2)
mmse(X | Y ) = E

[
(X − E[X | Y ])2

]
= min

f
E
[
(X − f(Y ))2

]
is called the minimum mean squared error for estimating X based on Y .

There are several proofs for the I–MMSE formula; the most generalizable one is via SDEs.

Theorem 5.8 (A more general result). If

dYt = Xt dt+ dBt, t ∈ [0, T ],

then

I(XT ;Y T ) =
1

2

∫ T

0
E
[(
Xt − E[Xt | Y t]

)2]
dt.
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How it implies I–MMSE. Take Xt ≡ X. Then YT is a sufficient statistic of Y T for estimating
X, i.e.

I(XT ;Y T ) = I(X;YT ), E[X | Y T ] = E[X | YT ].

Moreover,
YT√
T

=
√
T X +N (0, 1),

so the SNR parameter is T .

5.3.1 Two lemmas from filtering theory

Lemma 5.9 (Lemma 1). For dYt = f(t) dt+ dBt with f(t) adapted to the filtration FY
t ,

log
dPY T

dPBT

(ξT ) =

∫ T

0
f(t) dξt −

1

2

∫ T

0
f(t)2 dt.

Remark 5.10 (Intuition). For t > 0 and small ∆ > 0, the conditional distribution of ξt+∆ − ξt | ξt is

N
(∫ t+∆

t
f(s) ds, ∆

)
under PY T , N (0,∆) under PBT .

So the log-likelihood ratio is

1

∆

(∫ t+∆

t
f(s) ds

)
(ξt+∆ − ξt)−

1

2∆

(∫ t+∆

t
f(s) ds

)2
≈ f(t)(ξt+∆ − ξt)−

∆

2
f(t)2.

Summing up over a partition yields the stochastic integral representation. (Think: where did we
use that f is adapted to FY ?)

Lemma 5.11 (Lemma 2). For dYt = Xt dt+ dBt, define

B̃t := Yt −
∫ t

0
E[Xs | Y s] ds.

Then B̃t is a Brownian motion adapted to FY .

(A major difference is that Xt could be an unknown signal not adapted to FY ; however E[Xt | Y t] is
always adapted to FY .)

Proof. Clearly B̃t is adapted to FY . In addition,

B̃t =

∫ t

0

(
Xs − E[Xs | Y s]

)
ds+Bt

is an FY -adapted martingale, satisfies B̃0 = 0, and has quadratic variation t. By Lévy’s criterion,
B̃t is a Brownian motion.

(Think: Bt is a BM; but is it adapted to FY ?)

5.3.2 Returning to the proof of the general identity

Returning to the proof:

I(XT ;Y T ) = EP
XT ,Y T

[
log

PY T |XT

PY T

]
= EP

XT ,Y T

[
log

PY T |XT

PBT

]
− EP

XT ,Y T

[
log

PY T

PBT

]
.
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First term. Since XT is given (conditioned), Lemma 1 gives

EP
XT ,Y T

[
log

PY T |XT

PBT

]
= E

[∫ T

0
Xt dYt −

1

2

∫ T

0
X2
t dt

]
.

Second term. Lemma 2 tells us that B̃t = Yt−
∫ t
0 E[Xs | Y s] ds is an FY -BM, so Lemma 1 again

yields

log
PY T

PBT

(Y T ) = log
PY T

P
B̃T

(Y T ) =

∫ T

0
E[Xt | Y t] dYt −

1

2

∫ T

0
E[Xt | Y t]2 dt.

Combine. Therefore,

I(XT ;Y T ) = E

[∫ T

0

(
Xt − E[Xt | Y t]

)
dYt +

1

2

∫ T

0

(
E[Xt | Y t]2 −X2

t

)
dt

]

= E

[∫ T

0

((
Xt − E[Xt | Y t]

)
Xt +

1

2

(
E[Xt | Y t]2 −X2

t

))
dt

]

=

∫ T

0

1

2
E
[(
Xt − E[Xt | Y t]

)2]
dt.

5.3.3 Why is I–MMSE useful in statistics?

Suppose we expect a problem to have a sharp phase transition at SNR = γ∗. We can try to show
that

I(X;Yγ) ≥
Aγ

2
(1− o(1)) for all γ ≤ (1− ε)γ∗ (see picture),

where A := mmse(γ = 0).

SNR

mmse

A

γ∗

SNR

I(X;Yγ)

H(X)
γ∗

Figure 5.1: Heuristic phase transition: MMSE drops sharply around γ∗, while mutual information
grows and saturates at H(X).

In this case,

(1− ε)γ∗

2
mmse(0)(1− o(1)) ≤ I

(
X;Y(1−ε)γ∗

)
=

1

2

∫ (1−ε)γ∗

0
mmse(γ) dγ.

Moreover, γ 7→ mmse(γ) is non-increasing, so∫ (1−ε)γ∗

0
mmse(γ) dγ ≤ (1− 2ε)γ∗mmse(0) + εγ∗mmse

(
(1− 2ε)γ∗

)
.

Therefore
mmse

(
(1− 2ε)γ∗

)
≥ (1− o(1))mmse(0),

i.e. the MMSE does not really drop before γ = γ∗.
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Comparison with Fano. At a high level, Fano’s inequality shows that the estimation error is
large when the information I(X;Y ) is small. Surprisingly, the I–MMSE formula shows that this is
also the case if I(X;Y ) is “too large”, and it is particularly good at showing sharp transitions and
identifying the exact threshold.

5.3.4 An example: sparse mean estimation

Consider the sparse mean estimation problem:

Y ∼ N (θ, 1), θ ∼ (1− p) δ0 + p δµ, p = o(1).

Theorem 5.12. If µ ≤
√

2(1− ε) log 1
p , then

mmse(θ | Y ) ≥ (1− o(1))E[θ2] = (1− o(1))pµ2.

(In other words, the MMSE is essentially attained by the best estimator θ̂ = pµ without seeing Y .)

Proof sketch. Let X ∼ (1− p)δ0 + pδ1 and set µ =
√
γ. Then

Y
d
= Yγ =

√
γ X +N (0, 1).

The mutual information can be computed as

I(X;Yγ) = E
[
log

PYγ |X

PYγ

]
= E

[
log

PYγ |X

QYγ

]
−DKL

(
PYγ ∥QYγ

)
for any Q.

Choose QYγ = N (p
√
γ, 1). Then

E
[
log

PYγ |X

QYγ

]
= E

[
DKL(PYγ |X ∥QYγ )

]
= E

[
(
√
γX − p

√
γ)2

2

]
=
p(1− p)

2
γ.

Moreover, DKL(PYγ ∥QYγ ) = o(pγ) after some algebra if γ < 2(1− ε) log 1
p . Hence

I(X;Yγ) ≥
p(1− p)

2
γ (1− o(1)) if γ < 2(1− ε) log

1

p
.

Now using the previous I–MMSE program proves that

mmse(X | Yγ) ≥ (1− o(1))Var(X) = (1− o(1))p if γ < 2(1− ε) log
1

p
.

Therefore

mmse(θ | Y ) = γmmse(X | Yγ) ≥ (1− o(1))pγ = (1− o(1))pµ2, if µ <

√
2(1− ε) log

1

p
.
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5.3.5 Tensorization of I–MMSE

Theorem 5.13. If Yγ =
√
γ X +N (0, In), then

d

dγ
I(X;Yγ) =

1

2
E
[
∥X − E[X | Yγ ]∥22

]
=:

1

2
mmse(X | Yγ).

Proof. Consider the model where Yi =
√
γiXi +N (0, 1) for possibly different (γ1, . . . , γn). Then

∂

∂γi
I(X;Y n) =

∂

∂γi
I(Xi;Y

n) +
∂

∂γi
I(X−i;Y

n | Xi)

=
∂

∂γi
I(Xi;Y−i) +

∂

∂γi
I(Xi;Yi | Y−i),

where the term ∂γiI(X−i;Y
n | Xi) is zero since

√
γiXi can be subtracted from Yi when Xi is known,

and ∂γiI(Xi;Y−i) = 0 because Y−i does not depend on γi. By the 1-D I–MMSE formula,

∂

∂γi
I(X;Y n) =

1

2
mmse(Xi | Y n).

Summing over i and then setting γi ≡ γ gives

d

dγ
I(X;Yγ) =

n∑
i=1

∂

∂γi
I(X;Yγ)

∣∣∣∣
γi=γ

=
1

2
mmse(X | Yγ).

5.4 Area theorem for the BEC and sharp thresholds

5.4.1 Area theorem: a tensorization-flavored identity

Consider communication over a binary erasure channel (BEC)

Y =

{
X, w.p. 1− ε,

?, w.p. ε.

Let the input be
Xn ∼ Unif(C) = Unif

(
{xn1 , . . . , xnM}

)
, M = enR,

where C is the codebook. How to find a codebook such that

1

n

n∑
i=1

H(Xi | Y n) → 0 when R < C = 1− ε?

(average bit error rate)

Definition 5.14 (EXIT function). For i ∈ [n], define

hi(ε) := H(Xi | Y−i), h(ε) :=
1

n

n∑
i=1

hi(ε).

Lemma 5.15. H(Xi | Y n) = ε hi(ε).
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Proof.

H(Xi | Y n) = (1− ε)H(Xi | Y−i, Yi ̸=?) + εH(Xi | Y−i, Yi =?)

= εH(Xi | Y−i) = ε hi(ε).

Remark 5.16. hi(ε) can be interpreted as the error probability of decoding Xi in the “non-trivial”
scenario Yi =?.

Lemma 5.17.
d

dε
H
(
Xn | Y (ε)n

)
= nh(ε).

Proof. Think of n independent channels with possibly different erasure probabilities (ε1, . . . , εn).
Then

∂

∂εi
H(Xn | Y n) =

∂

∂εi
H(Xi | Y n) +

∂

∂εi
H(X−i | Xi, Y

n)

=
∂

∂εi
H(Xi | Y n) since H(X−i | Xi, Y

n) = H(X−i | Xi, Y−i) (no dependence on εi)

=
∂

∂εi

(
εiH(Xi | Y−i)

)
(previous lemma)

= H(Xi | Y−i).

Therefore,

d

dε
H
(
Xn | Y (ε)n

)
=

n∑
i=1

H(Xi | Y−i)
∣∣∣
ε1=···=εn=ε

= nh(ε).

Theorem 5.18 (Area theorem for the BEC).∫ 1

0
h(ε) dε = R.

Proof. ∫ 1

0
h(ε) dε =

1

n

∫ 1

0

d

dε
H
(
Xn | Y (ε)n

)
dε =

H(Xn | Y (1)n)−H(Xn | Y (0)n)

n

=
H(Xn)

n
= R.

What does the area theorem tell us? For a capacity-achieving code of rate R = C, it must
hold that h(ε) = o(1) when ε < 1 − R. However, since h(ε) ≤ 1 and

∫ 1
0 h(ε) dε = R, it must be

the case that h(ε) = 1 for every ε > 1 − R, i.e. the code is really bad in the high-noise regime.
Therefore any capacity-achieving code must have a sharp transition for the decoding error.

5.5 Special topic: symmetric linear codes achieve BEC capacity

Linear code. A code C = {xn1 , . . . , xnM} is linear if it is a linear subspace of Fn2 . (Encoding for
linear codes is easy: just a matrix–vector product.)



5.5. SPECIAL TOPIC: SYMMETRIC LINEAR CODES ACHIEVE BEC CAPACITY 57

ε

h(ε)
1−R

1

Figure 5.2: A capacity-achieving code forces a sharp transition in the EXIT curve.

Symmetry. For all i ̸= k and j ≠ ℓ, there exists a permutation π ∈ Sn such that π(i) = j,
π(k) = ℓ, and

πC = C (πC applies π to all vectors in C).

Theorem 5.19. For every symmetric linear code with logM
n → R, it attains the BEC capacity

under the bit-MAP decoding

x̂i := arg max
xi∈{0,1}

P(xi | yn).

Remark 5.20. In the coding literature, this shows that the Reed–Muller code, which is symmetric
and admits efficient encoding and decoding algorithms, is capacity-achieving.

5.5.1 Proof ingredient I: Boolean function sharp thresholds

Let Ω ⊆ {0, 1}n. We call Ω:

(1) Monotone: if x ∈ Ω and x ≤ x′ (coordinate-wise), then x′ ∈ Ω.

(2) Symmetric: if for all i, j ∈ [n], there exists π ∈ Sn such that π(i) = j and πΩ = Ω.

For ε ∈ [0, 1], define

pε(Ω) := P
(
Bern(ε)⊗n ∈ Ω

)
.

By monotonicity, ε 7→ pε(Ω) is non-decreasing. For symmetry, we shall only need that all influence
functions of Ω are the same, i.e. I1(Ω) = · · · = In(Ω), where

Ii(Ω) := Pε
(
x ∈ {0, 1}n : (x1, . . . , xi−1, 0, xi+1, . . . , xn) /∈ Ω and (x1, . . . , xi−1, 1, xi+1, . . . , xn) ∈ Ω

)
.

Let

ε(δ) := max{ε : pε(Ω) ≤ δ}.

Theorem 5.21.

ε(1− δ)− ε(δ) = o(1), ∀ δ ∈ (0, 1/2).

(So ε 7→ pε(Ω) has a sharp threshold.)
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ε

pε(Ω)

1− δ

δ

ε(δ)ε(1− δ)

Figure 5.3: Sharp threshold phenomenon for a monotone, symmetric Boolean set Ω.

Proof sketch. A classical result shows that

d

dε
pε(Ω) =

n∑
i=1

Ii(Ω) = nI1(Ω) (by symmetry).

It remains to show that nI1(Ω) = ω(1) whenever pε(Ω) ∈ [δ, 1− δ].

Classical Efron–Stein bound:

pε(Ω)
(
1− pε(Ω)

)
≤

n∑
i=1

Ii(Ω)

only shows nI1(Ω) = Ω(1).

Key improvement (KKL theorem):

log n

n
pε(Ω)

(
1− pε(Ω)

)
≤ max{I1(Ω), . . . , In(Ω)}

(essentially the log-Sobolev inequality on the hypercube) implies nI1(Ω) = Ω(logn) = ω(1).

5.5.2 Proof ingredient II: area theorem + sharp threshold ⇒ capacity

For a given linear code C, define

Ωi :=
{
all erasure patterns w ∈ {0, 1}n−1 such that w ⊙ x−i fails to decode xi for some x ∈ C

}
,

where 1 represents erasure and 0 represents non-erasure.
Since C is linear, WLOG assume that the transmitted codeword is x = 0, i.e.

Ωi =
{
w ∈ {0, 1}n−1 : ∃x−i ≤ w s.t. (x−i, 1) ∈ C

}
.

Then:

(1) Ωi is monotone (obvious).

(2) Ωi is symmetric (follows from symmetry of C).

(3) pε(Ωi) = P(Y−i fails to decode Xi) = hi(ε).

(4) hi(ε) = h(ε) (symmetry of C again).

By the previous part, ε 7→ h(ε) = pε(Ωi) has a sharp threshold. In addition,
∫ 1
0 h(ε) dε = R by

the area theorem. This threshold can only be

ε∗ = 1−R,

i.e. the code is capacity-achieving.



Lecture 6: Statistical decision theory & classi-
cal asymptotics

6.1 Statistical decision theory

Definition 6.1 (Statistical model). A statistical model is a family of distributions (Pθ)θ∈Θ.

• Parametric: dim(Θ) <∞.

• Nonparametric: dim(Θ) = ∞.

• Semiparametric: Θ = Θ1 ×Θ2 with dim(Θ1) <∞ and dim(Θ2) = ∞.

Observation. We observe X ∼ Pθ with an unknown θ ∈ Θ.

Decision rule / estimator. A (possibly randomized) decision rule is a map

θ̂ : X → A,

where A is the action space.

Loss. A loss is a given function L : Θ×A → R+.

Risk (expected loss). The risk of an estimator θ̂ under L is

r(θ̂, θ) = EX∼Pθ

[
L(θ, θ̂(X))

]
.

We often abbreviate EX∼Pθ
[·] as Eθ[·].

Although originally proposed by Wald for statistical estimation, this framework is general enough
to encapsulate many other scenarios.

Example 6.2 (Density estimation). Let X1, . . . , Xn
i.i.d.∼ f be i.i.d. from an unknown density f .

Then the parameter is θ = f and Pθ = f⊗n. Different losses capture different goals, such as

Density at a point: L1(f, a) = |a− f(0)|,

Global estimation: L2(f, a) =

∫
|f(x)− a(x)|2 dx,

Functional estimation: L3(f, a) =
∣∣∣a− ∫ h

(
f(x)

)
dx
∣∣∣.

59
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Example 6.3 (Linear regression). Let X1, . . . , Xn be either fixed or random design points, and let
PY |X satisfy

E[Y | X] = ⟨θ,X⟩ .
Losses include

Estimation error: L1(θ, θ̂) =
∥∥∥θ̂ − θ

∥∥∥2 ,
Prediction error: L2(θ, θ̂) = EX∼PX

[(
⟨θ,X⟩ −

〈
θ̂, X

〉 )2]
.

Example 6.4 (Learning theory). Let (X1, Y1), . . . , (Xn, Yn) ∼ PXY . A loss that captures excess
risk w.r.t. a given function class F is

L(PXY , f̂) = EPXY

[
(Y − f̂(X))2

]
− inf
f∈F

EPXY

[
(Y − f(X))2

]
.

Example 6.5 (Optimization). Parameter: a function f to be minimized.
Action: a query strategy xt+1 = ϕ(xt, yt).
Observation: queries xt and answers yt (e.g. yt = f(xt) + ξt).
Loss:

L(f, xT+1) = f(xT+1)−min f.

6.2 Comparison of estimators

For an estimator θ̂, recall that its risk r(θ̂, θ) is a function of θ. How to compare two estimators θ̂1
and θ̂2?

Option I: (In)admissibility

θ̂2 is inferior to θ̂1 if
r(θ̂2; θ) ≥ r(θ̂1; θ) for every θ ∈ Θ,

and
r(θ̂2; θ) > r(θ̂1; θ) for some θ.

In this case, θ̂2 is called inadmissible. However, admissibility is a weak notion: even the constant
estimator θ̂ ≡ 0 can be admissible.

Option II: Bayes risk

Given a probability distribution π(θ) on Θ, look at the weighted average

rπ(θ̂) =

∫
π(θ) r(θ̂; θ) dθ.

The distribution π is called the prior. The minimizer of θ̂ 7→ rπ(θ̂) is called the Bayes estimator
under π.

Option III: Minimax risk

Look at the worst-case risk
r∗(θ̂) = sup

θ
r(θ̂; θ).

The minimizer of θ̂ 7→ r∗(θ̂) is called the minimax estimator.
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θ

risk

r(θ̂1; θ)

r(θ̂2; θ)

r(θ̂3; θ)

Figure 6.1: A schematic plot of several risk functions, matching the qualitative sketch in the notes.

6.3 Bayes risk vs minimax risk

Define the Bayes risk

r∗π := inf
θ̂
rπ(θ̂) = inf

θ̂
Eθ∼π

[
r(θ̂; θ)

]
,

and the minimax risk

r∗ := inf
θ̂
r∗(θ̂) = inf

θ̂
sup
θ
r(θ̂; θ).

Theorem.

(1) r∗ ≥ r∗π for every prior π.

(2) Under regularity conditions (a minimax theorem),

r∗ = sup
π
r∗π.

The maximizer π∗ is called the least favorable prior.

Proof. First, for any fixed estimator θ̂,

sup
θ
r(θ̂; θ) ≥ Eθ∼π[r(θ̂; θ)] (max ≥ average),

hence taking inf θ̂ on both sides yields r∗ ≥ r∗π.

For the other direction, recall that a randomized estimator can be viewed as a conditional
distribution p(· | X) over actions. Then

sup
π
r∗π = sup

π
inf
p

Eθ∼πEXEa∼p(·|X)

[
L(θ, a)

]
(affine in both π and p)

= inf
p

sup
π

Eθ∼πEXEa∼p(·|X)

[
L(θ, a)

]
(by Sion’s minimax theorem)

= inf
p

sup
θ

EXEa∼p(·|X)

[
L(θ, a)

]
= r∗.

□
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Posterior and Bayes estimator. Given a prior π(θ), it induces a joint distribution π(θ)pθ(x)
on (Θ, X), which admits the posterior

π(θ | x) ∝ π(θ)pθ(x).

The Bayes estimator is the barycenter of π(θ | X) under L, i.e.

θ̂π(X) = argmin
a

Eθ∼π(·|X)

[
L(θ, a)

]
.

Finding the Bayes estimator is often statistically easy (it is an expectation under the posterior), but
can be computationally hard. Finding the minimax estimator can be statistically hard and is only
feasible in a few examples. This motivates studying asymptotically minimax estimators (second
part of the lecture) or rate-optimal results, namely to find θ̂ such that

r∗(θ̂) ≤ C r∗ for some constant C.

6.4 Examples

6.4.1 Binomial model

Example 6.6 (Binomial). Let X ∼ Bin(n, θ) and L(θ, a) = (θ − a)2. To find the least favorable
prior, try

π(θ) ∝ θb−1(1− θ)b−1 (Beta(b, b)).

Then the posterior is

π(θ | X) ∝ π(θ) θX(1− θ)n−X

= θb+X−1(1− θ)b+n−X−1 (Beta(b+X, b+ n−X)).

The Bayes estimator is

θ̂(X) = Eπ[θ | X] =
X + b

n+ 2b
.

Its risk is

r(θ̂, θ) = Eθ
[
(θ̂ − θ)2

]
= Bias2 +Var

=
(nθ + b

n+ 2b
− θ
)2

+
nθ(1− θ)

(n+ 2b)2

=
1

(n+ 2b)2

[
b2 + (n− 4b2) θ(1− θ)

]
.

By choosing b =
√
n
2 , we have n− 4b2 = 0, hence

r(θ̂, θ) ≡ 1

4(
√
n+ 1)2

.

Therefore

θ̂ =
X +

√
n
2

n+
√
n

attains the worst-case risk r∗(θ̂) = 1
4(
√
n+1)2

, and

r∗ ≤ r∗(θ̂) = rπ(θ̂) = r∗π ≤ r∗ =⇒ r∗ =
1

4(
√
n+ 1)2

.
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6.4.2 Gaussian location model with bowl-shaped loss

Setup. Let X ∼ N (θ, Id) and let
L(θ, a) = ρ(θ − a),

where ρ : Rd → R+ is continuous and bowl-shaped (i.e. ρ(x) = ρ(−x) and ρ is quasi-convex).

Example 6.7 (Gaussian location: minimax estimator). Claim. θ̂ = X is the minimax estimator,
with minimax risk

r∗ = E
[
ρ(Z)

]
, Z ∼ N (0, Id).

Proof (via a Gaussian prior). Try a prior π = N (0, τ2Id). Then

π(θ | X) ∝ exp
(
− ∥θ∥2

2τ2
− ∥X − θ∥2

2

)
= N

( τ2

1 + τ2
X,

τ2

1 + τ2
Id

)
.

Hence

r∗ ≥ r∗π = EX
[
min
a∈Rd

E
θ∼N

(
τ2

1+τ2
X, τ2

1+τ2
Id

)ρ(θ − a)
]

= E
[
ρ
(√ τ2

1 + τ2
Z
)]

(by Anderson’s lemma below).

Letting τ → ∞ gives r∗ ≥ E[ρ(Z)]. On the other hand, the estimator θ̂ = X has constant risk

Eθ
[
ρ(X − θ)

]
= E[ρ(Z)],

so it achieves the lower bound and is minimax. □

Lemma 6.8 (Anderson). If X ∼ N (0,Σ) and ρ is bowl-shaped, then

min
a∈Rd

E
[
ρ(X + a)

]
= E

[
ρ(X)

]
.

Proof. Let Kc = {x : ρ(x) ≤ c}. Since ρ is bowl-shaped, Kc is convex and Kc = −Kc. Then

E[ρ(X + a)] =

∫ ∞

0
P
(
ρ(X + a) > c

)
dc

=

∫ ∞

0

(
1− P(X + a ∈ Kc)

)
dc

≥
∫ ∞

0

(
1− P(X ∈ Kc)

)
dc (see the comparison below)

= E[ρ(X)].

It remains to justify that P(X ∈ Kc) ≥ P(X ∈ Kc + a). Using convexity of Kc,

Kc =
1
2(Kc + a) + 1

2(Kc − a),

hence

P(X ∈ Kc) = P
(
X ∈ 1

2(Kc + a) + 1
2(Kc − a)

)
≥
√
P(X ∈ Kc + a)P(X ∈ Kc − a) (X has a log-concave distribution)

=
√
P(X ∈ Kc + a)P(X ∈ −Kc − a) (Kc = −Kc)

= P(X ∈ Kc + a) (the distribution of X is symmetric around 0).

This proves the claim.
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6.5 Hájek–Le Cam classical asymptotics

We now consider X1, . . . , Xn ∼ Pθ with n→ ∞.

6.5.1 Regular models: differentiable in quadratic mean (QMD)

Definition 6.9 (QMD). A statistical model (Pθ)θ∈Θ is called differentiable in quadratic mean
(QMD) at θ if there exists a score function sθ(x) such that∫ [√

pθ+h −
√
pθ − 1

2h
T sθ

√
pθ

]2
dµ = o(∥h∥2),

where µ is any dominating measure for (Pθ) and pθ =
dPθ
dµ .

Remark 6.10. (1) When h 7→ √
pθ+h is differentiable everywhere,

sθ(x) =
2√
pθ(x)

∂

∂θ

√
pθ(x) =

∂θpθ(x)

pθ(x)
= ∂θ log pθ(x).

(2) Since ∫ (√
pθ+h −

√
pθ
)2

dµ = H2(Pθ+h, Pθ) ≤ 2,

QMD implies that the Fisher information

I(θ) := Eθ[sθsTθ ]

exists.

6.6 Fisher’s program and Hodges’ estimator

Historically, a major goal of classical asymptotics was Fisher’s program:

(1) The MLE θ̂n satisfies
√
n(θ̂n − θ)

d−→ N
(
0, I(θ)−1

)
,

where I(θ) is the Fisher information matrix of (Pθ)θ∈Θ.

(2) For any other sequence of estimators (Tn) with

√
n(Tn − θ)

d−→ N (0,Σθ), ∀θ ∈ Θ,

we must have Σθ ⪰ I(θ)−1. (In other words, the MLE attains the asymptotically smallest
variance.)

While (1) is true under mild regularity conditions, (2) is not true in full generality, as witnessed
by Hodges’ estimator (1951).

Example 6.11 (Hodges’ estimator). Let X1, . . . , Xn
i.i.d.∼ N (θ, 1) and let X̄n be the sample mean.

Define

θ̂n =

{
X̄n, |X̄n| ≥ n−1/4,

0, |X̄n| < n−1/4.
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It is easy to show that

√
n(θ̂n − θ)

d−→

{
N (0, 1), θ ̸= 0,

0, θ = 0.

Therefore Fisher’s statement (2) does not hold when θ = 0.

Hodges’ example shows that caution is needed when defining the “optimality” of the MLE or
inverse Fisher information. It then took statisticians roughly 20 years to find the right definitions,
through angles such as:

(1) Hodges’ estimator is not regular (one restricts the class of estimators).

(2) The set of violations has Lebesgue measure 0 (“superefficiency” occurs rarely).

(3) The performance of Hodges’ estimator is bad when θ ≈ n−1/4 (a large asymptotic local risk).

6.7 A collection of asymptotic theorems

Convolution theorem. Let (Pθ) be QMD. If

√
n(Tn − ψ(θ))

d−→ Lθ under P⊗n
θ ,

and (Tn) is regular in the sense that

√
n
(
Tn − ψ

(
θ +

h√
n

))
d−→ Lθ under P⊗n

θ+ h√
n

, ∀h ∈ Rd,

then there exists a probability measure Mθ such that

Lθ = N
(
0,∇ψ(θ)T I(θ)−1∇ψ(θ)

)
∗Mθ, ∀θ.

Here ∗ denotes convolution: (µ ∗ ν)(A) =
∫
µ( dx) ν(A− x).

(Convolution makes the distribution more “noisy”.)

Almost everywhere convolution theorem. Under all of the above conditions except for
regularity of (Tn), we still have

Lθ = N
(
0,∇ψ(θ)T I(θ)−1∇ψ(θ)

)
∗Mθ

for Lebesgue-almost-every θ.

Local asymptotic minimax (LAM) theorem. For every continuous bowl-shaped loss ρ
and any sequence of estimators (Tn),

lim
c→∞

lim inf
n→∞

sup
∥h∥≤c

Eθ+ h√
n

[
ρ
(√

n
(
Tn − ψ(θ + h√

n
)
))]

≥ E[ρ(Z)],

where
Z ∼ N

(
0,∇ψ(θ)T I(θ)−1∇ψ(θ)

)
.
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(This is a lower bound on the minimax risk of the local family (Pθ+h/
√
n)∥h∥≤c under the loss

L(θ, a) = ρ(
√
n(a− ψ(θ))).)

The proofs rely on the asymptotic equivalence between models (Pθ+h/
√
n)∥h∥≤c and the Gaussian

shift model (N (h, I(θ)−1))∥h∥≤c; see the special topic at the end of this lecture.

6.8 A special case of LAM via Bayesian Cramér–Rao

6.8.1 Bayesian Cramér–Rao in one dimension (van Trees inequality)

Let θ ∈ [a, b], and let π(·) be a differentiable prior density on [a, b] with π(a) = π(b) = 0 and

J(π) =

∫ b

a

π′(θ)2

π(θ)
dθ <∞.

Then for any estimator θ̂,

EπEθ
[
(θ̂ − θ)2

]
≥ 1

Eπ[I(θ)] + J(π)
.

(Compare with the usual Cramér–Rao bound Eθ[(θ̂ − θ)2] ≥ 1/I(θ) for unbiased θ̂.)

Proof. Consider

EπEθ
[
(θ̂ − θ) ∂θ

(
log π(θ)pθ(X)

)]
=

∫
X

∫ b

a
(θ̂ − θ) ∂θ

(
π(θ)pθ(x)

)
dθ µ( dx)

=

∫
X

∫ b

a
π(θ)pθ(x) dθ µ( dx) (integration by parts)

= 1.

Then, by Cauchy–Schwarz,

1 ≤
(
EπEθ[(θ̂ − θ)2]

)
·
(
EπEθ

[
∂θ log(π(θ)pθ(X))

]2)
.

Next expand

EπEθ
[
∂θ log(π(θ)pθ(X))

]2
= Eπ

[(π′(θ)
π(θ)

)2]
+ EπEθ

[(∂θpθ(X)

pθ(X)

)2]
+ 2EπEθ

[π′(θ)
π(θ)

· ∂θpθ(X)

pθ(X)

]
.

The cross term equals 0 assuming∫
µ( dx) ∂θpθ(x) = ∂θ

∫
µ( dx) pθ(x) = 0.

Therefore
EπEθ

[
∂θ log(π(θ)pθ(X))

]2
= J(π) + Eπ[I(θ)],

and the inequality follows. □
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6.8.2 Multivariate Bayesian Cramér–Rao

Statement. Let π =
∏d
i=1 πi be a differentiable prior density on

∏d
i=1[ai, bi] vanishing on the

boundary, and let J(π) = diag(J(π1), . . . , J(πd)). Then for any estimator θ̂,

EπEθ
[ ∥∥∥θ̂ − θ

∥∥∥2 ] ≥ Tr
((

Eπ[I(θ)] + J(π)
)−1
)
.

Key step (as in the notes). Similar to the 1-D proof, one can show for each k = 1, . . . , d that

EπEθ
[
(θ̂k − θk)∇θ log(π(θ)pθ(X))

]
= ek

(the k-th standard basis vector). Let

Σ = E
[
∇θ log(π(θ)pθ(X))∇θ log(π(θ)pθ(X))T

]
= Eπ[I(θ)] + J(π).

Then by Cauchy–Schwarz,

EπEθ
[
(θ̂k − θk)

2
]
≥ sup

u̸=0

⟨u, ek⟩2

uTΣu
= (Σ−1)kk.

6.8.3 Deriving LAM from BCR when ψ(θ) = θ and ρ(x) = ∥x∥2

First, note that if

π(θ) =
2

b− a
cos2

(π
2
· 2θ − (a+ b)

b− a

)
,

then π(a) = π(b) = 0, and

J(π) =

∫ b

a

8π2

(b− a)3
sin2

(π
2
· 2θ − (a+ b)

b− a

)
dθ =

4π2

(b− a)2
.

(Exercise: show that this choice of π minimizes the value of J(π).)

Next, choosing the above prior on [θ0 − c√
n
, θ0 +

c√
n
], Bayesian Cramér–Rao gives

inf
θ̂

sup
∥h∥∞≤c

Eθ0+ h√
n

[ ∥∥∥θ̂ − (θ0 +
h√
n
)
∥∥∥2 ] ≥ inf

θ̂
EπEθ0+ h√

n

[ ∥∥∥θ̂ − (θ0 +
h√
n
)
∥∥∥2 ]

≥ Tr
((
nEπ[I(θ)] +

nπ2

c2
I
)−1
)

(Fisher info. for n samples is nI(θ))

=
1 + o(1)

n
Tr(I(θ0)

−1) as n→ ∞ and c→ ∞,

assuming that θ 7→ I(θ) is continuous at θ0.

6.9 Applications of LAM

Since the global minimax risk is always lower bounded by the local minimax risk, LAM gives
asymptotic lower bounds on r∗n.
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6.9.1 Binomial revisit

Revisit X ∼ Bin(n, θ). Then

r∗n = inf
θ̂

sup
θ∈(0,1)

Eθ
[
(θ̂ − θ)2

]
≥ inf

θ̂
sup

|h|≤cn
E 1

2
+ h√

n

[(
θ̂ − (12 + h√

n
)
)2]

(cn → ∞ as n→ ∞)

≥ 1− on(1)

nI(12)
=

1− on(1)

4n
.

This is consistent with the exact expression r∗n = 1
4(
√
n+1)2

.

6.9.2 Nonparametric entropy estimation

Let X1, . . . , Xn
i.i.d.∼ f , where f is a density on [0, 1]. The target is to estimate the differential

entropy

h(f) =

∫ 1

0
−f(x) log f(x) dx

under the squared loss.

Challenge. This is not a finite-dimensional model, so LAM does not directly apply.

Solution. Consider a one-parameter subfamily (f0 + tg)|t|≤ε. Then

I(0) =

∫ 1

0

g(x)2

f0(x)
dx,

d

dt
h(f0 + tg)

∣∣∣
t=0

= −
∫ 1

0

(
1 + log f0(x)

)
g(x) dx.

LAM applied to this subfamily at t = 0 gives

r∗n ≥ 1− on(1)

n

(∫ 1

0

g(x)2

f0(x)
dx
)−1(∫ 1

0

(
1 + log f0(x)

)
g(x) dx

)2
=:

1− on(1)

n
V (f0, g).

We can maximize this lower bound w.r.t. g. Since
∫
g = 0 (because f0 + tg must remain a

density), Cauchy–Schwarz gives

V (f0, g) =
(∫ 1

0

g(x)2

f0(x)
dx
)−1(∫ 1

0

(
log f0(x) + h(f0)

)
g(x) dx

)2
≤
∫ 1

0
f0(x)

(
log f0(x) + h(f0)

)2
dx

=

∫ 1

0
f0(x) log

2 f0(x) dx− h(f0)
2,

where equality holds when g(x) = f0(x)
(
log f0(x) + h(f0)

)
.

Therefore,

r∗n ≥ 1− on(1)

n
sup
f0

(∫ 1

0
f0(x) log

2 f0(x) dx− h(f0)
2
)
.
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6.9.3 Pros and cons for asymptotic theorems

• Pro 1: plug-and-play bound for essentially all statistical models.

• Pro 2: exact constant for the asymptotic risk.

• Con 1: bounds are asymptotic, assuming n→ ∞ while d is fixed.

• Con 2: bounds are for asymptotic variance, while for high-dimensional scenarios bias can be
the dominating factor.

This motivates studying techniques for non-asymptotic lower bounds in the next few lectures.

6.10 Special topic: Le Cam’s distance between statistical models

Ref: Liese and Miescke, Statistical Decision Theory, Springer (2008).
For two models (Pθ)θ∈Θ and (Qθ)θ∈Θ with the same parameter set Θ, how do we compare their

“strength”? Throughout this section we assume that Θ is a finite set.

Definition 6.12 (Deficiency). A model M = (Pθ)θ∈Θ is called ε-deficient with respect to N =
(Qθ)θ∈Θ if

• for every finite decision space A,

• for every bounded loss L(θ, a) ∈ [0, 1],

• for every (randomized) estimator θ̂N under N ,

there exists an estimator θ̂M under M such that

r(θ̂M; θ) ≤ r(θ̂N ; θ) + ε, ∀θ ∈ Θ.

Theorem 6.13 (Randomization criterion). The following are equivalent:

(1) M is ε-deficient w.r.t. N .

(2) For every finite action set A, bounded loss L(θ, a) ∈ [0, 1], and prior π on Θ, the Bayes risks
satisfy

r∗π(M) ≤ r∗π(N ) + ε.

(3) There exists a Markov kernel K from X to Y such that

TV(KPθ, Qθ) ≤ ε, ∀θ ∈ Θ,

where (KPθ)(y) =
∑

x Pθ(x)K(y | x).

Proof. (1)⇒(2). Fix any finite action set A, any bounded loss L(θ, a) ∈ [0, 1], and any prior π on
Θ. Let âN be any (randomized) decision rule under N . By ε-deficiency, there exists a decision rule
âM under M such that

r(âM; θ) ≤ r(âN ; θ) + ε, ∀θ ∈ Θ.

Averaging w.r.t. π gives ∫
r(âM; θ)π( dθ) ≤

∫
r(âN ; θ)π( dθ) + ε.
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Taking the infimum over âN yields r∗π(M) ≤ r∗π(N ) + ε.

(3)⇒(1). Assume there exists a kernel K from X to Y such that TV(KPθ, Qθ) ≤ ε for all
θ ∈ Θ. Given any decision rule âN : Y → A under N , define a decision rule under M by

X ∼ Pθ, Y ∼ K(· | X), âM := âN (Y ).

Then for each θ,

r(âM; θ)− r(âN ; θ) = EY∼KPθ

[
L(θ, âN (Y ))

]
− EY∼Qθ

[
L(θ, âN (Y ))

]
≤ TV(KPθ, Qθ) ≤ ε,

since L(θ, âN (y)) ∈ [0, 1]. Hence M is ε-deficient w.r.t. N .

(2)⇒(3). Let the action set be A = Y and consider the (non-randomized) decision rule under
N given by

âN (y) = y.

Any randomized decision rule under M with action set Y can be identified with a kernel K from X
to Y. Condition (2) then implies (as in the notes)

sup
0≤L≤1

sup
π

inf
K

Eθ∼π
[
EX∼Pθ

Ea∼K(·|X)L(θ, a)− Ea∼Qθ
L(θ, a)

]
≤ ε, (6.1)

where 0 ≤ L ≤ 1 means L(θ, a) ∈ [0, 1] for all (θ, a). The objective is linear in K(· | x) and in
{π(θ)L(θ, a)}θ∈Θ,a∈A, so by a minimax theorem we can swap inf and sup:

inf
K

sup
0≤L≤1

sup
π

Eθ∼π
[
EX∼Pθ

Ea∼K(·|X)L(θ, a)− Ea∼Qθ
L(θ, a)

]
≤ ε. (6.2)

For fixed K and L, the expression inside is linear in π, and since Θ is finite,

sup
π

Eθ∼π[g(θ)] = max
θ∈Θ

g(θ).

Moreover, for each θ,

sup
0≤f≤1

(
Ea∼KPθ

[f(a)]− Ea∼Qθ
[f(a)]

)
= TV(KPθ, Qθ).

Therefore the inner supremum in (6.2) equals maxθ∈ΘTV(KPθ, Qθ), so

inf
K

max
θ∈Θ

TV(KPθ, Qθ) ≤ ε.

Hence there exists a kernel K such that TV(KPθ, Qθ) ≤ ε for all θ ∈ Θ, proving (3).

Definition 6.14 (Le Cam’s distance). For finite models M = (Pθ)θ∈Θ and N = (Qθ)θ∈Θ, define Le
Cam’s distance as

∆(M,N ) = min{ε : M is ε-deficient to N , N is ε-deficient to M}.

Example 6.15 (Sufficiency). For M = (Pθ)θ∈Θ and a statistic T = T (X), define the T -induced
model N = (T#Pθ)θ∈Θ. By the randomization criterion,

∆(M,N ) = 0 ⇐⇒ M and N are mutual randomizations

⇐⇒ (θ → X → T ) and (θ → T → X) are Markov chains ⇐⇒ T is sufficient for X.

(Factorization theorem: T is sufficient ⇐⇒ pθ(x) = g(x)h(θ, T ) for some g, h.)
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6.10.1 Standard model and a route to asymptotic equivalence

For a sequence of models (Mn)n≥1 and (Nn)n≥1, how to show asymptotic equivalence ∆(Mn,Nn) →
0 as n→ ∞?

Definition 6.16 (Standard model). Let M = {P1, . . . , Pm} be a finite model and let

P̄ :=
1

m

m∑
i=1

Pi.

Then

T (x) =
(P1

P̄
(x), . . . ,

Pm
P̄

(x)
)

is sufficient and lies on
∆m := {u ∈ Rm+ : 1Tu = m}.

(Applying the factorization theorem to Pi(x) = P̄ (x)Ti(x).)

Thus M is equivalent to the T -induced model N = {µ1, . . . , µm} with

µi( dT )

µ( dT )
= Ti,

where µ is the distribution of T under P̄ , known as the standard distribution. Indeed,

Eµi [f(T )] = EPi [f(T (X))] = EP̄
[Pi
P̄
f(T (X))

]
= Eµ[Tif(T )].

Implication: standard model unifies all statistical models of size m to standard distributions µ on
∆m.

Theorem 6.17. If µn
d−→ µ, then ∆(Mn,M) → 0.

Proof. By (2) in the randomization criterion, it suffices to check that

sup
A,π,L

∣∣r∗π(Mn)− r∗π(M)
∣∣→ 0.

In a standard model,

r∗π(M) = inf
θ̂

m∑
i=1

πi Eµi
[
L(i, θ̂(T ))

]
= inf

θ̂
Eµ
[ m∑
i=1

πiTi L(i, θ̂(T ))
]
.

Let
C := conv

(
{(πiL(i, a))mi=1 : a ∈ A}

)
.

Then the inner infimum can be written as

inf
θ̂
Eµ
[ m∑
i=1

πiTi L(i, θ̂(T ))
]
= Eµ

[
inf
c∈C

⟨c, T ⟩
]
.

Since f(T ) = infc∈C ⟨c, T ⟩ is bounded by m and is 1-Lipschitz under ∥·∥1,

sup
A,π,L

∣∣r∗π(Mn)− r∗π(M)
∣∣ ≤ sup

∥f∥∞≤m,
|f(x)−f(y)|≤∥x−y∥1

∣∣Eµnf − Eµf
∣∣→ 0.

(Here one can use that Dudley’s metric metrizes weak convergence.)
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Now we’re ready to present the main result.

6.10.2 Weak convergence of likelihood ratios ⇒ asymptotic equivalence

Theorem 6.18. Let Mn = {P1,n, . . . , Pm,n} for n ≥ 1, and M = {P1, . . . , Pm}. Let

Ln =
(P2,n

P1,n
, . . . ,

Pm,n
P1,n

)
, L =

(P2

P1
, . . . ,

Pm
P1

)
.

Suppose M is homogeneous, i.e. Pi and Pj are mutually absolutely continuous. If

Law(Ln | P1,n)
d−→ Law(L | P1),

then
∆(Mn,M) → 0.

(In other words, weak convergence of likelihood ratios implies asymptotic equivalence.)

Proof. It suffices to show that the standard distributions µn
d−→ µ. Also note that Law(Ln | P1,n) is

unchanged when moving to the standard model.
By compactness of ∆m = {u ∈ Rm+ : 1Tu = m} and Prokhorov’s theorem, it suffices to show

that if µnk

d−→ ν along some subsequence, then ν = µ.
For s = (s2, . . . , sm) with si > 0 and

∑m
i=2 si < 1, define

fs(L) =
m∏
i=2

Lsii ,

which is a continuous function of L. Let s1 = 1−
∑m

i=2 si ∈ (0, 1). By Hölder’s inequality,

EP1

[
fs(L)

−1/s1
]
= EP1

[
L
−s2/s1
2 · · ·L−sm/s1

m

]
≤

m∏
i=2

EP1 [L
−1
i ]si/s1 ≤ 1.

So the sequence of random variables fs(Ln) is uniformly integrable. Therefore, by weak convergence,

Eµ[T s11 T s22 · · ·T smm ] = EP1 [fs(L)] = lim
n→∞

EP1,n [fs(Ln)].

On the other hand, as µnk

d−→ ν,

EP1,nk
[fs(Lnk

)] = Eµnk
[T s11 · · ·T smm ] → Eν [T s11 · · ·T smm ].

Hence

Eµ[T s11 · · ·T smm ] = Eν [T s11 · · ·T smm ], ∀si > 0,
m∑
i=1

si = 1.

By uniqueness results for moment generating functions, this implies that µ̃ = ν̃, where µ̃ is the
restriction of µ to

∆0
m := {x ∈ Rm : xi > 0, 1Tx = m}, i.e. µ̃(A) = µ(A ∩∆0

m).

Since M is homogeneous, µ̃ = µ and µ(∆0
m) = 1. Since ν is a probability measure, it follows that

ν̃ = ν. Therefore µ = ν.
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6.10.3 Local asymptotic normality via likelihood ratios

Finally, we show that if (Pθ)θ∈Θ is QMD, then for any finite set I,

Mn =
{
P⊗n
θ0+

h√
n

}
h∈I

is asymptotically equivalent to
M =

{
N
(
h, I(θ0)

−1
)}

h∈I .

This is called local asymptotic normality.

Proof (likelihood ratio expansion). Check the likelihood ratio. In the limiting Gaussian model,
for Z ∼ N (0, I(θ0)

−1),

log
N (h, I(θ0)

−1)

N (0, I(θ0)−1)
(Z) = hT I(θ0)Z − 1

2h
T I(θ0)h,

with I(θ0)Z ∼ N (0, I(θ0)).
For the product model, define

Wn,i = 2
(√√√√pθ0+ h√

n
(Xi)

pθ0(Xi)
− 1
)
.

Then

log

p⊗n
θ0+

h√
n

p⊗nθ0
(Xn) = 2

n∑
i=1

log
(
1 + 1

2Wn,i

)
=

n∑
i=1

Wn,i − 1
4

n∑
i=1

W 2
n,i +

n∑
i=1

o(W 2
n,i).

By QMD,

EPθ0

[(
Wn,i − 1√

n
hT sθ0(Xi)

)2]
= o(1/n),

thus

VarPθ0

( n∑
i=1

Wn,i − 1√
n

n∑
i=1

hT sθ0(Xi)
)
≤ n · o(1/n) = o(1).

Also,

E
n∑
i=1

Wn,i = −n
∫ (√

pθ0+ h√
n
−√

pθ0
)2

dµ→ −1
4h

TE[sθ0s
T
θ0 ]h = −1

4h
T I(θ0)h.

Moreover,

n∑
i=1

W 2
n,i =

n∑
i=1

(
1√
n
hT sθ0(Xi)

)2
+ op(1)

=
1

n

n∑
i=1

hT sθ0(Xi)sθ0(Xi)
Th+ op(1)

P−→ hT I(θ0)h (by the LLN).
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Therefore,

log

p⊗n
θ0+

h√
n

p⊗nθ0
(Xn) = hT

( 1√
n

n∑
i=1

sθ0(Xi)
)
− 1

2h
T I(θ0)h+ op(1),

and
1√
n

n∑
i=1

sθ0(Xi)
d−→ N (0, I(θ0)) (by the CLT).

□

Combining Anderson’s lemma and the limiting Gaussian model above, and extending the previous
definitions to general models by taking the supremum over all finite submodels, we arrive at the
local asymptotic minimax theorem.



Lecture 7: Minimax lower bounds (Le Cam,
Fano, Assouad)

7.1 Setup and the minimax risk

We consider a statistical model {Pθ : θ ∈ Θ}. We observe X ∼ Pθ and use an estimator θ̂ = θ̂(X).
Let L(θ, a) ≥ 0 be a loss function.

The minimax risk is

r⋆ := inf
θ̂
sup
θ∈Θ

Eθ
[
L(θ, θ̂(X))

]
.

• Upper bound: construct an estimator θ̂ and bound supθ Eθ[L(θ, θ̂(X))].

• Lower bound: show that no estimator can beat a certain rate.

In the previous lecture (LAN), we focused on asymptotic analysis and exact constants. In this
lecture we focus on non-asymptotic minimax lower bounds, usually aiming for the optimal rate.

A high-level idea: for any prior π on Θ, the minimax risk dominates the Bayes risk,

r⋆ ≥ r⋆π, r⋆π := inf
θ̂
Eθ∼πEθ

[
L(θ, θ̂(X))

]
.

Finding a least favorable prior can be hard. Instead we use simple priors:

1. Binary prior: π = Unif{θ0, θ1} (Le Cam’s two-point method).

2. Multiple hypotheses: π = Unif{θ1, . . . , θm} (Fano, Assouad).

7.2 Le Cam’s two-point method

Definition 7.1 (Total variation). For two distributions P,Q on the same measurable space,

TV(P,Q) := sup
A

|P (A)−Q(A)|.

If P,Q have densities p, q w.r.t. a common dominating measure,

TV(P,Q) =
1

2

∫
|p− q|.

75
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Theorem 7.2 (Le Cam’s two-point lower bound). Let θ0, θ1 ∈ Θ and suppose the separation
condition

inf
a

(
L(θ0, a) + L(θ1, a)

)
≥ ∆.

Then

r⋆ ≥ inf
θ̂

1

2

(
Eθ0L(θ0, θ̂(X)) + Eθ1L(θ1, θ̂(X))

)
≥ ∆

2

(
1− TV(Pθ0 , Pθ1)

)
.

Proof. Fix any estimator θ̂ = θ̂(X). Let p0, p1 be densities of Pθ0 , Pθ1 . Then

Eθ0L(θ0, θ̂(X)) + Eθ1L(θ1, θ̂(X)) =

∫
L(θ0, θ̂(x))p0(x) dx+

∫
L(θ1, θ̂(x))p1(x) dx

≥
∫

inf
a

(
L(θ0, a) + L(θ1, a)

)
min{p0(x), p1(x)} dx

≥ ∆

∫
min{p0(x), p1(x)} dx.

Next,

min{p0, p1} =
1

2

(
p0 + p1 − |p0 − p1|

)
,

so ∫
min{p0, p1} =

1

2

∫
(p0 + p1)−

1

2

∫
|p0 − p1|

= 1− TV(Pθ0 , Pθ1).

Combining and dividing by 2 gives the claim.

7.2.1 A useful template

To lower bound r⋆ via Le Cam, pick θ0, θ1 such that

• Separation: infa(L(θ0, a) + L(θ1, a)) ≥ ∆.

• Indistinguishability: TV(Pθ0 , Pθ1) ≤ 1− Ω(1).

Often the indistinguishability condition is shown via stronger (more tractable) bounds such as

1. H2(Pθ0 , Pθ1) ≤ 2− Ω(1),

2. DKL(Pθ0 ||Pθ1) = O(1) or DKL(Pθ1 ||Pθ0) = O(1),

3. χ2(Pθ0 ||Pθ1) = O(1) or χ2(Pθ1 ||Pθ0) = O(1),

4. I(Θ;X) ≤ log 2− Ω(1) for Θ ∼ Unif{θ0, θ1} (exercise).

7.2.2 Example 1.1: normal mean estimation (one-dimensional)

Let X ∼ N (θ, σ2) with unknown θ ∈ R and known σ2. Take squared loss L(θ, θ̂) = (θ̂ − θ)2. The
minimax risk is

r⋆ = inf
θ̂
sup
θ∈R

Eθ
[
(θ̂(X)− θ)2

]
.
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Upper bound. Choosing θ̂(X) = X gives

sup
θ∈R

Eθ[(X − θ)2] = σ2,

so r⋆ ≤ σ2.

Lower bound (two points). Pick θ0 = 0 and θ1 = δ. For squared loss,

inf
a

(
(a− θ0)

2 + (a− θ1)
2
)
=

(θ1 − θ0)
2

2
=
δ2

2
,

so ∆ = δ2/2.
For Gaussians with equal variance,

1− TV
(
N (0, σ2),N (δ, σ2)

)
= 2
(
1− Φ

(
|δ|/(2σ)

))
,

where Φ is the standard normal CDF. Therefore Le Cam yields

r⋆ ≥ sup
δ∈R

∆

2

(
1− TV

)
= sup

δ∈R

δ2

4
· 2
(
1− Φ

(
|δ|/(2σ)

))
= sup

δ∈R

δ2

2

(
1− Φ

(
|δ|/(2σ)

))
≈ 0.332σ2.

(Compare with the exact value r⋆ = σ2 from Anderson’s lemma in Lecture 6.)

7.2.3 Example 1.2: binomial model

Let X ∼ Bin(n, θ) with unknown θ ∈ [0, 1]. Target:

r⋆ = inf
θ̂

sup
θ∈[0,1]

Eθ
[
(θ̂(X)− θ)2

]
.

Upper bound. Choose θ̂(X) = X/n. Then

Eθ
[(X

n
− θ
)2]

=
θ(1− θ)

n
≤ 1

4n
= O(1/n).

Lower bound (two points). Apply the two-point method with

θ0 =
1

2
, θ1 =

1

2
+

1

2
√
n
.

For squared loss the separation parameter is

∆ =
1

2
(θ1 − θ0)

2 =
1

2

( 1

2
√
n

)2
= Ω(1/n).

For indistinguishability, compute

DKL

(
Bin(n, θ0) ||Bin(n, θ1)

)
= nDKL

(
Bern(θ0) ||Bern(θ1)

)
=
n

2

(
(1 + 1√

n
) log(1 + 1√

n
) + (1− 1√

n
) log(1− 1√

n
)
)

=
n

2
·O(1/n) = O(1).

Thus Le Cam implies r⋆ = Ω(1/n), matching the O(1/n) upper bound.
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7.2.4 Example 1.3: functional estimation (entropy estimation)

Let X = (X1, . . . , Xn) be i.i.d. draws from an unknown pmf P = (p1, . . . , pk) on [k]. Consider the
loss

L(P, a) = |a−H(P )|,
where H(P ) = −

∑k
i=1 pi log pi is the entropy.

Known sharp result. (Jiao et al. 2015; Wu and Yang 2016)

r⋆ := inf
θ̂
sup
P

EP
[
|θ̂ −H(P )|

]
≍ k

n log n
+

log k√
n

(in particular when k ≲ n log n).

A simpler Ω((log k)/
√
n) lower bound via two points. Since

DKL(P
⊗n||Q⊗n) = nDKL(P ||Q),

the two-point method motivates the optimization problem

max |H(P0)−H(P1)| s.t. DKL(P0||P1) ≤
c

n
.

Try

P0 =
(1
2
,

1

2(k − 1)
, . . . ,

1

2(k − 1)︸ ︷︷ ︸
k−1 times

)
,

P1 =
(1− ε

2
,

1 + ε

2(k − 1)
, . . . ,

1 + ε

2(k − 1)︸ ︷︷ ︸
k−1 times

)
, ε ∈ (0, 1/2).

KL computation. Only two types of coordinates appear, so

DKL(P0||P1) =
1

2
log
( 1/2

(1− ε)/2

)
+ (k − 1) · 1

2(k − 1)
log
( 1/(2(k − 1))

(1 + ε)/(2(k − 1))

)
=

1

2
log
( 1

1− ε

)
+

1

2
log
( 1

1 + ε

)
=

1

2
log
( 1

1− ε2

)
= O(ε2).

Thus DKL(P0||P1) = O(1/n) if ε = O(1/
√
n).

Entropy difference. Compute

H(P0) = −1

2
log
(1
2

)
− (k − 1) · 1

2(k − 1)
log
( 1

2(k − 1)

)
=

1

2
log 2 +

1

2
log(2(k − 1)).

Also

H(P1) = −1− ε

2
log
(1− ε

2

)
− (k − 1) · 1 + ε

2(k − 1)
log
( 1 + ε

2(k − 1)

)
=

1− ε

2
log
( 2

1− ε

)
+

1 + ε

2
log
(2(k − 1)

1 + ε

)
.
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Therefore

|H(P0)−H(P1)| =
∣∣∣1
2
log 2 +

1

2
log(2(k − 1))− 1− ε

2
log
( 2

1− ε

)
− 1 + ε

2
log
(2(k − 1)

1 + ε

)∣∣∣
≳ ε log k.

Choosing ε ≍ 1/
√
n yields

r⋆ = Ω
( log k√

n

)
.

(The other term Ω
(
k/(n log n)

)
requires a more involved two-point construction; this is the topic of

Lecture 8.)

7.2.5 Example 1.4: two-armed bandit (Gaussian rewards)

Let θ = (µ1, µ2) ∈ [0, 1]2. For t ∈ [T ], the learner pulls an arm πt ∈ {1, 2} based on past history
(πt−1, rt−1), and observes reward

rt ∼ N (µπt , 1).

The (expected) regret is

RT (π) := T max{µ1, µ2} −
T∑
t=1

µπt .

Let ∆ := |µ1 − µ2| be the gap. We will show

r⋆T := inf
π

sup
µ1,µ2: |µ1−µ2|≥∆

Eµ1,µ2 [RT (π)] = Ω
((1 ∨ log(T∆2)

∆

)
∧ T∆

)
.

In particular, choosing ∆ ≍ 1/
√
T gives the usual lower bound Ω(

√
T ).

Proof. First, by the chain rule for KL divergence (exercise),

DKL(Pµ1,µ2 ||Pµ′1,µ′2) =
T∑
t=1

EPµ1,µ2

[(µ1 − µ′1)
2

2
1{πt = 1}+ (µ2 − µ′2)

2

2
1{πt = 2}

]
=

(µ1 − µ′1)
2

2
E[T1] +

(µ2 − µ′2)
2

2
E[T2],

where Ti :=
∑T

t=1 1{πt = i} is the total number of pulls of arm i.
Motivated by this, choose two points

(µ1, µ2) = (∆, 0), (µ′1, µ
′
2) = (∆, 2∆).

The separation parameter for regret is T∆ (the gap is ∆ in either model). Moreover,

DKL(Pµ1,µ2 ||Pµ′1,µ′2) = 2∆2 E1[T2],

where E1 := EP∆,0
. Le Cam’s two-point bound then gives

r⋆T = Ω
(
T∆ exp

(
− 2∆2E1[T2]

))
,

using the inequality (1− TV(P,Q)) ≥ 1
2 exp(−DKL(P ||Q)).
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Note that E1[T2] depends on the policy π, and the above is useful only if E1[T2] is small. A
different lower bound comes from evaluating the regret directly under (∆, 0):

r⋆T ≥ E1[RT (π)] = ∆E1[T2].

Combining,

r⋆T = Ω
(
max

{
∆E1[T2], T∆exp(−2∆2E1[T2])

})
= Ω

(
min
t∈[0,T ]

max
{
∆t, T∆exp(−2∆2t)

})
= Ω

((1 ∨ log(T∆2)

∆

)
∧ T∆

)
.

7.2.6 Example 1.5: multi-armed bandit

Same observation model, but with K arms. Let θ = (µ1, . . . , µK) ∈ [0, 1]K and

RT (π) = T max
i∈[K]

µi −
T∑
t=1

µπt .

We will show

r⋆ := inf
π

sup
θ

Eθ[RT (π)] = Ω(
√
KT ).

(Interestingly, two points suffice for this example!)

Proof. Choose

θ1 = (∆, 0, 0, . . . , 0),

and for each i = 2, . . . ,K let

θ2,i = (∆, 0, . . . , 0, 2∆︸︷︷︸
i-th coordinate

, 0, . . . , 0).

For each pair (θ1, θ2,i), the separation parameter for regret is always T∆. Moreover, for any policy
π,

DKL(Pθ1 ||Pθ2,i) = 2∆2 E1[Ti], Ti =

T∑
t=1

1{πt = i}.

Key observation: since
∑K

i=2 E1[Ti] ≤ T , there must exist some i0 such that E1[Ti0 ] ≤ T/(K − 1).
Applying the two-point argument to (θ1, θ2,i0) and choosing ∆ ≍

√
K/T makes DKL(Pθ1 ||Pθ2,i0 ) =

O(1). Therefore

r⋆ = Ω(T∆) = Ω(
√
KT ).
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7.2.7 Why two points may fail in high dimensions

Consider normal mean estimation in n dimensions:

X ∼ N (θ, σ2In), L(θ, θ̂) =
∥∥∥θ̂ − θ

∥∥∥2
2
.

The two-point method gives at best

r⋆ ≥ sup
θ0,θ1

∥θ0 − θ1∥22
2

(
1− Φ

(∥θ0 − θ1∥2
2σ

))
≲ σ2.

This does not capture the dependence on dimension n. (Recall that r⋆ = nσ2 by Anderson’s lemma.)
At a high level: testing between two hypotheses does not capture the true difficulty of high-

dimensional problems.

7.3 Testing multiple hypotheses

7.3.1 Challenges in high dimensions

• Separation: we may want different separation structures than a single ∆ for a pair of points.

• Indistinguishability: in binary testing, 1 − TV(P,Q) tightly controls the optimal testing
error. In multiple-hypotheses problems, the analogous tight quantity is often not tractable, and
we need further lower bounds.

7.3.2 Pairwise separation: Fano’s inequality

Theorem 7.3 (Fano-type lower bound). Let θ1, . . . , θm ∈ Θ satisfy the pairwise separation condition

min
i ̸=j

inf
a

(
L(θi, a) + L(θj , a)

)
≥ ∆.

Let π = Unif{θ1, . . . , θm}, and let Θ ∼ π, X | Θ ∼ PΘ. Then

r⋆π ≥ ∆

2

(
1− I(Θ;X) + log 2

logm

)
.

Before proving it, we establish a useful “golden formula” for mutual information.

Lemma 7.4 (Golden formula for mutual information). For any pair (X,Y ),

I(X;Y ) = min
QY

DKL(PXY ||PXQY ) = min
QY

EPX

[
DKL(PY |X ||QY )

]
.

Proof. Simply note that for any QY ,

I(X;Y ) = DKL(PXY ||PXQY )−DKL(PY ||QY ).

Taking QY = PY shows the minimum equals I(X;Y ).

Proof of Fano. Fix any estimator θ̂ = θ̂(X). Consider the indicator map

(Θ, X) 7→ Z := 1
{
L(Θ, θ̂(X)) < ∆/2

}
.

Under PΘX , Z ∼ Bern(p) with p := P
(
L(Θ, θ̂(X)) < ∆/2

)
. Under PΘPX (independent Θ and X),

define q := PΘ∼π,X∼PX
(Z = 1).
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Step 1: bound q by the separation condition. Fix x and let a = θ̂(x). Because for any i ≠ j
we have infa(L(θi, a) + L(θj , a)) ≥ ∆, there cannot be two distinct indices i ̸= j such that both
L(θi, a) < ∆/2 and L(θj , a) < ∆/2. Hence for any fixed action a, at most one hypothesis can satisfy
L(θi, a) < ∆/2. Since Θ ∼ Unif{θ1, . . . , θm} is independent of X under PΘPX , this implies

q ≤ 1

m
.

Step 2: data processing. By the data processing inequality,

DKL

(
Bern(p) ||Bern(q)

)
≤ I(Θ;X).

Since q ≤ 1/m, one can bound the Bernoulli KL to obtain

p ≤ I(Θ;X) + log 2

logm
,

equivalently

P
(
L(Θ, θ̂(X)) ≥ ∆/2

)
≥ 1− I(Θ;X) + log 2

logm
.

Step 3: Markov/thresholding. Finally,

E[L(Θ, θ̂(X))] ≥ ∆

2
P
(
L(Θ, θ̂(X)) ≥ ∆/2

)
,

so the claimed lower bound follows after taking the infimum over θ̂.

7.3.3 Generalized Fano

The previous argument yields a more general statement.

Theorem 7.5 (Generalized Fano). For any prior π on Θ and any ∆ > 0,

r⋆π ≥ ∆
(
1− I(Θ;X) + log 2

log(1/P0)

)
, Θ ∼ π, X | Θ ∼ PΘ,

where

P0 := sup
a
π
(
L(Θ, a) < ∆

)
is the small-ball probability.

The classical Fano inequality is a special case with π = Unif{θ1, . . . , θm} and a pairwise separation
condition.

7.3.4 Additive separation: Assouad’s lemma

Theorem 7.6 (Assouad). For a hypercube parameterization u ∈ {±1}d, associate θu ∈ Θ. Suppose

inf
a

(
L(θu, a) + L(θu′ , a)

)
≥ ∆ ·

d∑
i=1

1{ui ̸= u′i}.
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Let π = Unif{θu : u ∈ {±1}d}. Then

r⋆π ≥ ∆

4

d∑
i=1

(
1− TV(Pi,+, Pi,−)

)
,

where

Pi,+ :=
1

2d−1

∑
u:ui=+1

Pθu , Pi,− :=
1

2d−1

∑
u:ui=−1

Pθu .

The following corollaries are often used.

Corollary 7.7 (Classical Assouad). Let u, u′ be neighbors if they differ in exactly one coordinate.
Then

r⋆π ≥ d∆

4

(
1− max

u,u′ neighbors
TV(Pθu , Pθu′ )

)
.

Corollary 7.8 (Averaged-neighbor version). Let u⊕ i denote u with the i-th bit flipped. Then

r⋆π ≥ d∆

4

(
1− Eu∼Unif({±1}d)Ei∼Unif([d])TV(Pθu , Pθu⊕i

)
)
.

Proof of Assouad. Fix any estimator θ̂. Construct an estimate û = (û1, . . . , ûd) ∈ {±1}d by

û := argmin
u∈{±1}d

L(θu, θ̂).

Then for any u,

L(θu, θ̂) ≥
L(θu, θ̂) + L(θû, θ̂)

2

≥ ∆

2

d∑
i=1

1{ui ̸= ûi}.

Averaging over u uniformly,

1

2d

∑
u

Eθu [L(θu, θ̂)] ≥
∆

2

d∑
i=1

1

2d

∑
u

Pθu(ûi ̸= ui)

=
∆

4

d∑
i=1

(
Pi,+(ûi ̸= +1) + Pi,−(ûi ̸= −1)

)
≥ ∆

4

d∑
i=1

(
1− TV(Pi,+, Pi,−)

)
,

where the last step applies Le Cam’s two-point bound to testing Pi,+ vs Pi,−. Taking the infimum

over θ̂ yields the theorem.

Remark 7.9. (Exercise.) Show that

1

d

d∑
i=1

TV(Pi,+, Pi,−) = 1− Ω(1) ⇐⇒ 1

d

d∑
i=1

I(Ui;X) = log 2− Ω(1)

for U ∼ Unif({±1}d). Also note that I(U ;X) ≥
∑d

i=1 I(Ui;X), so under a hypercube construction
Assouad is no weaker than Fano.
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7.4 High-dimensional examples

7.4.1 Example 2.1: normal mean model (high dimensions)

Let X ∼ N (θ, σ2In) and loss L(θ, θ̂) =
∥∥∥θ̂ − θ

∥∥∥2
2
. We show

r⋆ = Ω(nσ2).

Proof 1 (Fano via packing). Construct a subset Θ0 ⊂ {±δ}n (with δ to be chosen) such that

• m := |Θ0| is large enough,

• minθ ̸=θ′∈Θ0 ∥θ − θ′∥22 ≥ δ2n/5.

By the Gilbert–Varshamov bound below, we can choose m = exp(Ω(n)). Then for squared loss,

min
θ ̸=θ′∈Θ0

inf
a

(
∥θ − a∥22 +

∥∥θ′ − a
∥∥2
2

)
=

1

2
min

θ ̸=θ′∈Θ0

∥∥θ − θ′
∥∥2
2
≥ δ2n

10
=: ∆.

Using the golden formula for mutual information,

I(Θ;X) ≤ max
θ∈Θ0

DKL

(
N (θ, σ2In) || N (0, σ2In)

)
= max

θ∈Θ0

∥θ∥22
2σ2

=
nδ2

2σ2
.

Fano then gives

r⋆ = Ω
(
δ2n
(
1− nδ2/(2σ2) + log 2

Ω(n)

))
.

Choosing δ ≍ σ yields r⋆ = Ω(nσ2).

7.4.2 Gilbert–Varshamov bound

Lemma 7.10 (Gilbert–Varshamov). There exists a set A ⊂ {±1}n such that

min
u̸=u′∈A

n∑
i=1

1{ui ̸= u′i} ≥ d,

and

m := |A| ≥ 2n∑d−1
j=0

(
n
j

) = 2n(1−h2(d/n))+o(n),

where h2(x) = x log2
1
x + (1− x) log2

1
1−x is the binary entropy.

Proof. (Volume argument.) Fix u ∈ {±1}n. The number of u′ ∈ {±1}n within Hamming distance
d− 1 of u equals ∣∣∣{u′ ∈ {±1}n :

n∑
i=1

1{ui ̸= u′i} ≤ d− 1
}∣∣∣ = d−1∑

j=0

(
n

j

)
.

So if we have selected fewer than 2n/
∑d−1

j=0

(
n
j

)
points, there must exist a new point at Hamming

distance at least d from all selected ones. Greedily adding such points constructs a set A of the
claimed size.
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Proof 2 (generalized Fano on the full hypercube). Let Θ ∼ Unif({±δ}n). Then I(Θ;X) ≤
nδ2/(2σ2). Pick

∆ =
nδ2

12
.

The small-ball probability satisfies

P0 = sup
a
π(∥Θ− a∥22 < ∆) ≤ sup

θ̂∈{±δ}n
π(
∥∥∥Θ− θ̂

∥∥∥2
2
< 4∆),

where θ̂ can be taken as a nearest hypercube point to a. Now,
∥∥∥Θ− θ̂

∥∥∥2
2
= 4δ2 dH(Θ, θ̂), so the

event
∥∥∥Θ− θ̂

∥∥∥2
2
< 4∆ = nδ2/3 implies dH(Θ, θ̂) < n/12. Thus

P0 ≤ 2−n
⌊n/12⌋∑
j=0

(
n

j

)
= 2−Ω(n) (by Stirling).

Applying generalized Fano again gives r⋆ = Ω(nσ2) for δ ≍ σ.

Proof 3 (Assouad). For δ > 0, let θu = δu for u ∈ {±1}n. For neighbors u, u′, we have
∥θu − θu′∥22 = 4δ2, hence

inf
a

(
∥θu − a∥22 + ∥θu′ − a∥22

)
=

1

2
∥θu − θu′∥22 = 2δ2.

Also,

1− max
u,u′ neighbors

TV
(
N (θu, σ

2In),N (θu′ , σ
2In)

)
= 2
(
1− Φ(δ/σ)

)
.

Choosing δ = σ and applying Assouad yields r⋆ = Ω(nσ2).

7.4.3 Example 2.2: learning theory (VC lower bounds)

Let (X1, Y1), . . . , (Xn, Yn) ∼ PXY i.i.d. with Y ∈ {0, 1}. Let F be a class of functions X → {0, 1}
with VC dimension d. For a trained classifier f̂ based on the sample, define the excess risk

ER(f̂) := PXY (Y ̸= f̂(X))−min
f∈F

PXY (Y ̸= f(X)).

We will show that for n ≥ d,

inf
f̂

sup
PXY

E[ER(f̂)] = Ω
(√d

n

)
(agnostic setting),

and

inf
f̂

sup
PXY : ∃f∈F , Y=f(X) PXY -a.s.

E[ER(f̂)] = Ω
(d
n

)
(realizable setting).

Recall (VC shattering). VCdim(F) = d implies that there exist x1, . . . , xd ∈ X such that for
every u ∈ {±1}d there exists fu ∈ F with fu(xi) = ui for all i ∈ [d]. (Here we encode labels as ±1
for convenience.)



86 Lecture 7: Minimax lower bounds (Le Cam, Fano, Assouad)

Agnostic case (Assouad). Fix x1, . . . , xd and the functions {fu}u∈{±1}d . For each u ∈ {±1}d,
construct Pu = PXY,u as follows:

• X ∼ Unif{x1, . . . , xd}.

• Y | X = xi equals ui with probability 1
2 + δ and equals −ui with probability 1

2 − δ.

Separation. For all u,

min
f∈F

Pu(f(X) ̸= Y ) =
1

2
− δ.

For any f , writing ER(f, Pu) = Pu(Y ̸= f(X))− (12 − δ), one can check that for all u, u′,

ER(f, Pu) + ER(f, Pu′) = Pu(Y ̸= f(X)) + Pu′(Y ̸= f(X))− 2(12 − δ)

≥
d∑
i=1

1

d

(
1{ui ̸= u′i} · 1 + 1{ui = u′i} · (1− 2δ)

)
− (1− 2δ)

=
2δ

d

d∑
i=1

1{ui ̸= u′i}.

Thus Assouad holds with ∆ = 2δ/d.

Indistinguishability. For neighbors u, u′,

DKL(P
⊗n
u ||P⊗n

u′ ) = nDKL(Pu||Pu′) = n · 1
d
DKL

(
Bern(12 + δ) ||Bern(12 − δ)

)
= O

(nδ2
d

)
.

Choosing δ ≍
√
d/n makes this O(1). Assouad then yields

inf
f̂

sup
PXY

E[ER(f̂)] = Ω(d∆) = Ω
(√d

n

)
.

Realizable case (Assouad). Now define a different family {Pu} where the Bayes error within F
is zero. Let u ∈ {±1}d−1 (we vary labels only on x2, . . . , xd). Define Pu by

• X = x1 w.p. 1− (d− 1)/n, and X = xi w.p. 1/n for each 2 ≤ i ≤ d.

• Y | X = xi equals the prescribed label (deterministic): Y = ui for 2 ≤ i ≤ d (and fix Y = +1
on x1).

Clearly minf∈F Pu(f(X) ̸= Y ) = 0 for all u. A similar analysis gives a separation parameter
∆ ≍ 1/n. For neighbors u′ = u⊕ i (flipping the label at some xi, i ≥ 2), we have

TV(P⊗n
u , P⊗n

u′ ) ≤ P(xi appears in X1, . . . , Xn) = 1− (1− 1/n)n = 1− Ω(1).

Therefore Assouad yields

inf
f̂

sup
realizable PXY

E[ER(f̂)] = Ω((d− 1)∆) = Ω
(d
n

)
.

(See homework for further generalizations.)
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7.5 Assouad in sequential settings: a communication lower bound

Assouad’s lemma is also surprisingly flexible in sequential settings.

7.5.1 Example 2.3: distribution estimation under sequential communication
protocols

Let P = (p1, . . . , pk) be an unknown pmf on [k]. We observe X1, . . . , Xn
iid∼ P . However, the

estimator P̂ must be formed via a sequential distributed protocol: node t sees Xt and sends a
message Yt ∈ [ℓ] to a central server, where Yt can depend on (Xt, Y

t−1) (a protocol Π to be designed).
Assume a communication constraint ℓ ≤ k.

(X1)

(X2)

...

(Xn)

central server P̂

Y1 ∈ [ℓ]

Y2 ∈ [ℓ]

Yn ∈ [ℓ]

distributed nodes
protocol Π

We will show

r⋆ := inf
(P̂ ,Π)

sup
P

EP
[
TV(P, P̂ )

]
= Ω

( k√
nℓ

)
(e.g. when k ≤ ℓ and n ≥ k2/ℓ).

Proof. Without loss of generality assume k is even. For u ∈ {±1}k/2, construct

Pu =
(1 + δu1

k
,
1− δu1

k
, . . . ,

1 + δuk/2

k
,
1− δuk/2

k

)
, δ ∈ (0, 1/2) (to be chosen).

It is easy to check that for the loss L(P, P̂ ) = TV(P, P̂ ), this hypercube construction has separation
parameter ∆ = Ω(δ/k).

We use Corollary 2 of Assouad and upper bound the averaged-neighbor total variation distance
between the message distributions. Let u⊕ i denote u with the i-th bit flipped. Write PY n|u for the
law of Y n under Pu and protocol Π. Then

EuEiTV(PY n|u, PY n|u⊕i) ≤
√
EuEiTV(PY n|u, PY n|u⊕i)2 (Jensen)

≤
√
EuEiH2(PY n|u, PY n|u⊕i) (TV ≤ H)

≤ C

√√√√ n∑
t=1

EuEiEPY t−1|u

[
H2
(
PYt|Y t−1,u, PYt|Y t−1,u⊕i

)]
,

where the last step uses Jayram’s subadditivity of H2 (Lecture 3).
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Next, we upper bound the conditional Hellinger distance. Since H2(P,Q) ≤ χ2(P ||Q),

Ei
[
H2
(
PYt|Y t−1,u, PYt|Y t−1,u⊕i

)]
≤ Ei

[
χ2
(
PYt|Y t−1,u⊕i ||PYt|Y t−1,u

)]
.

Write
PYt|Y t−1,u =

∑
x∈[k]

PYt|Y t−1,Xt=x Pu(x).

Since δ ≤ 1/2, we have Pu(x) ≥ (1− δ)/k ≥ 1/(2k) for all x, so

PYt|Y t−1,u(y) ≥
1

2k

∑
x∈[k]

PYt|Y t−1,Xt=x(y).

Therefore

χ2
(
PYt|Y t−1,u⊕i||PYt|Y t−1,u

)
≤
∑
y∈[ℓ]

(
PYt=y|Y t−1,u⊕i − PYt=y|Y t−1,u

)2
1
2k

∑
x∈[k] PYt=y|Y t−1,Xt=x

.

Now note that u⊕ i differs from u only on the pair (2i− 1, 2i), and the change in the pmf is ±2δ/k
on those two coordinates. Thus

PYt=y|Y t−1,u⊕i − PYt=y|Y t−1,u

=
2δ

k

(
PYt=y|Y t−1,Xt=2i−1 − PYt=y|Y t−1,Xt=2i

)
.

Plugging this into the previous display,

χ2
(
PYt|Y t−1,u⊕i||PYt|Y t−1,u

)
≤ 2k

(2δ
k

)2 ∑
y∈[ℓ]

(
PYt=y|Y t−1,Xt=2i−1 − PYt=y|Y t−1,Xt=2i

)2∑
x∈[k] PYt=y|Y t−1,Xt=x

≤ 8δ2

k

∑
y∈[ℓ]

PYt=y|Y t−1,Xt=2i−1 + PYt=y|Y t−1,Xt=2i∑
x∈[k] PYt=y|Y t−1,Xt=x

,

where we used (a− b)2 ≤ a+ b. Averaging over i ∼ Unif([k/2]),

Eiχ2
(
PYt|Y t−1,u⊕i||PYt|Y t−1,u

)
≤ 8δ2

k

∑
y∈[ℓ]

Ei
[
PYt=y|Y t−1,Xt=2i−1 + PYt=y|Y t−1,Xt=2i

]∑
x∈[k] PYt=y|Y t−1,Xt=x

=
8δ2

k

∑
y∈[ℓ]

2
k

∑
x∈[k] PYt=y|Y t−1,Xt=x∑
x∈[k] PYt=y|Y t−1,Xt=x

=
16δ2

k2

∑
y∈[ℓ]

1 = O
(δ2ℓ
k2

)
.

Hence

Ei
[
H2
(
PYt|Y t−1,u, PYt|Y t−1,u⊕i

)]
≤ O

(δ2ℓ
k2

)
.

Putting everything together,

EuEiTV(PY n|u, PY n|u⊕i) ≤ O
(√nδ2ℓ

k2

)
.
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Assouad’s lemma (Corollary 2) then yields

r⋆ = Ω
(
δ
(
1−O

(√nδ2ℓ

k2

)))
.

Choosing δ = k/
√
nℓ (and ensuring δ < 1/2) gives

r⋆ = Ω
( k√

nℓ

)
.

7.6 Special topic: interactive Le Cam and the DEC

7.6.1 Model for interactive decision making

We consider an interactive/sequential setting with

• an unknown true model M⋆ in a given model class M (e.g. the reward distributions of all
arms),

• at each round t = 1, . . . , T :

1. learner chooses an action at ∈ A;

2. nature reveals reward rt ∈ [0, 1] and possibly an additional observation ot, with

E[rt | at = a] = rM
⋆
(a), (rt, ot) ∼M⋆(at).

• learner aims to minimize the regret

RT :=

T∑
t=1

(
rM

⋆

⋆ − rM
⋆
(at)

)
, rM⋆ := max

a∈A
rM (a).

Example (multi-armed bandit). Take A = [K] and

Mµ(a) = Bern(µa), rM
µ
(a) = µa, M = {Mµ : µ ∈ [0, 1]K}.

Question. What is a general two-point lower bound for RT ?

Idea. Let

gM (a) := rM⋆ − rM (a)

denote the gap of action a under model M . A naive two-point lower bound might suggest

inf
{at}

sup
M⋆∈M

E[RT ] ≳ T · sup
M0,M1∈M

{
inf
a∈A

(
gM0(a) + gM1(a)

)
: H2(M0,M1) ≤ c/T

}
,

for small c > 0. However, several issues arise.
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7.6.2 Challenges

1. The metric infa(g
M0(a) + gM1(a)) can be too pessimistic. If a policy uses an action distribution

p under M0, then Ea∼p[gM1(a)] may be a better separation metric.

2. H2(M0,M1) is not well-defined in the interactive setting, since the distribution of (rt, ot) depends
on the chosen at. One should instead consider an averaged quantity such as Ea∼p[H2(M0(a),M1(a))].

3. Where should we take the infimum over p (learner as the min player)?

• supM0,M1
infp can be too small (same reason as item 1).

• infp supM0,M1
can be too large, since the learner can adapt p sequentially.

7.6.3 Definition: constrained decision-to-estimation coefficient (DEC)

Definition 7.11 (DEC). The constrained decision-to-estimation coefficient is defined as

decε(M) := sup
M̄

inf
p∈∆(A)

sup
M∈M∪{M̄}

{
Ea∼p[gM (a)] : Ea∼p[H2(M(a), M̄(a))] ≤ ε2

}
.

• This is a sup–inf–sup structure: first choose a reference model M̄ , the learner chooses an action
distribution p based on M̄ , then nature chooses an alternative model M .

• The separation condition is with respect to the average under p.

• The reference model M̄ does not need to belong to M.

7.6.4 Examples

Example 3.1 (two-armed bandit). For two-armed Bernoulli bandit (Bern(µ1),Bern(µ2)) with
|µ1 − µ2| ≥ ∆, choose the reference

M̄ = (Bern(12 +∆),Bern(12)),

and consider alternatives

M ∈
{
(Bern(12 +∆),Bern(12)), (Bern(

1
2 +∆),Bern(12 +∆+ ε))

}
.

A calculation gives

decε(M) ≥ inf
p2∈[0,1]

max
{
p2∆, (1− p2)

( ε
p2

−∆
)
+ ε
}
= Ω

(
∆ ∧ ε2

∆

)
.

Example 3.2 (multi-armed bandit). For M = {
∏K
i=1Bern(µi) : µi ∈ [0, 1]}, we may choose

M̄ =
∏K
i=1Bern(1/2). For any distribution p on [K], pick i0 = argmini pi and set M(i0) =

Bern(1/2 + ε
√
K). This gives

decε(M) = Ω(ε
√
K), when ε

√
K = O(1).
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7.6.5 DEC lower bound for regret

Theorem 7.12 (DEC lower bound). There exist absolute constants c, C > 0 such that

inf
{at}

sup
M⋆∈M

EM⋆ [RT ] = Ω
(
T
(
decε(M)− Cε

)
+

)
, ε =

√
c

T
.

Specializing to the previous examples gives a lower bound Ω(1/∆) for Example 3.1 when
∆ ≳ 1/

√
T , and Ω(

√
KT ) for T ≥ K.

7.6.6 Proof sketch (simpler case M̄ ∈ M)

(Foster, Golowich, Han 2023). Let ∆ := decε(M).
Let pt(· | Ht−1) denote the learner’s action distribution at time t. Define the learner’s average

play under M̄ by

pM̄ := EM̄
[ 1
T

T∑
t=1

pt(· | Ht−1)
]
.

Let M be an inner maximizer under p = pM̄ , and define the learner’s average play under M by

pM := EM
[ 1
T

T∑
t=1

pt(· | Ht−1)
]
.

By definition of decε, we have

Ea∼pM̄ [gM (a)] ≥ ∆, (1)

Ea∼pM̄ [H2(M(a), M̄(a))] ≤ ε2. (2)

By way of contradiction, assume that

Ea∼pM [gM (a)] ≤ ∆/100, (3)

Ea∼pM̄ [gM̄ (a)] ≤ ∆/100. (4)

We introduce two lemmas.

Lemma 7.13 (Lemma 1). For c > 0 small enough (hence ε =
√
c/T small enough),

TV(pM , pM̄ ) ≤ 0.1.

Proof. Let PM
rT ,oT

and P M̄
rT ,oT

denote the law of the full interaction sequence. By data processing,

TV(pM , pM̄ )2 ≤ TV(PMrT ,oT , P
M̄
rT ,oT )

2 ≤ H2(PMrT ,oT , P
M̄
rT ,oT ).

Using subadditivity of H2 in sequential models,

H2(PMrT ,oT , P
M̄
rT ,oT ) ≤ C

T∑
t=1

EM̄
[
H2
(
PMrt,ot|Ht−1 , P

M̄
rt,ot|Ht−1

)]
= C

T∑
t=1

EM̄
[
H2(M(at), M̄(at))

]
= CT Ea∼pM̄ [H2(M(a), M̄(a))] ≤ CTε2 ≤ 0.1,

where the last step used (2) and the choice ε =
√
c/T .
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Lemma 7.14 (Lemma 2).

Ea∼pM̄
∣∣rM (a)− rM̄ (a)

∣∣ ≤ ε.

(This step critically uses that the rewards are observed.)

Proof. As rt ∈ [0, 1], we have∣∣rM (a)− rM̄ (a)
∣∣ ≤ TV(M(a), M̄(a)) ≤ H(M(a), M̄(a)).

Taking expectation over a ∼ pM̄ and using Jensen,

Ea∼pM̄
∣∣rM (a)− rM̄ (a)

∣∣ ≤ Ea∼pM̄H(M(a), M̄(a)) ≤
√

Ea∼pM̄H2(M(a), M̄(a)) ≤ ε,

where the last step used (2).

Contradiction argument. Let

AM := {a : gM (a) ≤ ∆/10}.

1. By Lemma 2 and (1),

∆ ≤ rM⋆ − Ea∼pM̄ [rM (a)]

≤ rM⋆ − Ea∼pM̄ [rM̄ (a)] + ε

= rM⋆ − rM̄⋆ + Ea∼pM̄ [gM̄ (a)] + ε

≤ rM⋆ − rM̄⋆ +∆/100 + ε (by (4)).

Hence

rM⋆ − rM̄⋆ ≥ 99∆/100− ε.

2. By (3) and Markov’s inequality,

pM (AM ) = Pa∼pM (gM (a) ≤ ∆/10) ≥ 9/10.

3. By item 2 and Lemma 1,

pM̄ (AM ) ≥ 4/5.

4. By item 1 and item 3,

Ea∼pM̄
[
(rM (a)− rM̄ (a))1{a ∈ AM}

]
≥ (rM⋆ −∆/10− rM̄⋆ ) pM̄ (AM )

≥ (89∆/100− ε) · 4
5
.

However, Lemma 2 states that the left-hand side is at most ε. This is a contradiction when
∆ > Cε.

Therefore, at least one of (3) or (4) must fail, implying a regret lower bound of order T (∆−Cε)+
(up to constants).
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General M̄ (Glasgow and Rakhlin 2023). For M̄ /∈ M, (4) is no longer a consequence of
small regret. A stopping-time argument fixes this. Let ALG be the original learner’s algorithm, and
define ALG′ as follows: ALG′

t = ALGt as long as∑
s<t

gM̄ (as) <
∆T

100
,

and ALG′ always pulls
a⋆ = argmax

a
rM̄ (a)

otherwise. Now redefine pM̄ ,M, pM using ALG′. Then (1), (2), (4) and Lemmas 1–2 still hold.
Let τ > 0 be the stopping time of

τ∑
t=1

gM̄ (at) ≥
∆T

100
.

By Lemma 2 and Markov’s inequality, with probability at least 0.9 under PALG′

M̄
,

1

T

T∑
t=1

∣∣rM (at)− rM̄ (at)
∣∣ ≤ 10ε.

On this event,

1

T

T∧τ∑
t=1

gM (at) =
1

T

T∧τ∑
t=1

(
rM⋆ − rM (at)

)
≥ 1

T

T∧τ∑
t=1

(
rM⋆ − rM̄ (at)

)
− 1

T

T∑
t=1

∣∣rM (at)− rM̄ (at)
∣∣

≥ 1

T

T∧τ∑
t=1

gM̄ (at) +
T ∧ τ
T

(
rM⋆ − rM̄⋆

)
− 10ε

≥ 1

T

T∧τ∑
t=1

gM̄ (at) +
T ∧ τ
T

(
0.99∆− ε

)
− 10ε. (5)

Here the last step used item 1 above, i.e. rM⋆ − rM̄⋆ ≥ 99∆/100− ε.

• If τ > T , then by (5),

1

T

T∧τ∑
t=1

gM (at) ≥ 0.99∆− 11ε = Ω(∆) for ∆ > Cε.

• If τ < T , then by definition of τ ,

1

T

T∧τ∑
t=1

gM̄ (at) =
1

T

τ∑
t=1

gM̄ (at) ≥
∆

100
,

so (5) yields

1

T

T∧τ∑
t=1

gM (at) ≥
∆

100
− 10ε = Ω(∆) for ∆ > Cε.
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Therefore,

PALG′

M̄

( 1
T

T∧τ∑
t=1

gM (at) = Ω(∆)
)
≥ 0.9

in both cases. Since TV(PALG′

M̄
, PALG′

M ) ≤ 0.1 by Lemma 1, we get

PALG′

M

( 1
T

T∧τ∑
t=1

gM (at) = Ω(∆)
)
≥ 0.8.

Finally, since ALG′ and ALG coincide up to time T ∧ τ , this gives the claimed result.

Remark 7.15. In Glasgow and Rakhlin (2023), this stopping-time argument establishes a stronger
high-probability statement: for any fixed c0 > 0,

inf
{at}

sup
M⋆

PM⋆

(R(T )
T

>
(
(1− c0) decε(ν)− Cε

)
+

)
= Ω(1), ε =

√
c

T
,

where c, C depend on c0.



Lecture 8: Advanced Le Cam’s Method

8.1 General hypothesis testing

We observe X ∼ Pθ, where θ ∈ Θ. We aim to test

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1.

Remark 8.1. Simple hypothesis: one of Θ0,Θ1 is a singleton. Composite hypothesis: Θ0 and/or Θ1

is a set.

In the composite setting, for a test T : X → {0, 1},

Type I error = sup
θ∈Θ0

Pθ(T = 1), Type II error = sup
θ∈Θ1

Pθ(T = 0).

Theorem 8.2 (Composite testing via least favorable priors).

inf
T

(
sup
θ∈Θ0

Pθ(T = 1) + sup
θ∈Θ1

Pθ(T = 0)
)
= 1− inf

π0∈P(Θ0)
π1∈P(Θ1)

TV
(
Eθ∼π0 [Pθ], Eθ∼π1 [Pθ]

)
.

Remark 8.3. Last lecture, the basic Le Cam two-point method reduces estimation problems to
hypothesis testing between two simple hypotheses. However, it can be helpful to let one or both
hypotheses be mixture distributions (i.e. Eθ∼π[Pθ]) with a carefully chosen prior π.

8.2 Advanced Le Cam I: point vs. mixture

Theorem 8.4 (Point vs. mixture). Let θ0 ∈ Θ and Θ1 ⊂ Θ. Assume there exists ∆ > 0 such that

inf
θ∈Θ1

inf
a

(
L(θ0, a) + L(θ, a)

)
≥ ∆.

Then for any probability distribution π on Θ1,

inf
θ̂

sup
θ∈{θ0}∪Θ1

Eθ
[
L(θ, θ̂(X))

]
≥ ∆

2

(
1− TV

(
Pθ0 , Eθ∼π[Pθ]

))
.

Proof. Consider the two-point prior 1
2(δθ0 + π). The Bayes risk lower bound follows from the

same two-point argument as in basic Le Cam, with P = Pθ0 and Q = Eθ∼π[Pθ].

95
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8.2.1 How to upper bound TV
(
Pθ0 ,Eθ∼π[Pθ]

)
?

The “point vs. mixture” structure is only helpful when

TV
(
Pθ0 ,Eθ∼π[Pθ]

)
≪ inf

θ∈Θ1

TV(Pθ0 , Pθ),

i.e. the mixture increases closeness.
A standard method is the Ingster–Suslina χ2 method (a.k.a. the second-moment method), by

upper bounding χ2
(
Eθ∼π[Pθ] ∥Pθ0

)
.

Theorem 8.5 (χ2-method). Assume Pθ has density pθ w.r.t. a common dominating measure. Then

χ2
(
Eθ∼π[Pθ] ∥ Pθ0

)
= Eθ,θ′∼π

[ ∫ pθ pθ′

pθ0

]
− 1,

where θ′ ∼ π is an independent copy of θ.

Proof.

χ2
(
Eθ∼π[Pθ] ∥ Pθ0

)
+ 1 =

∫ (
Eθ∼π[pθ]

)2
pθ0

=

∫ Eθ,θ′∼π[pθpθ′ ]
pθ0

= Eθ,θ′∼π
[ ∫ pθpθ′

pθ0

]
,

by Fubini.

Corollary 8.6 (i.i.d. models). For i.i.d. observations,

χ2
(
Eθ∼π[P⊗n

θ ] ∥ P⊗n
θ0

)
= Eθ,θ′∼π

[( ∫ pθpθ′

pθ0

)n]
− 1.

Proof. Just check ∫
p⊗nθ p⊗nθ′

p⊗nθ0
=
(∫ pθpθ′

pθ0

)n
.

8.2.2 Example 1.1: Planted clique

Given an undirected graph G on n vertices, aim to test between

H0 : G ∼ G(n, 12) vs. H1 : G ∼ G(n, 12 , k),

where under H1 there exists an unknown S ⊆ [n], |S| = k, such that

P((i, j) ∈ E) =

{
1, i, j ∈ S,
1
2 , otherwise.

Target. Find a constant C such that if

k < 2 log2 n− 2 log2 log2 n+ C,

then no test can reliably distinguish between H0 and H1.

Remark 8.7. Why is the mixture structure in H1 important? Because for each fixed instance of H1,
the learner knows the set S and can look at whether G[S] is a clique.
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Proof. Let P be the law of G ∼ G(n, 12). Let PS be the law of G with a clique planted at S, and

let S be uniform over
([n]
k

)
. Then

∫
PSPS′

P
=
∑
G

PS(G)PS′(G)

P (G)
=

∑
(xij)∈{0,1}(

n
2)

1{xij = 1 ∀i, j ∈ S}1{xij = 1 ∀i, j ∈ S′} (12)
2(n2)−2(k2)

(12)
(n2)

= 2(
|S∩S′|

2 ).

Therefore

χ2
(
E[PS ] ∥P

)
= ES,S′

[
2(

|S∩S′|
2 )

]
− 1

=
k∑
r=0

2(
r
2)

(
k
r

)(
n−k
k−r
)(

n
k

) − 1 = o(1) when k < 2 log2 n− 2 log2 log2 n+ C,

by algebra.

8.2.3 Example 1.2: Uniformity testing

Given X1, . . . , Xn
i.i.d.∼ P = (p1, . . . , pk), aim to test

H0 : P = Unif[k] vs. H1 : TV(P,Unif[k]) ≥ ε.

Target. The sample complexity of a reliable uniformity test is

n = Θ
(√k
ε2

)
.

Remark 8.8. A naive two-point method does not succeed: if the learner knew the pattern of how P
deviates from uniform, then O(ε−2) samples would suffice.

Proof of the lower bound. WLOG assume k is even. Under H0,

P = (1/k, . . . , 1/k).

Under H1, let

Pv =
(1− 2εv1

k
,
1 + 2εv1

k
, . . . ,

1− 2εvk/2

k
,
1 + 2εvk/2

k

)
, v = (v1, . . . , vk/2) ∼ Unif({±1}k/2).

Note that TV(Pv,Unif[k]) = ε for all v ∈ {±1}k/2. Moreover,

∫
PvPv′

P
=

k∑
x=1

Pv(x)Pv′(x)

P (x)
=

k/2∑
i=1

((1− 2εvi)(1− 2εv′i)

k
+

(1 + 2εvi)(1 + 2εv′i)

k

)

= 1 +
8ε2

k

k/2∑
i=1

viv
′
i.
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Hence

χ2
(
E[P⊗n

v ] ∥P⊗n) = Ev,v′
[(

1 +
8ε2

k

k/2∑
i=1

viv
′
i

)n]
− 1

≤ Ev,v′ exp
(8nε2

k

k/2∑
i=1

viv
′
i

)
− 1

≤ exp
(1
2

(8nε2
k

)2
· k
2

)
− 1 = exp

(16n2ε4
k

)
− 1.

(The sum
∑k/2

i=1 viv
′
i is k/2-subGaussian.) Therefore, χ2 = O(1) when n = O(

√
k/ε2).

8.2.4 Example 1.3: Linear functional of sparse parameters

Let X ∼ N (µ, Id) with ∥µ∥0 ≤ s.

Target.

inf
T

sup
∥µ∥0≤s

Eµ
(
T −

d∑
i=1

µi

)2
≳ s2 log

(
1 +

d

s2

)
.

Proof of lower bound. Let

H0 : µ = 0 (call it P ), H1 : µ = ρ1S , S ∼ Unif
(([d]

s

))
(call it E[PS ]).

The separation condition is satisfied with ∆ ≍ ρ2s2. Also,∫
PSPS′

P
=

∫
φ(x− ρ1S)φ(x− ρ1S′)

φ(x)
dx = eρ

2⟨1S ,1S′ ⟩ = eρ
2|S∩S′|.

To proceed, note that |S ∩ S′| ∼ Hypergeometric(d, s, s). By Hoeffding’s lemma (stated next),

χ2(E[PS ] ∥P ) + 1 = E
[
eρ

2|S∩S′|] ≤ E
[
eρ

2B(s,s/d)
]
=
(
1− s

d
+
s

d
eρ

2
)s

= O(1)

when ρ ≍
√

log(1 + d/s2).

Lemma 8.9 (Hoeffding). Let C = {c1, . . . , cN} ⊂ R be a fixed population. Let X1, . . . , Xn be n
draws from C without replacement, and X∗

1 , . . . , X
∗
n be n draws from C with replacement. Then for

any convex f : R → R,

E
[
f
( n∑
i=1

Xi

)]
≤ E

[
f
( n∑
i=1

X∗
i

)]
.

8.2.5 Example 1.4: Quadratic functional estimation

Let X1, . . . , Xn
i.i.d.∼ f , where the density f is supported on [0, 1]d and

∥∥f (s)∥∥∞ = O(1) for some
integer s.

Target.

inf
T

sup
f

Ef
∣∣∣T −

∫
[0,1]d

f(x)2 dx
∣∣∣ ≍ n−

4s
4s+d + n−1/2.
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Proof of the lower bound. The parametric rate Ω(n−1/2) is trivial (by LAN or a simple

two-point argument). For the Ω
(
n−

4s
4s+d

)
lower bound, let

H0 : f ≡ 1, H1 : fv(x) = 1 + c

h−d∑
i=1

vi h
s g
(x− ci

h

)
, v ∼ Unif({±1}h−d

),

where g(·) is a smooth function on [0, 1]d with
∫
g = 0. The cube [0, 1]d is partitioned into h−d

subcubes with edge length h; ci is the lower-left corner of the i-th subcube.

For a small absolute constant c > 0, one can verify
∥∥∥f (s)v

∥∥∥
∞

= O(1) for all v, and

∫
[0,1]d

fv(x)
2 dx = 1 + c2

h−d∑
i=1

h2s
∫
[0,1]d

g2
(x− ci

h

)
dx = 1 + c2h2s ∥g∥22 .

Thus the separation condition holds with ∆ ≍ h2s.
For indistinguishability,

∫
fvfv′

f
= 1 +

∫
[0,1]d

c2
h−d∑
i=1

viv
′
i h

2s g2
(x− ci

h

)
dx = 1 + c2 ∥g∥22 h

2s+d
h−d∑
i=1

viv
′
i.

Therefore

χ2
(
E[f⊗nv ] ∥ f⊗n

)
+ 1 ≤ E exp

(
nc2 ∥g∥22 h

2s+d
h−d∑
i=1

viv
′
i

)
≤ exp

(
O
(
n2h4s+2d · h−d

))
= exp

(
O(n2h4s+d)

)
= O(1)

when h ≍ n−
2

4s+d .

8.3 Advanced Le Cam II: mixture vs. mixture

Theorem 8.10 (Mixture vs. mixture). Fix any Θ0 ⊆ Θ and Θ1 ⊆ Θ. Suppose

inf
θ0∈Θ0, θ1∈Θ1

inf
a

(
L(θ0, a) + L(θ1, a)

)
≥ ∆.

Then for any probability distributions π0 and π1,

inf
T

sup
θ∈Θ0∪Θ1

Eθ[L(θ, T (X))] ≥ ∆

2

(
1− TV(Eθ∼π0 [Pθ], Eθ∼π1 [Pθ])− π0(Θ

c
0)− π1(Θ

c
1)
)
.

Proof. The only new observation is that if π̃0 is the restriction of π0 on Θ0, then

TV
(
Eθ∼π0 [Pθ], Eθ∼π̃0 [Pθ]

)
≤ TV(π0, π̃0) = π0(Θ

c
0).

(Similarly for π1.)

Challenge. What is a good way to upper bound TV(Eθ∼π0 [Pθ],Eθ∼π1 [Pθ]) beyond trivial convexity
arguments?
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8.3.1 Orthogonal functions/polynomials

Suppose (Pθ)θ∈[θ0−ε, θ0+ε] is a 1-D family of distributions, with likelihood ratio expansion

Pθ0+u(x)

Pθ0(x)
=

∞∑
m=0

pm(x; θ0)
um

m!
, for |u| ≤ ε.

Under some structural conditions, {pm(x; θ0)}m≥0 are orthogonal under Pθ0 .

Lemma 8.11. If ∫
Pθ0+uPθ0+v

Pθ0
depends only on (θ0, uv),

then
EX∼Pθ0

[
pm(X; θ0)pn(X; θ0)

]
= 0 ∀ m ̸= n.

Proof. ∫
Pθ0+uPθ0+v

Pθ0
= EX∼Pθ0

[( ∞∑
m=0

pm(X; θ0)
um

m!

)( ∞∑
n=0

pn(X; θ0)
vn

n!

)]
=
∑
m,n≥0

EX∼Pθ0

[
pm(X; θ0)pn(X; θ0)

] umvn
m!n!

.

Since this quantity depends on (u, v) only through uv, all coefficients with m ̸= n must be 0.

8.3.2 Two important examples

Gaussian. For P0 = N (0, 1), ∫
PuPv
P0

= exp(uv).

The corresponding pm(x; θ0 = 0) are the Hermite polynomials Hm(x), with

EX∼N (0,1)[Hm(X)Hn(X)] = n!1{m = n}.

Poisson. For P0 = Poi(λ),∫
Pλ+uPλ+v

Pλ
=

∞∑
k=0

e−2λ−u−v ((λ+ u)(λ+ v))k

k!λk
= exp

(uv
λ

)
.

The corresponding pm(x; θ0 = λ) are the Poisson–Charlier polynomials Cm(x;λ), with

EX∼Poi(λ)[Cm(X;λ)Cn(X;λ)] =
n!

λn
1{m = n}.

8.3.3 Bounding TV and χ2: methods of moments

Theorem 8.12 (Gaussian mixture). For µ ∈ R and random variables U, V ,

TV
(
E[N (µ+ U, 1)], E[N (µ+ V, 1)]

)
≤ 1

2

( ∞∑
m=0

(E[Um]− E[V m])2

m!

)1/2
.

If in addition E[V ] = 0 and E[V 2] ≤M2, then

χ2
(
E[N (µ+ U, 1)] ∥ E[N (µ+ V, 1)]

)
≤ eM

2/2
∞∑
m=0

(E[Um]− E[V m])2

m!
.
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Proof (for the TV bound). WLOG assume µ = 0, and let ∆m := E[Um]−E[V m]. Let φ denote
the N (0, 1) density.

TV
(
E[N (U, 1)],E[N (V, 1)]

)
=

1

2

∫
R
|EU [φ(x− U)]− EV [φ(x− V )]| dx

=
1

2

∫
R
φ(x)

∣∣∣∣∣EU[
∞∑
m=0

Hm(x)
Um

m!

]
− EV

[ ∞∑
m=0

Hm(x)
V m

m!

]∣∣∣∣∣ dx
=

1

2
EX∼N (0,1)

∣∣∣∣∣
∞∑
m=0

Hm(X)
∆m

m!

∣∣∣∣∣
≤ 1

2

(
EX∼N (0,1)

[( ∞∑
m=0

Hm(X)
∆m

m!

)2])1/2
=

1

2

( ∞∑
m=0

∆2
m

m!

)1/2
,

using Cauchy–Schwarz and the orthogonality E[Hm(X)Hn(X)] = n!1{m = n}.

Proof sketch (for the χ2 bound). For the χ2 upper bound, lower bound the denominator as

Eθ∼V [φ(x− θ)] = φ(x)Eθ∼V
[
exp(θx− θ2

2 )
]
≥ φ(x) exp

(
Eθ∼V [θx− θ2

2 ]
)
≥ φ(x)e−M

2/2,

and the rest is the same as the TV proof.

Theorem 8.13 (Poisson mixture). For λ > 0 and random variables U, V supported on [−λ,∞),

TV
(
E[Poi(λ+ U)], E[Poi(λ+ V )]

)
≤ 1

2

( ∞∑
m=0

∆2
m

m!λm

)1/2
, ∆m := E[Um]− E[V m].

If in addition E[V ] = 0 and |V | ≤M , then

χ2
(
E[Poi(λ+ U)] ∥ E[Poi(λ+ V )]

)
≤ eM

∞∑
m=0

∆2
m

m!λm
.

Proof. Exercise (the same argument as the Gaussian case, but using Poisson–Charlier polynomials).

8.3.4 Example 2.1: Generalized uniformity testing

Given X1, . . . , Xn
i.i.d.∼ P = (p1, . . . , pk), aim to test

H0 : P = Unif(S) for some S ⊆ [k] vs. H1 : min
S⊆[k]

TV(P,Unif(S)) ≥ ε/2.

Target. The sample complexity for a reliable test is

n = Θ
(√k
ε2

+
k2/3

ε4/3

)
.
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Proof of lower bound.

(1) n = Ω(
√
k/ε2) follows from uniformity testing (Example 1.2).

(2) For n = Ω(k2/3/ε4/3), assume Poissonization, where the observations are

(N1, . . . , Nk), Ni
ind∼ Poi(npi).

Construct two product priors:

under H0 : p1, . . . , pk
i.i.d.∼ Law(U), under H1 : p1, . . . , pk

i.i.d.∼ Law(V ),

where

U =


0, w.p.

ε2

1 + ε2
,

1 + ε2

k
, w.p.

1

1 + ε2
,

V =


1− ε

k
, w.p.

1

2
,

1 + ε

k
, w.p.

1

2
.

Notes.

(1) Under H0, pi ∈ {0, (1 + ε2)/k}, so (p1, . . . , pk) is generalized uniform.

(2) Under H1, (p1, . . . , pk) is Ω(ε)-far from generalized uniform w.h.p.

(3) E[U ] = E[V ] = 1/k, so under both H0 and H1, (p1, . . . , pk) is a pmf in expectation. (Additional
arguments are needed to justify restricting to “approximate pmfs”; omitted here.)

(4) E[U2] = E[V 2] = (1 + ε2)/k2, and

|E[(U − 1/k)m]− E[(V − 1/k)m]| ≤ 2ε2

km
, m ≥ 3.

Now by the Poisson mixture result,

χ2
(
E[Poi(nU)] ∥ E[Poi(nV )]

)
≤ enε/k

∞∑
m=3

4ε4 (n/k)2m

m! (n/k)m
= enε/k

∞∑
m=3

4ε4 (n/k)m

m!
= O

(n3ε4
k3

)
.

Tensorization of χ2 yields

χ2
(
EU
[ k⊗
i=1

Poi(npi)
] ∥∥∥ EV

[ k⊗
i=1

Poi(npi)
])

+ 1 ≤
(
1 +O

(n3ε4
k3

))k
≤ exp

(
O
(n3ε4
k2

))
= O(1)

if n = O(k2/3/ε4/3).

Remark 8.14. This construction matches the first two moments of (U, V ). Can we match more? No.

Lemma 8.15. Let µ be a probability measure supported on {0, x1, . . . , xk−1} ⊂ [0,∞). Let ν be
another probability measure supported on [0,∞) such that

Eµ[Xm] = Eν [Xm] for all m = 0, 1, . . . , 2k − 1.

Then µ = ν.
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Proof.

0 = Eµ
[
X(X − x1)

2 · · · (X − xk−1)
2
]
= Eν

[
X(X − x1)

2 · · · (X − xk−1)
2
]
≥ 0.

Hence supp(ν) ⊂ {0, x1, . . . , xk−1}, which forces ν = µ.

8.4 Example 2.2: ℓ1-norm estimation

Let X ∼ N (θ, In) with ∥θ∥∞ ≤ 1.

Target.

inf
T

sup
∥θ∥∞≤1

Eθ
∣∣T − ∥θ∥1

∣∣ ≍ n · log log n
log n

.

Proof of lower bound (idea). Test between H0 : ∥θ∥1 ≤ ρ0 vs. H1 : ∥θ∥1 ≥ ρ1. Assign priors
θ ∼ µ⊗n0 under H0 and θ ∼ µ⊗n1 under H1.

Desired properties.

(1) χ2
(
µ0 ∗ N (0, 1) ∥ µ1 ∗ N (0, 1)

)
= O(1/n).

(2) µ⊗n0 (Hc
0) + µ⊗n1 (Hc

1) = o(1).

(3) ρ1 − ρ0 = Ω
(
n · log logn

logn

)
.

We design (ρ0, ρ1, µ0, µ1) for these properties separately.

(1) Moment matching controls χ2. If µ0, µ1 match the first K moments, then

χ2
(
µ0 ∗ N (0, 1) ∥ µ1 ∗ N (0, 1)

)
≤ O(1)

∞∑
m=K+1

2m+1

m!
≤
(O(1)

K

)K
.

(To make it O(1/n), choose K ≍ logn
log logn .)

(2) Choose thresholds using concentration. Choose

ρ0 = nEµ0 |θ|+ ω(
√
n), ρ1 = nEµ1 |θ| − ω(

√
n).

Since under µ⊗n0 , ∥θ∥1 concentrates around nEµ0 |θ| with fluctuations O(
√
n), Chebyshev gives

µ⊗n0 (Hc
0), µ

⊗n
1 (Hc

1) = o(1).

(3) Remaining optimization problem. It remains to solve

max Eµ1 |θ| − Eµ0 |θ|
s.t. µ0, µ1 supported on [−1, 1],

Eµ1 [θm] = Eµ0 [θm] for 0 ≤ m ≤ K.

There is a duality result between moment matching and best polynomial approximation.
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8.4.1 Duality: moment matching vs. best polynomial approximation

Theorem 8.16. Let I ⊂ R be compact and f continuous on I. Define

V ∗ := max
{
Eµ[f(X)]− Eν [f(X)] : supp(µ), supp(ν) ⊆ I, Eµ[Xm] = Eν [Xm] ∀m = 0, . . . ,K

}
,

and
E∗ := inf

P : deg(P )≤K
sup
x∈I

|f(x)− P (x)| .

Then V ∗ = 2E∗.

Proof. Step 1: V ∗ ≤ 2E∗. Let P be any polynomial with deg(P ) ≤ K. If µ, ν match moments up
to degree K, then Eµ[P ] = Eν [P ] and hence

Eµ[f ]− Eν [f ] = Eµ[f − P ]− Eν [f − P ] ≤ Eµ |f − P |+ Eν |f − P | ≤ 2 sup
x∈I

|f(x)− P (x)| .

Taking inf over P yields V ∗ ≤ 2E∗.

Step 2: V ∗ ≥ 2E∗. Let F := span{1, x, . . . , xK , f(x)}. Define a linear functional L on F by

L(xm) = 0 (m = 0, . . . ,K), L(f) = E∗.

We claim ∥L∥ = 1, where
∥L∥ := sup

h∈F , ∥h∥L∞(I)≤1
|Lh| .

Let P ∗(x) be a best approximating polynomial of degree ≤ K such that ∥f − P ∗∥L∞(I) = E∗. Any
h ∈ F can be written as h = c(f − P ∗) + P for some polynomial P of degree ≤ K. By definition of
P ∗, ∥h∥L∞(I) ≥ |c| E∗. Thus

|Lh|
∥h∥L∞(I)

=
|c| E∗

∥h∥L∞(I)

≤ 1,

with equality for P ≡ 0, hence ∥L∥ = 1.
By Hahn–Banach, extend L to C(I) with ∥L∥ = 1. By Riesz representation, there exists a signed

measure µ on I such that

Lh =

∫
I
hdµ.

Let µ = µ+ − µ− be the Jordan decomposition. Since L(1) = 0, we have µ+(I) = µ−(I). Since
∥L∥ = 1, we have µ+(I) + µ−(I) = 1. Hence µ+(I) = µ−(I) = 1/2. Also, L(xm) = 0 implies∫

I
xm dµ+ =

∫
I
xm dµ− for all m = 0, . . . ,K.

Finally choose µ1 = 2µ+ and µ0 = 2µ−. Then

E∗ = Lf = Eµ+ [f ]− Eµ− [f ] =
1

2

(
Eµ1 [f ]− Eµ0 [f ]

)
,

so Eµ1 [f ]− Eµ0 [f ] = 2E∗ and therefore V ∗ ≥ 2E∗. Combining both steps gives V ∗ = 2E∗.

Remark 8.17. By approximation theory, the uniform approximation error of |θ| by span{1, θ, . . . , θK}
is Θ(1/K). So we get

ρ1 − ρ0 = Ω(n/K) = Ω
(
n · log logn

log n

)
,

and combining (1)–(3) yields the target lower bound.



8.5. SPECIAL TOPIC: DUALIZING LE CAM (POLYANSKIY & WU 2019) 105

8.5 Special topic: dualizing Le Cam (Polyanskiy & Wu 2019)

8.5.1 Setting

Let θ1, . . . , θn
i.i.d.∼ π and Xi | θi ∼ Pθi . Equivalently,

X1, . . . , Xn
i.i.d.∼ Eθ∼π[Pθ] =: πP.

Target: estimate a linear functional T (π) and characterize

r∗ = inf
T̂

sup
π∈Π

Eπ
[
(T̂ (X1, . . . , Xn)− T (π))2

]
.

Remark 8.18 (Related setting). If (θ1, . . . , θn) is an individual sequence and Xi | θi ∼ Pθi , then the
target is to estimate

T (πθ) =
1

n

n∑
i=1

h(θi), where πθ =
1

n

n∑
i=1

δθi ,

which is linear in πθ. This covers functional estimation such as ℓ1-norm estimation in Example 2.2.

8.5.2 A modulus-of-continuity characterization

Definition 8.19 (χ2-modulus of continuity). For t ≥ 0,

δχ2(t) := sup
{ ∣∣T (π′)− T (π)

∣∣ : χ2(π′P ∥πP ) ≤ t2, π, π′ ∈ Π
}
.

Theorem 8.20. If T is linear and Π is convex, under regularity conditions,

1

7
δχ2(1/

√
n)2 ≤ r∗ ≤ δχ2(1/

√
n)2.

Remark 8.21. (1) δχ2 is the best separation constant subject to the χ2 indistinguishability constraint,
and the lower bound r∗ ≥ 1

7δχ2(1/
√
n)2 follows from Le Cam’s two-point method.

(2) The upper bound shows that for linear T , Le Cam’s method can be dualized to obtain
statistical upper bounds.

8.5.3 Proof of the upper bound

Try an estimator of the form

T̂ (X1, . . . , Xn) =
1

n

n∑
i=1

g(Xi) for some g : X → R.

By bias–variance analysis,

sup
π∈Π

Eπ
[
(T̂ − T (π))2

]
= sup

π∈Π

{
|T (π)− πPg|2 +

1

n
VarπP (g)

}
,

where πPg := EX∼πP [g(X)]. Thus it suffices to show

inf
g

sup
π∈Π

{
|T (π)− πPg|+

1√
n

√
VarπP (g)

}
≤ δχ2(1/

√
n). (8.1)
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Denote

L(π, g) := |T (π)− πPg|+
1√
n

√
VarπP (g).

To mitigate the non-concavity of the absolute value term in π, write

L(π, g) ≤ sup
π′

sup
0≤ξ≤2

{(
T (π)− πPg

)
− ξ
(
T (π′)− π′Pg

)
+

1√
n

√
VarπP (g)

}
= sup

π2∈Π2

{(
T (π)− πPg

)
−
(
T (π2)− π2Pg

)
+

1√
n

√
VarπP (g)

}
,

where
Π2 := {ξπ′ : π′ ∈ Π, 0 ≤ ξ ≤ 2}.

The right-hand side is concave in (π, π2) (thanks to linearity of T ). Therefore, by a minimax
theorem,

inf
g

sup
π∈Π

L(π, g) ≤ sup
π∈Π, π2∈Π2

inf
g

{(
T (π)− πPg

)
−
(
T (π2)− π2Pg

)
+

1√
n

√
VarπP (g)

}
= sup

π,π′∈Π
inf
g

{(
T (π)− T (π′)

)
+ (π′ − π)Pg +

1√
n

√
VarπP (g)

}
.

Recall the dual representation

χ2(π′P ∥πP ) = sup
{(

(π′ − π)Pg
)2

: VarπP (g) ≤ 1
}
.

If χ2(π′P ∥πP ) > 1/n, then there exists g0 with VarπP (g0) ≤ 1 and (π′−π)Pg0 < −1/
√
n. Choosing

g = cg0 and letting c→ ∞ gives

inf
g

{
(π′ − π)Pg +

1√
n

√
VarπP (g)

}
= −∞.

On the other hand, if χ2(π′P ∥πP ) ≤ 1/n, then the infimum above is 0 (achieved by g ≡ 0). Hence

inf
g

sup
π∈Π

L(π, g) ≤ sup
π,π′∈Π

{
T (π)− T (π′) : χ2(π′P ∥πP ) ≤ 1/n

}
= δχ2(1/

√
n),

which proves (8.1).

8.5.4 Example: Fisher’s species problem

Let X1, . . . , Xn
i.i.d.∼ p where p is supported on N. Let m = nr, and hypothetically draw

X ′
1, . . . , X

′
m

i.i.d.∼ p. Aim to estimate

U :=
∣∣{X ′

1, . . . , X
′
m} \ {X1, . . . , Xn}

∣∣ (# of “new” species).

Question. Characterize

r∗ := inf
Û

sup
p

Ep
[ 1

n2
(Û − U)2

]
.

Answer.

r∗ =

{
Θ(1/n), r ≤ 1,

Θ̃
(
n−

2
r+1
)
, r > 1.
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8.5.5 Proof of the upper bound (sketch)

First we make some simplifications.

(1) Poissonization. The histograms Nx =
∑n

i=1 1(Xi = x) ∼ Poi(npx) and N
′
x ∼ Poi(mpx) are

independent Poisson r.v.s.

(2) Replace by expectation. One can show U ≈ EU w.h.p., so it is equivalent to estimate

E[U ] = E
[∑

x

1(Nx = 0, N ′
x > 0)

]
=
∑
x

e−npx (1− e−mpx).

(3) Support size. The support size of p is at most O(n). In this case, let θx = npx and let
π := Unif({θx}). Then 1

nE[U ] is equivalent to

Eθ∼π[h(θ)] = Eθ∼π
[
e−θ − e−(1+r)θ

]
, h(θ) := e−θ − e−(1+r)θ.

By the previous result (dualizing Le Cam), it suffices to show that for P = Poi,

δχ2(1/
√
n) = sup

{
|Eπ′−π[h(θ)]| : χ2(π′P ∥πP ) ≤ 1

n

}
≲ n−min{ 1

2
, 1
1+r

}.

Let t = 1/
√
n. Since χ2 ≤ t2 implies TV ≤ t, we have

δχ2(t) ≤ sup
{ ∣∣∣∣∫ hd∆

∣∣∣∣ : ∥∆∥TV ≤ 1, ∥∆P∥TV ≤ t
}
,

where ∆ := π′ − π is a signed measure. To upper bound this quantity we use complex analysis.

8.5.6 Complex analysis bound

Let

f∆(z) :=

∫
R+

ezθ∆(dθ) (Laplace transform)

and

f∆P (z) :=
∞∑
m=0

zm∆P (m) (z-transform).

Then ∫
hd∆ =

∫
R+

(e−θ − e−(1+r)θ)∆( dθ) = f∆(−1)− f∆(−1− r).

In addition,

f∆P (z) =
∞∑
m=0

zm
∫
e−θ

θm

m!
∆( dθ) =

∫
e−θ
( ∞∑
m=0

(zθ)m

m!

)
∆(dθ)

=

∫
e(z−1)θ∆(dθ) = f∆(z − 1).

Finally,

|f∆(z)| ≤
∫
R+

|∆| ( dθ) ≤ 2 for ℜ(z) ≤ 0,
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ℜ(z)

ℑ(z)ℜ(z) = 0

|f | ≤ 2|z + 1| ≤ 1

|f | ≤ 2t

−2 −1 0

−1− r

w = 1 +
1 + r

z

ℜ(w)

ℑ(w)ℜ(w) = 1−r
2

|g| ≤ 2t

1−r
2

ℜ(w) = 1

|g| ≤ 2

1

Figure 8.1: Conformal map used in the complex-analysis argument (Lecture 8, p. 16).

and

|f∆P (z)| ≤
∞∑
m=0

|z|m |∆P (m)| ≤ 2t for |z| ≤ 1.

Consequently,

δχ2(t) ≤ sup
∆

{
|f∆(−1)− f∆(−1− r)| : ∥f∆∥H∞(ℜz≤0) ≤ 2, ∥f∆∥H∞(D−1) ≤ 2t

}
≤ sup

f

{
|f(−1)− f(−1− r)| : ∥f∥H∞(ℜz≤0) ≤ 2, ∥f∥H∞(D−1) ≤ 2t, f holomorphic on {z : ℜ(z) ≤ 0}

}
,

where D − 1 := {z : |z + 1| ≤ 1}.

Case 1: r ≤ 1. Then −1− r ∈ D − 1, so

|f(−1)− f(−1− r)| ≤ 4t.

Case 2: r > 1. Consider the Möbius transformation

w = ϕ(z) := 1 +
1 + r

z
, z = ϕ−1(w) =

1 + r

w − 1
.

Define g(w) := f(ϕ−1(w)), i.e. f(z) = g(ϕ(z)). The map ϕ sends the imaginary axis ℜ(z) = 0 to the
vertical line ℜ(w) = 1, and it sends the circle |z + 1| = 1 to the vertical line ℜ(w) = 1−r

2 ; moreover
ϕ(−1− r) = 0 (see Figure 8.1). Thus g is holomorphic on the strip {w : 1−r

2 ≤ ℜ(w) ≤ 1} and

∥g∥H∞(ℜw=1) ≤ 2, ∥g∥
H∞(ℜw=1−r

2 )
≤ 2t.

By Hadamard’s three-line theorem (evaluated at ℜ(w) = 0),

|f(−1− r)| = |g(0)| ≤ ∥g∥
2

1+r

H∞(ℜw=1−r
2 )

∥g∥
r−1
1+r

H∞(ℜw=1) = O
(
t

2
1+r
)
.

Therefore

|f(−1− r)− f(−1)| ≤ |f(−1− r)|+ |f(−1)| = O
(
t

2
1+r + t

)
= O

(
t

2
1+r
)
, as t = 1/

√
n ≤ 1.

Combining both cases yields δχ2(1/
√
n) ≲ n−min{ 1

2
, 1
1+r

}, which gives the stated rates.



Lecture 9: Advanced Fano’s Method

9.1 Covering and packing

Let (X , d) be a metric space and let A ⊆ X be compact.

Definition 9.1 (Covering / net). A finite set {x1, . . . , xn} ⊆ X is an ε-covering (or ε-net) of A if

A ⊆
n⋃
i=1

B(xi; ε), B(x; ε) := {y ∈ X : d(x, y) ≤ ε}.

Definition 9.2 (Packing). A finite set {a1, . . . , am} ⊆ A is an ε-packing of A if

min
i ̸=j

d(ai, aj) > ε.

Definition 9.3 (Covering and packing numbers).

N(A, d, ε) := min{n : ∃ ε-covering of A of size n}, M(A, d, ε) := max{m : ∃ ε-packing of A of size m}.

9.1.1 Basic relationship

Lemma 9.4. For every ε > 0,

M(A, d, 2ε) ≤ N(A, d, ε) ≤M(A, d, ε).

In other words, up to a multiplicative factor 2 on ε, it is equivalent to consider covering or packing
numbers.

Proof. (1) M(A, d, 2ε) ≤ N(A, d, ε). Assume for contradiction that M(A, d, 2ε) ≥ N(A, d, ε) + 1.
Take an ε-covering {y1, . . . , yN} of A with N = N(A, d, ε). Also take a (2ε)-packing {x1, . . . , xN+1}
of A. By the pigeonhole principle, two points x, x′ in this packing belong to the same ball B(y; ε) of
the covering. Hence

d(x, x′) ≤ d(x, y) + d(x′, y) ≤ 2ε,

contradicting that the set is a (2ε)-packing.

(2) N(A, d, ε) ≤M(A, d, ε). Let {a1, . . . , am} be a maximal ε-packing of A. We claim it is also
an ε-covering of A. If not, then there exists a ∈ A such that d(a, ai) > ε for all i ∈ [m]. But then
{a1, . . . , am, a} is a larger ε-packing, contradicting maximality.

109
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9.1.2 Bounding covering/packing numbers: a volume bound

Let ∥·∥ be any norm on Rd and let

B := {x ∈ Rd : ∥x∥ ≤ 1}

be its unit ball.

Lemma 9.5 (Volume bound). For every ε > 0,

(
1

ε

)d vol(A)
vol(B)

≤ N(A, ∥·∥ , ε) ≤M(A, ∥·∥ , ε) ≤
(
2

ε

)d vol(A+ (ε/2)B
)

vol(B)
.

Here A+ (ε/2)B := {a+ (ε/2)b : a ∈ A, b ∈ B} is the Minkowski sum.

Proof. (Lower bound on N). Let {x1, . . . , xn} be an ε-covering of A. Then

A ⊆
n⋃
i=1

B(xi; ε) =⇒ vol(A) ≤
n∑
i=1

vol
(
B(xi; ε)

)
= n εd vol(B).

Hence

n ≥
(
1

ε

)d vol(A)
vol(B)

.

Taking the minimum over all coverings gives the stated lower bound on N(A, ∥·∥ , ε).

(Upper bound on M). Let {a1, . . . , am} be an ε-packing of A. Then the balls B(ai; ε/2) are
disjoint, and

m⋃
i=1

B(ai; ε/2) ⊆ A+ (ε/2)B.

Therefore

vol
(
A+ (ε/2)B

)
≥

m∑
i=1

vol
(
B(ai; ε/2)

)
= m

(ε
2

)d
vol(B),

so

m ≤
(
2

ε

)d vol(A+ (ε/2)B
)

vol(B)
.

Taking the maximum over packings gives the claimed upper bound on M(A, ∥·∥ , ε). The middle
inequality N ≤M is from the basic relationship.

Example 1.1 (Unit ball). If A = B = {x : ∥x∥ ≤ 1} is the unit ball under the same norm, then
for all 0 < ε ≤ 1, (

1

ε

)d
≤ N(A, ∥·∥ , ε) ≤

(
1 +

2

ε

)d
≤
(
3

ε

)d
.
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Example 1.2 (Gilbert–Varshamov bound). Let A = {0, 1}d and let the Hamming distance be

dH(x, x
′) :=

d∑
i=1

1{xi ̸= x′i}.

Then for 1 ≤ r ≤ d− 1,
2d∑r
i=0

(
d
i

) ≤M(A, dH , r) ≤
2d∑⌊r/2⌋

i=0

(
d
i

) .
If r = pd and d→ ∞, then by Stirling approximation,

2d(1−h(p)+o(1)) ≤M
(
{0, 1}d, dH , pd

)
≤ 2d(1−h(p/2)+o(1)),

where h(p) = p log2(1/p) + (1− p) log2(1/(1− p)) is the binary entropy.

9.1.3 Sudakov minoration

Define the Gaussian width of a set A ⊆ Rd by

ω(A) := E sup
a∈A

⟨a, Z⟩ , Z ∼ N (0, Id).

Lemma 9.6 (Sudakov minoration). There exists a universal constant C > 0 such that

ω(A) ≥ C sup
ε>0

ε
√
logM

(
A, ∥·∥2 , ε

)
.

Two results used in the proof:

(1) Slepian’s lemma. Let X,Y be centered Gaussian random vectors in Rd. If E[(Yi − Yj)
2] ≤

E[(Xi −Xj)
2] for all i, j ∈ [d], then E[maxi Yi] ≤ E[maxiXi].

(2) Maximum of Gaussians. If X1, . . . , Xn
i.i.d.∼ N (0, 1), then

E
[
max
1≤i≤n

Xi

]
= (1 + o(1))

√
2 log n.

Proof of Sudakov minoration. Let {a1, . . . , am} be an optimal ε-packing of A. Define

Xi := ⟨ai, Z⟩ (Z ∼ N (0, Id)), Y1, . . . , Ym
i.i.d.∼ N

(
0,
ε2

2

)
.

Then for all i ̸= j,
E[(Yi − Yj)

2] = ε2 ≤ ∥ai − aj∥22 = E[(Xi −Xj)
2].

By Slepian’s lemma and the definition of Gaussian width,

ω(A) = E sup
a∈A

⟨a, Z⟩ ≥ E max
1≤i≤m

Xi ≥ E max
1≤i≤m

Yi.

Finally, using the “maximum of Gaussians” fact with standard deviation ε/
√
2,

E max
1≤i≤m

Yi =
ε√
2
(1 + o(1))

√
2 logm.

Thus ω(A) ≳ ε
√
logm, and taking the supremum over ε > 0 yields the result.
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Example 1.3. When A = B1 := {x ∈ Rd : ∥x∥1 ≤ 1}, then

ω(A) = E sup
∥x∥1≤1

⟨x, Z⟩ = E ∥Z∥∞ ≤
√
2 log d.

Hence Sudakov minoration implies

logM
(
B1, ∥·∥2 , ε

)
= O

( log d
ε2

)
.

In fact, one has the (nearly) sharp upper bound

logM
(
B1, ∥·∥2 , ε

)
≲

d
(
1 + log 1

ε
√
d

)
, ε ≤ 1/

√
d (volume bound is tight),

1 + log(ε2d)

ε2
, 1/

√
d≪ ε≪ 1 (Sudakov nearly tight).

9.1.4 Maurey’s empirical method

Let (H, ⟨·, ·⟩) be an inner product space and let T ⊂ H be a finite set.

Lemma 9.7 (Maurey’s empirical method). Let r := infy∈H supx∈T ∥x− y∥ be the radius of T . Then
for every 0 < ε ≤ r,

N
(
conv(T ), ∥·∥ , ε

)
≤
(
|T |+

⌈
r2/ε2

⌉
− 2

⌈r2/ε2⌉ − 1

)
.

Proof. Write T = {t1, . . . , tm} and choose c ∈ H such that r = maxi∈[m] ∥ti − c∥. Fix any x ∈
conv(T ), so x =

∑m
i=1 xiti with xi ≥ 0 and

∑
i xi = 1. Let Z be an H-valued random variable with

P(Z = ti) = xi; then x = E[Z]. Let Z1, . . . , Zn be i.i.d. copies of Z and define

Z̄ :=
1

n+ 1

(
c+

n∑
i=1

Zi

)
.

Then

E
∥∥Z̄ − x

∥∥2 = 1

(n+ 1)2

(
∥c− x∥2 + nE ∥Z − x∥2

)
≤ 1

(n+ 1)2

(
r2 + nE ∥Z − c∥2

)
≤ r2

n+ 1
.

(Here ∥c− x∥2 ≤ r2 by convexity, and E ∥Z − x∥2 ≤ E ∥Z − c∥2 ≤ r2 since E[Z] = x.)
Consequently, if n = ⌈r2/ε2⌉−1, there exists a realization of Z̄ such that

∥∥x− Z̄
∥∥ ≤ ε. Moreover

Z̄ always belongs to the finite set{ 1

n+ 1

(
c+

m∑
i=1

niti

)
: ni ≥ 0,

m∑
i=1

ni = n
}
,

whose cardinality is
(
n+m−1

n

)
by stars-and-bars. Thus conv(T ) can be ε-covered by at most

(
n+m−1

n

)
points, yielding the claimed bound.

Example 1.3 (continued). B1 = conv{±e1, . . . ,±ed} has radius 1. By Maurey’s empirical
method,

logN(B1, ∥·∥2 , ε) ≤ log

(
2d+ ⌈1/ε2⌉ − 2

⌈1/ε2⌉ − 1

)
= O

(1 + log(ε2d)

ε2

)
, 1/

√
d≪ ε≪ 1.
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9.1.5 More results without proof

(1) For 0 < p ≤ q ≤ ∞, let Bp := {x ∈ Rd : ∥x∥p ≤ 1}. Then

logN(Bp, ∥·∥q , ε) ≍p,q

{
ε
− pq

q−p
(
log(d ε

− pq
q−p ) + 1

)
, d1/q−1/p ≤ ε ≤ 1,

d
(
log 1

d1/q−1/p ε
+ 1
)
, ε < d1/q−1/p.

(2) Let N(A,B) be the smallest number of translates of B that cover A. There exist universal
constants α, β > 0 such that for any symmetric convex body A,

1

β
logN

(
B2,

ε

α
A◦
)
≤ logN(A, εB2) ≤ β logN

(
B2, αεA

◦),
where

A◦ :=
{
y : sup

x∈A
⟨x, y⟩ ≤ 1

}
is the polar body of A.

(3) Let Hs := {f ∈ Cs([0, 1]) :
∥∥f (s)∥∥∞ ≤ 1}. Then for any 1 ≤ p ≤ ∞,

logN(Hs, ∥·∥p , ε) ≍p ε
−1/s.

(4) Let Fm := {f : [0, 1] → [0, 1] : f is non-decreasing}. Then for any 1 ≤ p <∞,

logN(Fm, ∥·∥p , ε) ≍p
1

ε
.

(5) Let Fc := {f : [0, 1] → [0, 1] : f is convex}. Then for any 1 ≤ p <∞,

logN(Fc, ∥·∥p , ε) ≍p
1√
ε
.

9.2 Global Fano’s method

9.2.1 Recall the steps of Fano

1. Find a pairwise separated set {θ0, . . . , θm} ⊆ Θ such that for all i ̸= j,

min
a∈A

[
L(θi, a) + L(θj , a)

]
≥ δ.

2. Upper bound I(θ;X) (or more often I(θ;Xn)) with θ ∼ Unif{θ0, . . . , θm} and X | θ ∼ Pθ.

3. If I(θ;X) ≤ 1
2 logm, then the minimax risk satisfies r∗ = Ω(δ).

9.2.2 Step 0: packing via a metric

If there is a metric d(θ, θ′) such that

min
a∈A

[
L(θ, a) + L(θ′, a)

]
≥ h

(
d(θ, θ′)

)
for an increasing function h : R+ → R+, then a δ-packing {θ0, . . . , θm} of Θ under d satisfies the
separation condition with

∆ = h(δ).
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9.2.3 KL covering

Definition 9.8 (KL covering number). For a family P of distributions and ε > 0, let NKL(P, ε) be
the smallest integer n such that there exist distributions Q1, . . . , Qn (not necessarily in P) satisfying

sup
P∈P

min
i∈[n]

DKL(P∥Qi) ≤ ε2.

(Note: DKL is not a metric; Qi appears in the second argument.)

Theorem 9.9 (Entropic upper bound of I(θ;Xn)). Let θ ∼ π with supp(π) = Θ0, and let
Xn | θ ∼ P⊗n

θ . Then

I(θ;Xn) ≤ inf
ε>0

(
nε2 + logNKL

(
(Pθ)θ∈Θ0 , ε

))
.

Proof. Recall the “golden formula” (Lecture 7):

I(θ;Xn) = min
QXn

Eθ∼π
[
DKL(P

⊗n
θ ∥QXn)

]
.

Let Q1, . . . , QN be an ε-covering of (Pθ)θ∈Θ0 under KL, where N = NKL((Pθ)θ∈Θ0 , ε). Choose

QXn :=
1

N

N∑
i=1

Q⊗n
i .

Then for any θ ∈ Θ0,

DKL

(
P⊗n
θ

∥∥∥ 1

N

N∑
i=1

Q⊗n
i

)
= EP⊗n

θ

[
log

P⊗n
θ

1
N

∑N
i=1Q

⊗n
i

]

≤ EP⊗n
θ

[
min
i∈[N ]

log
P⊗n
θ

Q⊗n
i

+ logN

]
(since

∑
xi ≥ maxxi)

≤ min
i∈[N ]

EP⊗n
θ

[
log

P⊗n
θ

Q⊗n
i

]
+ logN

= min
i∈[N ]

nDKL(Pθ∥Qi) + logN

≤ nε2 + logN.

Taking expectation over θ ∼ π and then infimum over ε > 0 yields the result.

9.2.4 A diagram: global Fano

For hyperparameters Θ0 ⊆ Θ and ε, δ > 0:

(1) Find a metric d and a function h so that mina∈A[L(θ, a) + L(θ′, a)] ≥ h(d(θ, θ′)), then take a
δ-packing of Θ0 under d.

(2) Find an ε-covering of (Pθ)θ∈Θ0 under KL.

(3) Apply Fano to obtain

r∗ ≳
h(δ)

2

(
1−

logNKL

(
(Pθ)θ∈Θ0 , ε

)
+ nε2 + log 2

logM(Θ0, d, δ)

)
.

Optimize over (Θ0, δ, ε).
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9.2.5 Example 2.1 (Gaussian location model)

Let X1, . . . , Xn
i.i.d.∼ N (θ, Id) with unknown θ ∈ Rd.

Target.

inf
θ̂
sup
θ

Eθ
[∥∥∥θ̂ − θ

∥∥∥
p

]
≳p


d1/p√
n
, 2 ≤ p <∞,√

log d

n
, p = ∞.

Proof of the lower bound. Choose Θ0 = {θ ∈ Rd : ∥θ∥2 ≤ r}. Then for any ε, δ > 0, global
Fano gives

r∗ ≳ δ

(
1−

logNKL

(
{N (θ, Id)}θ∈Θ0 , ε

)
+ nε2 + log 2

logM(Θ0, ∥·∥p , δ)

)

= δ

(
1−

logN
(
Θ0, ∥·∥2 ,

√
2 ε
)
+ nε2 + log 2

logM(Θ0, ∥·∥p , δ)

)
,

since DKL(N (θ, Id)∥N (θ′, Id)) =
1
2 ∥θ − θ′∥22.

Choice of ε. Choose ε = r/
√
2, so that logN(Θ0, ∥·∥2 ,

√
2 ε) = logN(Θ0, ∥·∥2 , r) = log 1 = 0.

Choice of δ/r. For p ∈ (2,∞) choose δ/r = d1/p−1/2, so that logM(Θ0, ∥·∥p , δ) ≳ d. For
p = ∞ choose δ/r ≍ 1, so that logM(Θ0, ∥·∥∞ , δ) ≳ log d.

Choice of r. Now we have

r∗ ≳


r d1/p−1/2

(
1− C1nr

2 + log 2

C2d

)
, p ∈ (2,∞),

r

(
1− C1nr

2 + log 2

C2 log d

)
, p = ∞.

Thus choosing r =
√
d/n for p ∈ (2,∞) and r =

√
(log d)/n for p = ∞ yields

r∗ ≳


d1/p√
n
, 2 < p <∞,√

log d

n
, p = ∞.

9.2.6 Example 2.2 (Nonparametric density estimation)

Let X1, . . . , Xn
i.i.d.∼ f on [0, 1] with

∥∥f (s)∥∥∞ ≤ 1 (i.e., the function space is Hs).

Target. For p ∈ [1,∞),

inf
f̂

sup
f∈F

Ef
[∥∥∥f̂ − f

∥∥∥
p

]
≳ n−

s
2s+1 .
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Proof of the lower bound. Consider Hs
0 ⊆ Hs with

Hs
0 := {f ∈ Hs : f ≥ 1/2 on [0, 1]}.

Then for f, g ∈ Hs
0,

DKL(f∥g) ≤ χ2(f∥g) ≤ 2 ∥f − g∥22 .

Hence
NKL(Hs

0, ε) ≤ N
(
Hs

0, ∥·∥2 , ε/
√
2
)
≤ N

(
Hs, ∥·∥2 , ε/

√
2
)
.

By global Fano, for any ε, δ > 0,

r∗ ≳ δ

(
1− logNKL(Hs

0, ε) + nε2 + log 2

logM(Hs
0, ∥·∥p , δ)

)

≳ δ

(
1− C1ε

−1/s + nε2 + log 2

C2δ−1/s

)
,

by the metric entropy bounds for Hs
0. Choosing ε ≍ δ ≍ n−s/(2s+1) gives r∗ = Ω

(
n−s/(2s+1)

)
.

9.2.7 Example 2.3 (Isotonic regression)

Let X1, . . . , Xn
i.i.d.∼ PX , where PX (known or unknown) has a bounded density on [0, 1]. Conditioned

on Xn, let Yi
ind∼ N (f(Xi), 1) with f ∈ Fm = {f : [0, 1] → [0, 1] : f is increasing}.

Target. For all p ∈ [1,∞),

inf
f̂

sup
f∈Fm

Ef
[∥∥∥f̂ − f

∥∥∥
p

]
≳p n

−1/3.

Proof of the lower bound. Since PX has a bounded density,

DKL(Pf∥Pf ′) =
1

2

∥∥f − f ′
∥∥2
L2(PX)

= O(1)
∥∥f − f ′

∥∥2
2
.

Therefore
NKL

(
(Pf )f∈Fm , ε

)
≤ N

(
Fm, ∥·∥2 ,

ε

O(1)

)
.

By global Fano,

r∗ ≳ δ

(
1−

logN
(
Fm, ∥·∥2 , ε/O(1)

)
+ nε2 + log 2

logM(Fm, ∥·∥p , δ)

)

≳ δ

(
1− c1/ε+ nε2 + log 2

1/δ

)
,

using logN(Fm, ∥·∥p , ε) ≍p 1/ε. Choosing ε ≍ n−1/3 and δ ≍ n−1/3 yields r∗ = Ω(n−1/3).

9.2.8 Example 2.4 (Convex regression)

Same setting as Example 2.3, but with Fm replaced by

Fc := {f : [0, 1] → [0, 1] : f is convex}.
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Target. For p ∈ [1,∞),

inf
f̂

sup
f∈Fc

Ef
[∥∥∥f̂ − f

∥∥∥
p

]
≳p n

−2/5.

Proof sketch. Similar to Example 2.3, now with logN(Fc, ∥·∥p , ε) ≍p 1/
√
ε.

9.2.9 Example 2.5 (Sparse linear regression)

Let Y ∼ N (Xθ, In) with fixed design X ∈ Rn×d, where all singular values of X are O(
√
n). The

unknown parameter θ ∈ Rd is sparse in the sense that

∥θ∥q ≤ R for some q ∈ (0, 1).

Target. For small enough R < f(n, d),

inf
θ̂

sup
∥θ∥q≤R

Eθ
[∥∥∥θ̂ − θ

∥∥∥
p

]
≳p,q Rq/p

(
log d

n

) p−q
2p

.

Proof of the lower bound. 1. ℓp-packing of Bq(R). Let Bq(R) := {θ ∈ Rd : ∥θ∥q ≤ R}. Then

logM
(
Bq(R), ∥·∥p , δ

)
≳

(
R

δ

) pq
p−q

log d if δ ≫ Rd1/p−1/q.

2. KL covering of P := {N (Xθ, In) : ∥θ∥q ≤ R}. For θ, θ′,

DKL

(
N (Xθ, In)∥N (Xθ′, In)

)
=

1

2

∥∥X(θ − θ′)
∥∥2
2
= O(n)

∥∥θ − θ′
∥∥2
2
.

Hence

logNKL(P, ε) ≤ logN
(
Bq(R), ∥·∥2 ,

ε

O(
√
n)

)
≲

(√
nR

ε

) 2q
2−q

log d if ε≫ R
√
nd1/2−1/q.

Now choose

ε ≍ nq/4Rq/2(log d)(2−q)/4, δ = Rq/p
(
log d

n

) p−q
2p

.

Then

logM(δ) ≳ Rqnq/2(log d)1−q/2, logNKL(ε) ≲ ε2 ≲ Rqnq/2(log d)1−q/2,

and global Fano gives the stated lower bound.

9.3 Special topic: generalized Fano with χ2-informativity

Since the proof of Fano is simply DPI, replacing KL by other f -divergences also leads to meaningful
Bayes risk lower bounds.
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Theorem 9.10 (Generalized Fano with χ2-informativity). For θ ∼ π, it holds that

P
(
L(θ,X) ≥ 0

)
≥ 1− p0 −

√
p0 Iχ2(θ;X),

where

p0 := sup
a
π
(
L(θ, a) < 0

)
is the small-ball probability,

and

Iχ2(θ;X) := inf
QX

χ2
(
PθX∥πθQX

)
= inf

QX

Eθ∼π
[
χ2
(
PX|θ∥QX

)]
is the χ2-informativity.

Proof. Apply DPI to the mapping (θ,X) 7→ 1{L(θ,X) ≥ 0}:

PθX −→ 1{L(θ,X) ≥ 0} and πθQX −→ 1{L(θ,X) ≥ 0}.

This yields Bernoulli distributions Bern(P(L(θ,X) ≥ 0)) and Bern(≥ 1− p0). Hence

χ2(PθX∥πθQX) ≥ χ2
(
Bern(P(L(θ,X) ≥ 0))

∥∥∥ Bern(≥ 1− p0)
)

≥
(
P(L(θ,X) ≥ 0)− (1− p0)

)2
p0(1− p0)

if P(L(θ,X) ≥ 0) ≤ 1− p0.

Taking the infimum over QX and rearranging gives the stated inequality.

Similarly, we have an entropic upper bound of Iχ2(θ;X) based on χ2-covering.

Theorem 9.11 (Entropic upper bound for χ2-informativity). Let P = (Pθ)θ∈Θ and suppose
supp(π) ⊆ Θ. Then for θ ∼ π,

Iχ2(θ;X) + 1 ≤ inf
ε>0

(1 + ε2)Nχ2(P, ε),

where

Nχ2(P, ε) := min

{
n : min

Q1,...,Qn

sup
P∈P

min
i∈[n]

χ2(P∥Qi) ≤ ε2
}
.

Proof. Exercise.

9.3.1 Example 3.1 (Gaussian model with uniform prior)

Let X ∼ N (θ, Id) with θ ∼ Unif(B2(R)) (denote this prior by π).

Target.

r∗π := inf
θ̂
Eθ∼π

[∥∥∥θ̂ − θ
∥∥∥2
2

]
≳ d if R = Ω(

√
d).
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Failure of mutual information. For ∆ ∈ (0, R), the small-ball probability is

p∆ = sup
a
π
(
∥θ − a∥22 ≤ ∆2

)
=

(
∆

R

)d
.

For mutual information, the entropic upper bound gives

I(θ;X) ≤ inf
ε>0

(
logN(B2(R), ∥·∥2 , ε) + ε2

)
≤ inf

ε>0

(
d log

3R

ε
+ ε2

)
∼ d log

R√
d
, R≫

√
d.

Therefore Fano gives

r∗π ≳ sup
∆>0

∆2

(
1−

d log R√
d
+ log 2

d log R
∆

)
.

Usually one matches

d log
R√
d
= (1− p) d log

R

∆
=⇒ ∆ = d

1
2(1−p)R

− p
1−p , for some constant p > 0.

Thus
r∗π = Ω

(
d

1
1−pR

− 2p
1−p

)
= Ω

(
d (d/R2)

p
1−p

)
,

which is weaker than Ω(d).

Proof using χ2-informativity. The entropic upper bound gives

Iχ2(θ;X) + 1 ≤ inf
ε>0

(1 + ε2)N
(
B2(R), ∥·∥2 ,

√
log(1 + ε2)

)
,

since χ2(N (θ, Id)∥N (θ′, Id)) = e∥θ−θ
′∥22 − 1. Using the crude covering bound N(B2(R), ∥·∥2 , η) ≤

(3R/η)d,

Iχ2(θ;X) + 1 ≤ inf
ε>0

(1 + ε2)

(
3R√

log(1 + ε2)

)d
= exp

(
d log

O(1)R√
d

)
, R > C

√
d,

by choosing 1 + ε2 = ed.
Therefore, generalized Fano gives

r∗π ≳ sup
∆>0

∆2

1−
(
∆

R

)d
−

√(
∆

R

)d
· exp

(
d log

O(1)R√
d

) .

The underbraced term can be made ≤ 1/2 by taking ∆ = c
√
d for a small constant c. Hence

r∗π = Ω(d).

9.3.2 Example 3.2: ridge bandits

9.3.3 Setup and target

Model. rt ∼ N
(
f(⟨θ∗, at⟩), 1

)
for θ∗ ∼ Unif(Sd−1). Here f : [−1, 1] → R is a known increasing

link function with f(0) = 0. Define

g(x) := max{|f(x)| , |f(−x)|}.



120 Lecture 9: Advanced Fano’s Method

Target statement. Define a recursive sequence with a large constant C > 0:

ε1 = C

√
log(1/δ)

d
, ε2t+1 = ε2t +

C

d
g(εt)

2.

Then for any interactive learner,

P
(
|⟨θ∗, as⟩| ≤ εs for all 1 ≤ s ≤ t

)
≥ 1− tδ.

Remarks.

(1) The sequence {εt} is a pointwise upper bound on the learning trajectory of any algorithm.

(2) The growth ε2t+1 − ε2t increases with t: interactive learning becomes faster and faster.

9.3.4 Intuition: mutual information is not strong enough

Let It = I(Ht; θ
∗) := I(at, rt; θ∗). Then

It+1 − It = I
(
θ∗; rt+1 | Ht, at+1

)
≤ E

[
DKL

(
N (f(⟨θ∗, at+1⟩), 1)∥N (0, 1)

)]
(golden formula)

=
1

2
E
[
f(⟨θ∗, at+1⟩)2

]
.

We aim to upper bound this information gain. A key observation is that

I(θ∗; at+1) ≤ I(θ∗;Ht) = It,

so at+1 is “constrained” in information and we expect ⟨θ∗, at+1⟩ to be small.
The tempting (but false) intuition is:

I(θ∗; a) ≤ dε2 =⇒ |⟨θ∗, a⟩| ≤ ε w.h.p. (∗)

If (∗) were true, we would get the recursion by the correspondence It ≲ dε2t .
However, mutual information is not strong enough to ensure (∗): Fano only gives

P
(
|⟨θ∗, a⟩| ≤ ε

)
≥ 1− I(θ∗; a) + log 2

c dε2
,

which is not small enough to apply a union bound!

9.3.5 Proof using χ2-informativity

Let

Et :=
t⋂

s=1

{
|⟨θ∗, as⟩| ≤ εs

}
.

Define a slight variant of χ2-informativity:

Iχ2(X;Y | E) := inf
QY

χ2
(
PXY |E∥PX|EQY

)
.

Then we can still get

P
(
|⟨θ∗, a⟩| ≤ ε | E

)
≥ 1− c1e

−c0dε2
√
Iχ2(θ∗; a | E) + 1.

(For fixed a, P(|⟨θ∗, a⟩| ≤ ε) ≤ e−c0dε
2
.)
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Key recursion. The crux is to establish:

Iχ2(θ∗;Ht | Et) + 1 ≤ eg(εt)
2

P(Et | Et−1)2

(
Iχ2(θ∗;Ht−1 | Et−1) + 1

)
. (∗)

If (∗) holds, then

Iχ2(θ∗;Ht | Et) + 1 ≤
t∏

s=1

eg(εs)
2

P(Es | Es−1)2

=
1

P(Et)2
exp

∑
s≤t

g(εs)
2

 .

Therefore

P(Et+1 | Et) ≥ 1− c1e
−c0dε2t+1

√
Iχ2(θ∗; at+1 | Et) + 1

≥ 1− c1e
−c0dε2t+1

√
Iχ2(θ∗;Ht | Et) + 1 (DPI)

≥ 1− c1
P(Et)

exp

−c0dε2t+1 +
1

2

∑
s≤t

g(εs)
2

 .

The recursion ensures that the exponent is ≤ −c0dε21 ≤ −c′ log(1/δ). Consequently,

P(Et+1) = P(Et)P(Et+1 | Et) ≥ P(Et)− δ.

Iterating yields P(Et) ≥ 1− tδ.

Proof of (∗).

Iχ2(θ∗;Ht | Et) + 1

= inf
QHt

∫
P(θ∗, Ht | Et)2

π(θ∗)QHt(Ht)
dθ∗ dat drt

≤ inf
QHt−1

∫ [
1(Et)
P(Et)

π(θ∗)
∏t
s=1 ps(as | Hs−1)φ(rs − f(⟨θ∗, as⟩))

]2
π(θ∗)QHt−1(Ht−1) pt(at | Ht−1)φ(rt)

dθ∗ dat drt

= inf
QHt−1

∫ [
1(Et)
P(Et)

π(θ∗)
∏t−1
s=1 ps(as | Hs−1)φ(rs − f(⟨θ∗, as⟩))

]2
π(θ∗)QHt−1(Ht−1)

pt(at | Ht−1) e
f(⟨θ∗,at⟩)2 dθ∗ dat drt−1.

Here we used that the last-step likelihood ratio contributes a factor ef(⟨θ
∗,at⟩)2 , and on Et we have

f(⟨θ∗, at⟩)2 ≤ g(εt)
2. Also,

1(Et)

P(Et)
≤ 1(Et−1)

P(Et−1)
· 1

P(Et | Et−1)
.

Therefore

Iχ2(θ∗;Ht | Et) + 1 ≤ eg(εt)
2

P(Et | Et−1)2

(
Iχ2(θ∗;Ht−1 | Et−1) + 1

)
,

which is (∗).
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Lecture 10: Entropic upper bounds of density
estimation

10.1 Setup and overview

Last lecture: use covering/packing to prove statistical lower bounds via Fano.

This lecture: they can also prove upper bounds.

Density estimation. Let X1, . . . , Xn
iid∼ P , where P ∈ P is an unknown distribution. The

target is: for a divergence/distance D ∈ {DKL,TV, H
2}, construct an estimator P̂ = P̂ (Xn) such

that
sup
P∈P

EXn∼P⊗n

[
D(P, P̂ )

]
is small.

Overview of results

• KL (Yang–Barron). There exists P̂ such that

sup
P∈P

EP
[
DKL(P∥P̂ )

]
≲ inf

ε>0

(
ε2 +

1

n
logNKL(P, ε)

)
.

• TV (Yatracos). There exists P̂ such that

sup
P∈P

EP
[
TV2(P, P̂ )

]
≲ inf

ε>0

(
ε2 +

1

n
logNTV(P, ε)

)
.

• Hellinger (Le Cam–Birgé). There exists P̂ such that

sup
P∈P

EP
[
H2(P, P̂ )

]
≲ inf

ε>0

(
ε2 +

1

n
logNH(P, ε)

)
.

Examples.

1. For finite-dimensional models P with d parameters, usually

logND(P, ε) ≃ d log
1

ε
(volume bound).

In this case,

inf
P̂

sup
P∈P

EP
[
D(P, P̂ )

]
≲ inf

ε>0

(
ε2 +

d

n
log

1

ε

)
≲

d log n

n
,

usually optimal up to a log n factor.

123
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2. For nonparametric classes P with

logND(P, ε) ≃ ε−d,

we have

inf
P̂

sup
P∈P

EP
[
D(P, P̂ )

]
≲ inf

ε>0

(
ε2 +

1

nεd

)
≲ n−

2
2+d .

10.2 Yang–Barron: progressive mixing / online-to-batch conver-
sion

10.2.1 An “online” guarantee

Similar to global Fano, let P1, . . . , PN be an ε-covering of P, i.e.

sup
P∈P

min
i∈[N ]

DKL(P∥Pi) ≤ ε2, [N ] := {1, 2, . . . , N}.

Let QXn+1 be the average product distribution:

QXn+1 :=
1

N

N∑
i=1

P
⊗(n+1)
i .

Lemma 10.1.

sup
P∈P

DKL

(
P⊗(n+1) ∥QXn+1

)
≤ (n+ 1)ε2 + logN.

Proof. Similar to global Fano: for any P ∈ P,

DKL

(
P⊗(n+1) ∥QXn+1

)
= EXn+1∼P⊗(n+1)

[
log

P⊗(n+1)(Xn+1)
1
N

∑N
i=1 P

⊗(n+1)
i (Xn+1)

]

≤ EXn+1∼P⊗(n+1)

[
min
i∈[N ]

log
P⊗(n+1)(Xn+1)

P
⊗(n+1)
i (Xn+1)

+ logN

]
≤ min

i∈[N ]
DKL

(
P⊗(n+1) ∥P⊗(n+1)

i

)
+ logN

≤ (n+ 1)ε2 + logN.

This is called an online guarantee as it concerns the density estimation performance for joint

distributions of X1, . . . , Xn+1
iid∼ P .

10.2.2 Online-to-batch conversion

Given QXn+1 , we can define

P̂ (x) :=
1

n+ 1

n∑
t=0

QXt+1=x|Xt .
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Note that P̂ is a well-defined estimator and depends on Xn. Expanding out the definition of QXn+1

gives the progressive mixing form

P̂ (x) =
1

n+ 1

n∑
t=0

1
N

∑N
i=1

(∏
s≤t Pi(Xs)

)
Pi(x)

1
N

∑N
i=1

∏
s≤t Pi(Xs)

∈ conv(P).

The Yang–Barron result follows from the next lemma.

Lemma 10.2.

EP
[
DDKL

(P∥P̂ )
]
≤ 1

n+ 1
DDKL

(
P⊗(n+1) ∥QXn+1

)
.

Proof.

EP
[
DDKL

(P∥P̂ )
]
= EP

[
DDKL

(
P
∥∥∥ 1

n+ 1

n∑
t=0

QXn+1|Xt

)]

≤ 1

n+ 1

n∑
t=0

EP
[
DDKL

(P∥QXn+1|Xt)
]

(convexity)

=
1

n+ 1
DDKL

(
P⊗(n+1) ∥QXn+1

)
(chain rule).

Remark 10.3.

1. This online-to-batch conversion provides a general paradigm for converting “redundancy”
bounds to prediction risk bounds, even beyond i.i.d. data (see more next lecture).

2. The Yang–Barron estimator is often improper (i.e. P̂ ∈ conv(P) but often P̂ /∈ P), and
computationally hard to obtain.

10.3 Yatracos: minimum distance estimator for TV

The TV density estimation result is a corollary of the following general result in the robust case.

Theorem 10.4. Let X1, . . . , Xn
iid∼ P , and let Q1, . . . , QN be arbitrary candidate distributions.

Then there exists an estimator P̂ such that

TV(P, P̂ ) ≤ 3 min
i∈[N ]

TV(P,Qi) + εn, with E[ε2n] = O
( logN

n

)
.

10.3.1 Proof via a minimum-distance estimator

We prove the theorem using a minimum-distance estimator:

P̂ = argmin
Q∈{Q1,...,QN}

T̃V(Pn, Q),

where

Pn =
1

n

n∑
i=1

δXi
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is the empirical distribution, and T̃V is a pseudo-distance.

(What if T̃V = TV? If Q1, . . . , QN are all continuous distributions, since Pn is discrete,
TV(Pn, Qi) = 1 for all i, so it’s not useful.)

Let us defer the choice of T̃V and proceed to the analysis. Let

Q∗ = argmin
Q∈{Q1,...,QN}

TV(P,Q).

Then

TV(P̂ , P ) ≤ TV(P̂ , Q∗) + TV(Q∗, P )

hope
≤ T̃V(P̂ , Q∗) + TV(Q∗, P )

≤ T̃V(P̂ , Pn) + T̃V(Pn, Q
∗) + TV(Q∗, P )

≤ 2T̃V(Pn, Q
∗) + TV(Q∗, P ) (definition of P̂ )

≤ 2T̃V(Pn, P ) + 2T̃V(P,Q∗) + TV(P,Q∗)

hope
≤ 2T̃V(Pn, P ) + 3TV(P,Q∗).

To make the analysis go through, we need:

1. T̃V(P,Q) ≤ TV(P,Q) for all P,Q.

2. T̃V(Qi, Qj) = TV(Qi, Qj) for all i, j ∈ [N ].

3. E
[
T̃V(Pn, P )

2
]
is small.

Motivated by (1)+(2), define

T̃V(P,Q) := sup
A∈A

∣∣P (A)−Q(A)
∣∣,

where A = {Aij : i, j ∈ [N ]} with

Aij := {x : qi(x) ≥ qj(x)}.

Verification of (1)–(3).

1. (1) is immediate since TV(P,Q) = supA |P (A)−Q(A)|.

2. (2) is also true since

TV(Qi, Qj) =
∣∣Qi(Aij)−Qj(Aij)

∣∣ ≤ T̃V(Qi, Qj).

3. (3) Note that |A| ≤
(
N
2

)
, and for fixed A,

P
(
|P (A)− Pn(A)| > ε

)
≤ 2 exp(−2nε2) (Hoeffding).

Therefore, a union bound over A gives

P
(
T̃V(P, Pn) > ε

)
≤ 2N2 exp(−2nε2).
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Consequently,

E
[
T̃V

2
(P, Pn)

]
=

∫ ∞

0
P
(
T̃V

2
(P, Pn) ≥ r

)
dr

≤
∫ ∞

0
min{1, 2N2e−2nr} dr

≤ log(2N2)

2n
+

∫ ∞

log(2N2)/(2n)
2N2e−2nr dr

= O
( logN

n

)
.

Remark 10.5.

1. The Yatracos estimator is proper, i.e. P̂ ∈ P.

2. The above proof also yields a high-probability guarantee on TV(P̂ , P ).

3. It is known that the constant 3 is not improvable if the estimator is required to be proper.

4. There are some recent interests in computationally efficient versions of Yatracos.

10.4 Le Cam–Birgé: pairwise comparison

10.4.1 Composite hypothesis testing

• H0: X1, . . . , Xn ∼ P with P ∈ P.

• H1: X1, . . . , Xn ∼ Q with Q ∈ Q.

• Test: T = T (Xn) ∈ {0, 1}.

• Type-I error: sup
P∈P

P⊗n(T = 1).

• Type-II error: sup
Q∈Q

Q⊗n(T = 0).

10.4.2 A testing lemma in terms of Hellinger distance

We use the convention

H2(P,Q) :=

∫
(
√
p−√

q)2 dµ, H(P,Q) :=
√
H2(P,Q),

so that

1− H2(P,Q)

2
= 1− 1

2

∫
(
√
p−√

q)2 dµ =

∫
√
pq dµ.

Lemma 10.6.

inf
T

(
sup
P∈P

P⊗n(T = 1) + sup
Q∈Q

Q⊗n(T = 0)
)

≤ exp
(
− n

2
H2
(
conv(P), conv(Q)

))
,

where
H2
(
conv(P), conv(Q)

)
:= inf

P∈conv(P)
inf

Q∈conv(Q)
H2(P,Q).
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Proof. In Lecture 8 we know that

LHS = 1− TV
(
conv(P⊗n), conv(Q⊗n)

)
,

where P⊗n := {P⊗n : P ∈ P} and TV(P,Q) := infP∈P, Q∈QTV(P,Q). Moreover TV(P,Q) ≥
1
2H

2(P,Q), hence

LHS ≤ 1− 1

2
H2
(
conv(P⊗n), conv(Q⊗n)

)
≤
(
1− 1

2
H2
(
conv(P), conv(Q)

))n
(next lemma)

≤ exp
(
− n

2
H2
(
conv(P), conv(Q)

))
.

Lemma 10.7.

1− 1

2
H2
(
conv

( n⊗
i=1

Pi
)
, conv

( n⊗
i=1

Qi

))
≤

n∏
i=1

(
1− 1

2
H2
(
conv(Pi), conv(Qi)

))
.

Proof. Suffices to prove the case n = 2. Note that

1− 1

2
H2(P,Q) =

∫
√
pq.

Any PXY ∈ conv(P1⊗P2) can be written as PXY = EZ
[
PX|ZPY |Z

]
with PX|Z ∈ P1 and PY |Z ∈ P2.

Then

1− 1

2
H2(PXY , QXY ) =

∫
√
pXY qXY

=

∫
x

√
pXqX

∫
y

√
pY |XqY |X

=

∫
x

√
pXqX

(
1− 1

2
H2(PY |X , QY |X)

)
≤
∫
x

√
pXqX

(
1− 1

2
H2
(
conv(P2), conv(Q2)

))
since EZ|X [PY |Z ] ∈ conv(P2)

≤
(
1− 1

2
H2
(
conv(P1), conv(Q1)

))(
1− 1

2
H2
(
conv(P2), conv(Q2)

))
since EZ [PX|Z ] ∈ conv(P1).

This proves the n = 2 case; the general n follows by induction.

Remark 10.8. The same proof holds for all Rényi divergences

Dα =
1

α− 1
log

∫
pαq1−α.



10.4. LE CAM–BIRGÉ: PAIRWISE COMPARISON 129

10.4.3 A corollary for testing two Hellinger balls

This lemma will be applied in the following setting:

H0 : X1, . . . , Xn ∼ P, P ∈ BH(P0, ε) := {P : H2(P, P0) ≤ ε2},

H1 : X1, . . . , Xn ∼ Q, Q ∈ BH(Q0, ε).

Corollary 10.9. If H(P0, Q0) ≥ 4ε, then

inf
T

(
sup

P∈BH(P0,ε)
P⊗n(T = 1) + sup

Q∈BH(Q0,ε)
Q⊗n(T = 0)

)
≤ exp

(
− n

8
H2(P0, Q0)

)
.

Proof. Since (P,Q) 7→ H2(P,Q) is jointly convex (Lecture 3), both balls BH(P0, ε) and BH(Q0, ε)
are convex. Therefore the previous lemma applies once we lower bound

H
(
BH(P0, ε), BH(Q0, ε)

)
:= inf

P∈BH(P0,ε)
inf

Q∈BH(Q0,ε)
H(P,Q)

≥ inf
P∈BH(P0,ε)

inf
Q∈BH(Q0,ε)

(
H(P0, Q0)−H(P, P0)−H(Q,Q0)

)
≥ H(P0, Q0)− 2ε

≥ 1

2
H(P0, Q0),

where the last step uses H(P0, Q0) ≥ 4ε. Plugging into the testing lemma yields the claimed
exponent n

2 · (12H(P0, Q0))
2 = n

8H
2(P0, Q0).

10.4.4 Le Cam–Birgé pairwise comparison estimator

Let P1, . . . , PN be a maximal ε-packing of P under H, i.e.

H(Pi, Pj) ≥ ε, ∀i ̸= j.

Since a maximal ε-packing is also an ε-covering,

sup
P∈P

min
i∈[N ]

H(P, Pi) ≤ ε.

For δ = 4ε and H(Pi, Pj) > δ, construct a test Tij for

H0 : P ∈ BH(Pi, ε) vs. H1 : P ∈ BH(Pj , ε).

By the above corollary, there exists Tij (and Tji := 1− Tij) such that

sup
P∈BH(Pi,ε)

P(Tij = 1) ≤ exp
(
− n

8
H(Pi, Pj)

2
)
.

Now define the following estimator.

• For i ∈ [N ], let
ψi := max

{
H(Pi, Pj) : Tij = 1, H(Pi, Pj) > δ

}
,

with the convention ψi = 0 if no such j exists.

• Set P̂ = Pî, where î = argmini∈[N ] ψi.
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Theorem 10.10. If nε2n ≥ max{logNH(P, εn), 1}, then the above estimator P̂ with ε = εn satisfies

sup
P∈P

P
(
H(P, P̂ ) > 4tεn

)
≤ Ce−t

2
, ∀t ≥ 1.

Consequently,

sup
P∈P

E
[
H2(P, P̂ )

]
= O(ε2n).

Proof. Since {P1, . . . , PN} is an ε-covering, WLOG assume H(P, P1) ≤ ε. For δ = 4ε and t ≥ 1,

{H(P̂ , P1) ≥ tδ} = {H(Pî, P1) ≥ tδ}

⊆
{
max{ψî, ψ1} ≥ tδ

}
= {ψ1 ≥ tδ} (ψî ≤ ψ1)

⊆
⋃

j:H(P1,Pj)≥tδ

{T1j = 1}.

(One of Tî,1 and T1,̂i must be 1.) By a union bound,

P
(
H(P̂ , P1) ≥ tδ

)
≤ N exp

(
− n

8
(tδ)2

)
= NH(P, ε) e−2nt2ε2 .

Since nε2 ≥ max{1, logNH(P, ε)}, this probability is at most O(e−t
2
). Finally,

P
(
H(P̂ , P ) ≥ tδ

)
≤ P

(
H(P̂ , P1) ≥ tδ − ε

)
,

by the triangle inequality H(P̂ , P ) ≤ H(P̂ , P1) +H(P1, P ).

Remark 10.11.

1. P̂ is proper, i.e. P̂ ∈ P.

2. A high-probability upper bound on H(P̂ , P ) is established above.

10.5 Refinement via local entropy

It turns out that the global entropy logNH(P, ε) can be improved to a local entropy logNloc(P, ε),
with

Nloc(P, ε) := sup
P∈P

sup
η≥ε

NH

(
BH(P, η) ∩ P, η

2

)
.

(In other words, we are using balls of radius η/2 to cover balls of radius η.)

Example. For many d-dimensional families P, we usually have

logNH(P, ε) ≃ d log
1

ε
, logNloc(P, ε) ≃ d.

Therefore, using local entropy improves the Hellinger result from O
(d logn

n

)
to O

(
d
n

)
.

Theorem 10.12. The same guarantee holds for the Le Cam–Birgé pairwise comparison estimator,
with NH replaced by Nloc.



10.6. SPECIAL TOPIC: HIGH-PROBABILITY DENSITY ESTIMATION UNDER KL 131

Proof. Let 2ℓ ≤ t < 2ℓ+1. Decompose

{j ∈ [N ] : H(P1, Pj) ≥ tδ} ⊆
⋃
k≥ℓ

Ak, Ak := {j ∈ [N ] : 2kδ ≤ H(P1, Pj) < 2k+1δ}.

By a union bound,

P
(
H(P̂ , P1) ≥ tδ

)
≤ P(ψ1 ≥ tδ)

≤
∑
k≥ℓ

P
(
2kδ ≤ ψ1 < 2k+1δ

)
≤
∑
k≥ℓ

|Ak| exp
(
− n

8
(2kδ)2

)
.

To upper bound |Ak|, since {P1, . . . , PN} is an ε-packing,

|Ak| ≤M
(
{P ∈ P : 2kδ ≤ H(P1, P ) < 2k+1δ}, ε

)
≤M

(
BH(P1, 2

k+1δ) ∩ P, ε
)

≤ N
(
BH(P1, 2

k+1δ) ∩ P, ε/2
)

≤ Nloc(P, ε)k+4, (see lemma below).

Therefore,

P
(
H(P̂ , P1) ≥ tδ

)
≤
∑
k≥ℓ

exp
(
(k + 4) logNloc(P, ε)− 2nε2 4k

)
≤ e−Ω(4ℓ) = e−Ω(t2),

provided nε2 ≥ max{1, logNloc(P, ε)}.

Lemma 10.13. For η ≥ ε,

NH

(
BH(P, 2

kη) ∩ P, η
2

)
≤ Nloc(P, ε)k+1.

Proof. Induction on k. The base case k = 0 is the definition of Nloc(P, ε). For the inductive step,
first cover BH(P, 2kη)∩P using balls of radius 2k−1η, then cover each such ball using balls of radius
η/2. Writing Nk := NH(BH(P, 2

kη) ∩ P, η/2), this gives

Nk ≤ Nk−1N0 ≤ Nloc(P, ε)kNloc(P, ε) = Nloc(P, ε)k+1.

10.6 Special topic: High-probability density estimation under KL

Guest lecture by J. Qian on his recent work on high-probability density estimation under KL.
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Lecture 11: Universal Compression and Redun-
dancy

11.1 Motivation: compressing without knowing the source

In Lecture 1 we saw that for any distribution PXn on sequences xn = (x1, . . . , xn), there exists a
uniquely-decodable code f whose expected length satisfies

EPXn [ℓ(f(X
n))] ≤ H(PXn) + 1 (bits).

The catch: the code depends on PXn . In universal compression we want a single code (equivalently
a single distribution QXn) that performs well for every P in some class P.

11.1.1 Warm-up: a Bernoulli example

Suppose X1, . . . , Xn
i.i.d.∼ Ber(p), with unknown p ∈ [0, 1], and alphabet X = {0, 1}. Let

N1 := n1(X
n) =

n∑
i=1

1{Xi = 1}, N0 := n0(X
n) = n−N1.

A simple code:

(a) Encode the count N1 ∈ {0, 1, . . . , n} using log(n+ 1) bits.

(b) Given N1, the sequence Xn is determined by the set of indices where Xi = 1, of which there
are

(
n
N1

)
possibilities; encode this using log

(
n
N1

)
bits.

Thus

ℓ
(
f(Xn)

)
= log(n+ 1) + log

(
n

N1

)
.

Taking expectation under Ber(p)⊗n gives

E[ℓ(f(Xn))] = log(n+ 1) + E
[
log

(
n

N1

)]
≤ log(n+ 1) + nE

[
H
(
Ber(N1/n)

)] (
log

(
n

k

)
≤ nH

(
Ber(k/n)

))
≤ log(n+ 1) + nH

(
Ber
(
E[N1/n]

)) (
H(Ber(·)) is concave

)
= log(n+ 1) + nH

(
Ber(p)

)
,

where H(Ber(q)) = −q log q − (1− q) log(1− q). So we get a universal overhead of about log n bits.

133
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11.2 Minimax redundancy and sequential estimators

Any uniquely-decodable code induces a sub-probability distribution QXn via Kraft:

QXn(xn) := 2−ℓ(f(x
n)),

∑
xn

QXn(xn) ≤ 1.

Then for any distribution PXn ,

EPXn [ℓ(f(X
n))] = EPXn

[
log

1

QXn(Xn)

]
.

The “overhead” relative to the entropy is

EPXn

[
log

1

QXn(Xn)

]
−H(PXn) = EPXn

[
log

PXn(Xn)

QXn(Xn)

]
= DKL

(
PXn ∥QXn

)
.

Definition 11.1 (Minimax redundancy). For a model class P of distributions over X n, the (expected)
minimax redundancy is

Red(P) := inf
QXn

sup
PXn∈P

DKL

(
PXn ∥QXn

)
.

In many cases Red(P) = o(n) and is often on the order of log n.

11.2.1 Bernoulli model via Laplace and Krichevsky–Trofimov

Let
P =

{
Ber(p)⊗n : p ∈ [0, 1]

}
.

We construct QXn sequentially. For a prefix xt = (x1, . . . , xt) define

n1(x
t) :=

t∑
i=1

1{xi = 1}, n0(x
t) := t− n1(x

t).

Laplace (add-1) estimator. Define for t ≥ 0,

QXt+1|Xt(1 | xt) = n1(x
t) + 1

t+ 2
, QXt+1|Xt(0 | xt) = n0(x

t) + 1

t+ 2
.

(For t = 0 this gives QX1(1) = QX1(0) = 1/2.) Then

QXn(xn) =
n−1∏
t=0

QXt+1|Xt(xt+1 | xt)

=
(1 · 2 · · ·n1(xn)) (1 · 2 · · ·n0(xn))

2 · 3 · · · (n+ 1)
=
n1(x

n)!n0(x
n)!

(n+ 1)!
.

On the other hand, for any p ∈ [0, 1],

PXn(xn) = pn1(xn)(1− p)n0(xn) ≤
(n1(xn)

n

)n1(xn)(n0(xn)
n

)n0(xn)
.

Therefore

PXn(xn)

QXn(xn)
≤ (n+ 1)

(n1(xn)
n

)n1(xn)(n0(xn)
n

)n0(xn) n!

n1(xn)!n0(xn)!
= O(n), (by Stirling).

This implies

Red(QXn ;P) := sup
PXn∈P

DKL(PXn∥QXn) = sup
PXn∈P

EPXn

[
log

PXn(Xn)

QXn(Xn)

]
≤ log n+O(1).
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Krichevsky–Trofimov (add-12) estimator. Now define

QXt+1|Xt(1 | xt) =
n1(x

t) + 1
2

t+ 1
, QXt+1|Xt(0 | xt) =

n0(x
t) + 1

2

t+ 1
.

This is the add-12 / Krichevsky–Trofimov estimator. In this case

QXn(xn) =

n−1∏
t=0

QXt+1|Xt(xt+1 | xt)

=
1

n!

(1
2
· 3
2
· · ·
(
n1(x

n)− 1
2

))(1
2
· 3
2
· · ·
(
n0(x

n)− 1
2

))
=

(2n1(x
n)− 1)!! (2n0(x

n)− 1)!!

2n n!
.

Moreover,

PXn(xn)

QXn(xn)
≤

2nn!
(
n1(x

n)
)n1(xn)(n0(xn))n0(xn)

nn (2n1(xn)− 1)!! (2n0(xn)− 1)!!
= O(

√
n), (Stirling).

Therefore

Red(QXn ;P) ≤ log(C
√
n) =

1

2
log n+O(1).

This constant 1/2 turns out to be tight:

Red(P) =
1

2
log n+O(1).

11.3 Worst-case / pointwise redundancy and Shtarkov’s theorem

In the previous examples we implicitly used the fact that Red(P) ≤ R∗(P), where R∗(P) is a
worst-case (pointwise) analogue.

Definition 11.2 (Worst-case / pointwise redundancy).

R∗(P) := inf
QXn

sup
PXn∈P

sup
xn∈Xn

log
PXn(xn)

QXn(xn)
.

Remark 11.3 (Connection to log-loss regret). It is clear that Red(P) ≤ R∗(P). Also, R∗(P) treats
xn as an individual sequence rather than a random draw.

Let QXn =
∏n
t=1QXt|Xt−1 be a sequential predictor and define log-loss ℓlog(q, x) = log 1

q(x) .
Then for any individual sequence xn,

log
1

QXn(xn)
=

n∑
t=1

ℓlog
(
QXt|Xt−1(· | xt−1), xt

)
.

Similarly, for any P ∈ P,

log
1

PXn(xn)
=

n∑
t=1

ℓlog
(
PXt|Xt−1(· | xt−1), xt

)
.

Hence

R∗(P) = inf
QXn

sup
xn

{
n∑
t=1

ℓlog
(
QXt|Xt−1(· | xt−1), xt

)
− inf
P∈P

n∑
t=1

ℓlog
(
PXt|Xt−1(· | xt−1), xt

)}
.

So R∗(P) is the minimax regret under log-loss.
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Unlike Red(P), which can be hard to characterize, R∗(P) has a clean combinatorial expression.

Theorem 11.4 (Shtarkov sum / normalized maximum likelihood).

R∗(P) = log
( ∑
xn∈Xn

sup
PXn∈P

PXn(xn)
)
.

The quantity
∑

xn supP∈P P (x
n) is called the Shtarkov sum.

Proof. (Upper bound.) Let

Z :=
∑

xn∈Xn

sup
PXn∈P

PXn(xn), Q∗
Xn(xn) :=

1

Z
sup

PXn∈P
PXn(xn).

This Q∗ is the normalized maximum likelihood (NML) distribution. Then

sup
PXn∈P

sup
xn

log
PXn(xn)

Q∗
Xn(xn)

= logZ,

so R∗(P) ≤ logZ.
(Lower bound.) For any QXn ,

sup
P∈P

sup
xn

log
PXn(xn)

QXn(xn)
= sup

P∈P
sup
xn

(
log

PXn(xn)

Q∗
Xn(xn)

+ log
Q∗
Xn(xn)

QXn(xn)

)
= logZ + sup

xn
log

Q∗
Xn(xn)

QXn(xn)

≥ logZ +
∑
xn

Q∗
Xn(xn) log

Q∗
Xn(xn)

QXn(xn)

= logZ +DKL(Q
∗
Xn∥QXn) ≥ logZ.

Taking the infimum over QXn gives R∗(P) ≥ logZ.

11.3.1 Example: time-homogeneous Markov chains

This combinatorial nature of R∗(P) makes it easy to upper bound Red(P) for non-i.i.d. families.

Example 11.5 (First-order Markov chains). Let

P =
{
PXn = p(x1)

n−1∏
t=1

M(xt+1 | xt)
}

be the class of all time-homogeneous (first-order) Markov chains on state space [k] = {1, . . . , k}.

Claim 11.6.

Red(P) ≤ k(k − 1)

2
log n+Ok(1).

Proof. Apply the add-12 estimator to each row of the transition matrix. Define, for xt = (x1, . . . , xt),

nj→i(x
t) :=

t−1∑
s=1

1{xs = j, xs+1 = i}, nj(x
t) :=

t−1∑
s=1

1{xs = j}.
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If xt = j, set

QXt+1|Xt(i | xt) =
nj→i(x

t) + 1
2

nj(xt) +
k
2

.

Then for any xn ∈ [k]n,

PXn(xn)

QXn(xn)
=
p(x1)

1/k

k∏
j=1

∏
t∈[n−1]:
xt=j

M(xt+1 | j)
QXt+1|Xt(xt+1 | xt)

.

For each fixed j, the inner product behaves like a k-ary i.i.d. model and contributes a factor
O(

√
n) k−1 by the i.i.d. analysis. Hence

PXn(xn)

QXn(xn)
≤ k (C

√
n)k(k−1).

Taking logs and using Red(P) ≤ R∗(P) yields

Red(P) ≤ R∗(P) ≤ log
(
k(C

√
n)k(k−1)

)
=
k(k − 1)

2
log n+O(k2).

The same approach can be extended to other processes such as hidden Markov models (see, e.g.,
Gassiat (2018)).

11.4 Redundancy bounds for i.i.d. families

11.4.1 Entropic upper bound

By the global Fano proof (Lecture 9), we have the following entropy/covering-number upper bound.

Theorem 11.7 (Entropic upper bound).

Red
(
P⊗n) ≤ inf

ε>0

(
nε2 + logNKL(P, ε)

)
.

Example 11.8 (Parametric families). If P = (Pθ)θ∈Rd is a d-parameter family, typically logNKL(P, ε) ≍
d log(1/ε). Choosing ε ≍

√
d/n yields

Red
(
P⊗n) ≤ d

2
log

n

d
+O(d).

11.4.2 A variational formula: redundancy–capacity theorem

We begin with a variational representation of Red(P).

Theorem 11.9 (Redundancy–capacity theorem). Let P = (Pθ)θ∈Θ. Then

Red(P) = sup
ρ∈∆(Θ)

I(θ;X), where θ ∼ ρ, X | θ ∼ Pθ.

The quantity supρ I(θ;X) is the capacity of the “channel” θ 7→ X with law Pθ.
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Proof. The “golden formula” for mutual information (Lecture 7) states

I(θ;X) = inf
QX

Eθ∼ρ
[
DKL(Pθ∥QX)

]
.

Therefore

sup
ρ
I(θ;X) = sup

ρ
inf
QX

Eθ∼ρ[DKL(Pθ∥QX)]

= inf
QX

sup
ρ

Eθ∼ρ[DKL(Pθ∥QX)] (minimax theorem)

= inf
QX

sup
θ∈Θ

DKL(Pθ∥QX) = Red(P).

11.4.3 Rissanen’s lower bound

Rissanen’s program: find an estimator θ̂(Xn) such that

sup
θ∈Θ

Eθ
[
∥θ − θ̂(Xn)∥2

]
≤ ε2n.

Theorem 11.10 (Rissanen). Let Θ ⊆ Rd have non-empty interior. Then

Red
(
P⊗n) ≥ log Vold(Θ)− d

2
log
(2πe ε2n

d

)
.

Proof. Let θ ∼ ρ = Unif(Θ), and let h(·) denote differential entropy on Rd. Then

I(θ;Xn) = h(θ)− h(θ | Xn) = logVold(Θ)− h(θ | Xn).

Moreover,

h(θ | Xn) = h(θ − θ̂(Xn) | Xn) ≤ h(θ − θ̂(Xn)) (conditioning reduces entropy)

≤ d

2
log(2πe) +

1

2
log det

(
E
[
(θ − θ̂)(θ − θ̂)⊤

])
(Gaussian maximizes entropy for fixed covariance)

≤ d

2
log(2πe) +

d

2
log
(E∥θ − θ̂(Xn)∥2

d

) (
det(A) =

∏
i

λi ≤
(Tr(A)

d

)d)
≤ d

2
log
(2πe ε2n

d

)
.

By the redundancy–capacity theorem, Red(P⊗n) ≥ supρ I(θ;X
n), so the claim follows.

Example 11.11. In parametric families, typically Vold(Θ) = Ω
(
(1/n)d/2

)
and ε2n = O(d/n).

Therefore Rissanen’s bound gives

Red
(
P⊗n) ≥ d

2
log

n

d
−O(d).
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11.4.4 Haussler–Opper lower bound

The argument of Haussler & Opper (1997) chooses ρ to be a uniform mixture ρ = 1
M

∑M
i=1 δθi .

Lemma 11.12. For X | θ ∼ Pθ and 0 < λ ≤ 1,

I(θ;X) ≥ −Eθ,X
[
logEθ′

(Pθ′(X)

Pθ(X)

)λ]
,

where θ′ is an independent copy of θ (so θ′ ⊥⊥ (θ,X)).

Proof. Let

f(λ) := −Eθ,X
[
logEθ′

(Pθ′(X)

Pθ(X)

)λ]
.

Then f(1) = I(θ;X). Since cumulant generating functions are convex, f is concave in λ. A
calculation gives

f ′(λ) = Eθ,X [logPθ(X)]− Eθ,X

[
Eθ′
[
Pθ′(X)λ logPθ′(X)

]
Eθ′
[
Pθ′(X)λ

] ]
.

At λ = 1,

Eθ,X

[
Eθ′
[
Pθ′(X) logPθ′(X)

]
Eθ′
[
Pθ′(X)

] ]
= EX

[∫
p(θ′)Pθ′(X) logPθ′(X) dθ′∫

p(θ′)Pθ′(X) dθ′

]

=

∫ ∫
p(θ)p(θ′)Pθ(x) logPθ(x) dθ dθ

′ dx = Eθ,X [logPθ(X)],

so f ′(1) = 0. By concavity of f , for λ ≤ 1 we have f ′(λ) ≥ 0, hence f(λ) ≤ f(1) = I(θ;X).

Theorem 11.13 (Haussler–Opper).

Red
(
P⊗n) ≥ sup

ε>0
min

{nε2
2
, logMH(P, ε)

}
− log 2,

where MH(P, ε) is the ε-packing number of P under Hellinger distance.

Proof. Let Pθ1 , . . . , PθM be an ε-packing of P under Hellinger distance, and take ρ = 1
M

∑M
i=1 δθi .

Apply Lemma 11.12 with λ = 1
2 to (Xn | θ) ∼ P⊗n

θ :

I(θ;Xn) ≥ − 1

M

M∑
i=1

EP⊗n
θi

[
log
( 1

M

M∑
j=1

(P⊗n
θj

(Xn)

P⊗n
θi

(Xn)

)1/2)]

≥ − 1

M

M∑
i=1

log

(
1

M

M∑
j=1

EP⊗n
θi

[(P⊗n
θj

(Xn)

P⊗n
θi

(Xn)

)1/2])
(x 7→ − log x convex).

The inner expectation is the Hellinger affinity:

EP⊗n
θi

[(P⊗n
θj

(Xn)

P⊗n
θi

(Xn)

)1/2]
=

∫ √
dP⊗n

θi
dP⊗n

θj
=
(∫ √

dPθi dPθj

)n
=
(
1−

H2(Pθi , Pθj )

2

)n
.
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Since the family is an ε-packing, H2(Pθi , Pθj ) ≥ ε2 for i ̸= j, hence

(
1−

H2(Pθi , Pθj )

2

)n
≤
(
1− ε2

2

)n
≤ e−nε

2/2.

Therefore

I(θ;Xn) ≥ − log
( 1

M
+ e−nε

2/2
)
≥ min

{
logM,

nε2

2

}
− log 2,

using the elementary inequality 1
a +

1
b ≤ 2

min{a,b} . Finally, by redundancy–capacity, Red(P⊗n) ≥
supρ I(θ;X

n).

Example 11.14 (Parametric families). If typically logMH(P, ε) ≍ d log(1/ε), then the Haussler–
Opper bound gives

Red
(
P⊗n) ≳ d

2
log

n

Cd log n
.

11.5 Redundancy and prediction risk

Definition 11.15 (Prediction risk). The (next-symbol) prediction risk under KL is

Riskn(P) := inf
QXn+1|Xn

sup
PXn+1∈P

EPXn

[
DKL

(
PXn+1|Xn ∥QXn+1|Xn

)]
.

11.5.1 Mutual-information representation

If P = (Pθ)θ∈Θ, then

Riskn(P) = sup
ρ∈∆(Θ)

I(θ;Xn+1 | Xn), θ ∼ ρ, X | θ ∼ Pθ.

Proof.

Riskn(P) = inf
QXn+1|Xn

sup
ρ

Eθ∼ρ
[
DKL(PXn+1|Xn,θ∥QXn+1|Xn)

]
= sup

ρ
inf

QXn+1|Xn
Eθ∼ρ

[
DKL(PXn+1|Xn,θ∥QXn+1|Xn)

]
(minimax theorem)

= sup
ρ
I(θ;Xn+1 | Xn).

11.5.2 Redundancy–risk inequality

Let Redn(P) denote the minimax redundancy for sequences of length n. Then

Redn(P) ≤
n−1∑
t=0

Riskt(P).

Proof. By the chain rule for mutual information,

I(θ;Xn) =
n−1∑
t=0

I(θ;Xt+1 | Xt).
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Taking supρ of both sides gives

sup
ρ
I(θ;Xn) ≤

n−1∑
t=0

sup
ρ
I(θ;Xt+1 | Xt) =

n−1∑
t=0

Riskt(P).

Using redundancy–capacity, Redn(P) = supρ I(θ;X
n).

Remark 11.16 (Tightness for i.i.d. parametric models). For i.i.d. P⊗n with Θ ⊂ Rd, the MLE θ̂t
based on Xt typically satisfies

Eθ
[
DKL(Pθ∥Pθ̂t)

]
∼ d

2t
(Wilks’ theorem),

so Riskt ∼ d/(2t) and Redn ∼ (d/2) log n ∼
∑n

t=1Riskt.

11.5.3 Online-to-batch conversion for stationary processes

Assume each PXn+1 ∈ P is stationary, i.e.

PXt1 ,...,Xtk
= PXt1+t0 ,...,Xtk+t0

for all t0 ≥ 0.

Then

Riskn(P) ≤ 1

n
Red(P) +Mem(P),

where the memory term is

Mem(P) := sup
PXn+1∈P

1

n

n∑
t=1

I
(
Xn+1;X

n−t | Xn
n−t+1

)
.

Proof. LetQXn+1 =
∏n+1
t=1 QXt|Xt−1 attain the minimax redundancy Red(P). Choose a Yang–Barron

type predictor

Q̃Xn+1|Xn(· | Xn) :=
1

n

n∑
t=1

QXt+1|Xt(· | Xn
n−t+1).

Then, by convexity of KL,

EPXn

[
DKL

(
PXn+1|Xn ∥ Q̃Xn+1|Xn

)]
≤ 1

n

n∑
t=1

EPXn+1

[
log

PXn+1|Xn(Xn+1 | Xn)

QXt+1|Xt(Xn+1 | Xn
n−t+1)

]
.

Split the logarithm:

log
PXn+1|Xn(Xn+1 | Xn)

QXt+1|Xt(Xn+1 | Xn
n−t+1)

= log
PXn+1|Xn

n−t+1
(Xn+1 | Xn

n−t+1)

QXt+1|Xt(Xn+1 | Xn
n−t+1)

+ log
PXn+1|Xn(Xn+1 | Xn)

PXn+1|Xn
n−t+1

(Xn+1 | Xn
n−t+1)

.

Taking expectation, the second term becomes I(Xn+1;X
n−t | Xn

n−t+1) (by stationarity). Hence

EPXn

[
DKL(PXn+1|Xn∥Q̃Xn+1|Xn)

]
≤ 1

n

n∑
t=1

EPXn

[
DKL(PXt+1|Xt∥QXt+1|Xt)

]
+Mem(P)

≤ 1

n
DKL(PXn+1∥QXn+1) +Mem(P) (chain rule)

≤ 1

n
Red(P) +Mem(P).

Finally take supP∈P and infQ to match the definition of Riskn(P).
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Example 11.17 (Markov chain prediction). Let P be the class of stationary Markov chains on [k]
of length n+ 1. Then

Red(P) = O(k2 log n), Mem(P) = sup
P∈P

1

n
I(Xn+1;X

n) ≤ log k

n
,

so

Riskn(P) = O
(k2 log n

n

)
.

A surprising feature is that this upper bound does not depend on the mixing property of the Markov
chain. A purely statistical proof of this upper bound is unknown without mixing conditions. This
bound is tight for 3 ≤ k ≪

√
n.

11.6 Special topic: characterizing R∗ in Gaussian models (Mour-
tada, 2023)

Consider the Gaussian shift family

PA := {N (θ, Id) : θ ∈ A}, A ⊂ Rd.

We use the facts

DKL

(
N (θ, Id) ∥N (θ′, Id)

)
=

1

2
∥θ − θ′∥22,

∫ √
dN (θ, Id) dN (θ′, Id) = exp

(
−1

8
∥θ − θ′∥22

)
.

By the entropic upper bound and Haussler–Opper lower bound, one obtains the characterization

Red(PA) ≍ inf
r>0

(
logN(A, ∥ · ∥2, r) + r2

)
.

The main result of this section is an analogous characterization of R∗(PA):

R∗(PA) ≍ inf
r>0

(
logN(A, ∥ · ∥2, r) + wA(r)

)
,

where wA(r) is the local Gaussian width

wA(r) := sup
θ∈A

w
(
A ∩B(θ, r)

)
= sup

θ∈A
E
[

sup
w∈A∩B(θ,r)

⟨w,Z⟩
]
, Z ∼ N (0, Id).

Remark 11.18 (Alternative representation). Let

rN := sup
{
r > 0 : logN(A, ∥ · ∥2, r) ≥ r2

}
, rw := sup

{
r > 0 : wA(r) ≥ r2

}
.

Then
Red(PA) ≍ r2N , R∗(PA) ≍ r2N + r2w.

11.6.1 Example: ellipsoids

If

A =
{
θ ∈ Rd :

d∑
i=1

θ2i
a2i

≤ 1
}
,

then

Red(PA) ≍ inf
r>0

( ∑
i:ai>2r

log
ai
r
+ r2

)
, R∗(PA) ≍ inf

r>0

( d∑
i=1

log
(
1 +

a2i
r2

)
+ r2

)
.
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11.6.2 A key lemma relating R∗ and Gaussian width

The proof hinges on the following lemma.

Lemma 11.19. Let w(A) = E[supu∈A⟨u, Z⟩] denote the Gaussian width. Then

w(A)− sup
θ∈A

∥θ∥22
2

≤ R∗(PA) ≤ w(A).

11.6.3 How the lemma implies the covering/width characterization

Upper bound on R∗. First observe the simple inequality: for families P1, . . . ,PN ,

R∗
( N⋃
i=1

Pi
)
≤ max

i∈[N ]
R∗(Pi) + logN.

Indeed, if Qi attains R
∗(Pi), then Q̄ = 1

N

∑N
i=1Qi attains the stated upper bound.

Now take an r-covering θ1, . . . , θN of A under ∥ · ∥2. Then

R∗(PA) ≤ max
i∈[N ]

R∗(PA∩B(θi,r)

)
+ logN

≤ max
i∈[N ]

w
(
A ∩B(θi, r)

)
+ logN (by Lemma 11.19)

≤ wA(r) + logN.

Lower bound on R∗. First, R∗(PA) ≥ Red(PA) ≳ r2N (by the Haussler–Opper lower bound).
Second, for r = rw and any θ ∈ A,

R∗(PA) ≥ R∗(PA∩B(θ,r)

)
≥ w

(
A ∩B(θ, r)

)
− r2

2
(Lemma 11.19 and translation invariance).

Hence R∗(PA) ≥ wA(r)−r2/2 ≥ r2/2 at r = rw. Combining these bounds leads to R∗(PA) ≍ r2N+r2w.

11.6.4 Proof of Lemma 11.19

We first write out the Shtarkov sum.

Lemma 11.20 (Shtarkov sum for the Gaussian shift family).

R∗(PA) = log

∫
Rd

1

(2π)d/2
exp
(
−1

2
d(x,A)2

)
dx, d(x,A) := inf

y∈A
∥x− y∥2.

Proof. This follows directly from Theorem 11.4 by computing supθ∈A φd(x − θ), where φd(u) =

(2π)−d/2e−∥u∥22/2 is the N (0, Id) density. The supremum over θ occurs at the closest point in A,
producing the distance term.

Using an auxiliary Z ∼ N (0, Id),∫
Rd

1

(2π)d/2
exp
(
−1

2
d(x,A)2

)
dx = E

[
exp
(1
2
(∥Z∥22 − dist(Z,A)2)

)]
= E

[
exp
(
sup
w∈A

(∥Z∥22
2

− ∥Z − w∥22
2

))]
= E

[
exp
(
sup
w∈A

(⟨w,Z⟩ − 1
2∥w∥

2
2)
)]
.
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Denote

f(z) := sup
w∈A

(
⟨w, z⟩ − 1

2∥w∥
2
2

)
, ν := N (0, Id).

Then Lemma 11.20 becomes R∗(PA) = logEZ∼ν [ef(Z)].

Lower bound.

logE
[
ef(Z)

]
= logE

[
exp
(
sup
w∈A

(⟨w,Z⟩ − 1
2∥w∥

2
2)
)]

≥ logE
[
exp
(
sup
w∈A

⟨w,Z⟩
)]

− 1

2
sup
w∈A

∥w∥22

≥ E
[
sup
w∈A

⟨w,Z⟩
]
− 1

2
sup
w∈A

∥w∥22 (Jensen)

= w(A)− 1

2
sup
w∈A

∥w∥22.

Upper bound. By Gibbs’ variational principle,

logEZ∼ν [ef(Z)] = sup
µ

{
EZ∼µ[f(Z)]−DKL(µ∥ν)

}
.

Using Talagrand’s T2 inequality for ν = N (0, Id), W
2
2 (µ, ν) ≤ 2DKL(µ∥ν), we get

logEZ∼ν [ef(Z)] ≤ sup
µ

{
EZ∼µ[f(Z)]−

1

2
W 2

2 (µ, ν)
}
.

By Kantorovich duality for quadratic cost, 1
2W

2
2 (µ, ν) = supg{Eµg+Eνgc}, where gc(z) = infx{1

2∥x−
z∥22 − g(x)}. Thus

logEZ∼ν [ef(Z)] ≤ sup
µ

{
Eµ[f(Z)]− sup

g
(Eµg + Eνgc)

}
≤ EZ∼ν

[
sup
x

(
f(x)− 1

2∥x− Z∥22
)]
.

On the other hand,

sup
x

(
f(x)− 1

2
∥x− z∥22

)
= sup

x
sup
w∈A

(
⟨w, x⟩ − 1

2
∥w∥22 −

1

2
∥x− z∥22

)
= sup

w∈A
⟨w, z⟩.

Therefore

logEZ∼ν [ef(Z)] ≤ E
[
sup
w∈A

⟨w,Z⟩
]
= w(A).

Combining the lower and upper bounds proves Lemma 11.19.

11.6.5 Alternative proof of the upper bound via convex geometry (Mourtada,
2023)

(An alternative proof in (Mourtada, 2023), using convex geometry.)
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Definition 11.21 (Mixed volume). Let K1, . . . ,Kr be convex bodies in Rd. Write

Vold(λ1K1 + · · ·+ λrKr) =
r∑

j1,...,jd=1

V (Kj1 , . . . ,Kjd)λj1 · · ·λjd .

The quantity V (Kj1 , . . . ,Kjd) is called the mixed volume.

Definition 11.22 (Intrinsic volume). Let B ⊂ Rd be the unit Euclidean ball. For j ∈ {0, 1, . . . , d},
define

Vj(K) :=

(
d

j

)V (K, . . . ,K︸ ︷︷ ︸
j

, B, . . . , B︸ ︷︷ ︸
d−j

)

κd−j
,

where κm := πm/2

Γ(m/2+1) is the volume of the unit ball in Rm.

Theorem 11.23 (Steiner formula).

Vold(K + tB) =
d∑
j=0

Vd−j(K)κj t
j .

Theorem 11.24 (Alexandrov–Fenchel). For convex bodies K1, . . . ,Kd,

V (K1,K2,K3, . . . ,Kd)
2 ≥ V (K1,K1,K3, . . . ,Kd)V (K2,K2,K3, . . . ,Kd).

Remark 11.25 (A corollary). By choosing (K1, . . . ,Kd) = (K,B,K, . . . ,K︸ ︷︷ ︸
j−1

, B, . . . , B︸ ︷︷ ︸
d−j−1

), we get

j Vj(K)2 ≥ (j + 1)Vj+1(K)Vj−1(K).

In particular,

Vj(K) ≤ V1(K)j

j!
.

Back to the proof of the upper bound. Since R∗(PA) ≤ R∗(Pconv(A)) and w(A) = w(conv(A)),
we may assume without loss of generality that A = K is convex. Then∫

Rd

exp
(
−1

2
d(x,K)2

)
dx =

∫ ∞

0
Vold

({
x ∈ Rd : e−

1
2d(x,K)2 ≥ t

})
dt

=

∫ ∞

0
Vold

(
{x ∈ Rd : d(x,K) ≤ r}

)
re−r

2/2 dr

=

∫ ∞

0
Vold(K + rB) re−r

2/2 dr

=

∫ ∞

0

d∑
j=0

Vd−j(K)κj r
j re−r

2/2 dr

=
d∑
j=0

Vd−j(K) (2π)j/2,

where we used
∫∞
0 rj+1e−r

2/2 dr = 2j/2Γ( j2 + 1) so that κj
∫∞
0 rj+1e−r

2/2 dr = (2π)j/2.
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Therefore,

R∗(PK) = log

∫
Rd

1

(2π)d/2
exp
(
−1

2
d(x,K)2

)
dx

= log

d∑
j=0

Vj(K) (2π)−j/2 = log

d∑
j=0

Vj

( K√
2π

)
.

The last quantity is called the Wills functional. Using the corollary above,

R∗(PK) ≤ log
d∑
j=0

V1(K/
√
2π)j

j!
< log exp

(
V1(K/

√
2π)
)
= V1(K/

√
2π) = w(K).

This recovers the upper bound in Lemma 11.19.



Lecture 12: Strong Data Processing Inequali-
ties

12.1 Recall: DPI and SDPI

We recall the standard data processing inequality (DPI) and its “strong” variant.
Consider a channel PY |X , and two possible input distributions PX and QX . Let the induced

output distributions be
PY = PXPY |X , QY = QXPY |X .

PX

QX

PY |X PY

QY

The (relative-entropy) DPI states

DKL

(
QY ∥PY

)
≤ DKL

(
QX ∥PX

)
.

A strong data processing inequality (SDPI) is a contraction version:

DKL

(
QY ∥PY

)
≤ η(PY |X)DKL

(
QX ∥PX

)
for some η(PY |X) < 1.

12.2 Input-independent SDPI

12.2.1 Definition

Definition 12.1 (Input-independent SDPI constant). Given a channel PY |X , define

η(PY |X) := sup
PX ̸=QX

DKL

(
QY ∥PY

)
DKL

(
QX ∥PX

) .
12.2.2 Mutual-information characterization

Proposition 12.2. For any channel PY |X ,

η(PY |X) = sup
U−X−Y

I
(
U ;Y

)
I
(
U ;X

) .
147
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Proof. We prove both directions.

(≥) Fix any Markov chain U −X − Y . Recall the identity

I
(
U ;Y

)
= EU

[
DKL

(
PY |U ∥PY

)]
.

By the definition of η(PY |X), for each u we have

DKL

(
PY |U=u ∥PY

)
≤ η(PY |X)DKL

(
PX|U=u ∥PX

)
,

and therefore

I
(
U ;Y

)
= EU

[
DKL

(
PY |U ∥PY

)]
≤ EU

[
η(PY |X)DKL

(
PX|U ∥PX

)]
= η(PY |X) I

(
U ;X

)
.

Hence I
(
U ;Y

)
/I
(
U ;X

)
≤ η(PY |X), and taking the supremum over U−X−Y yields supU−X−Y I

(
U ;Y

)
/I
(
U ;X

)
≤

η(PY |X).

(≤) Choose U ∼ Bern(p) and two (fixed) distributions P̃X , Q̃X . Set

PX|U=1 = P̃X , PX|U=0 = Q̃X , PX = pP̃X + (1− p)Q̃X .

Then

I
(
U ;X

)
= EU

[
DKL

(
PX|U ∥PX

)]
= pDKL

(
P̃X ∥ pP̃X + (1− p)Q̃X

)
+ (1− p)DKL

(
Q̃X ∥ pP̃X + (1− p)Q̃X

)
.

Differentiate at p = 0 (this is the step shown in the notes):

d

dp
I
(
U ;X

)∣∣∣∣
p=0

= DKL

(
P̃X ∥ Q̃X

)
+ E

Q̃X

[ P̃X − Q̃X

Q̃X

]
= DKL

(
P̃X ∥ Q̃X

)
.

Hence

I
(
U ;X

)
= pDKL

(
P̃X ∥ Q̃X

)
+ o(p).

Let P̃Y , Q̃Y be the corresponding output distributions induced by P̃X , Q̃X through PY |X . By the
same reasoning,

I
(
U ;Y

)
= pDKL

(
P̃Y ∥ Q̃Y

)
+ o(p).

Therefore,

I
(
U ;Y

)
I
(
U ;X

) →
DKL

(
P̃Y ∥ Q̃Y

)
DKL

(
P̃X ∥ Q̃X

) as p→ 0+.

Taking a supremum over P̃X , Q̃X gives η(PY |X) ≤ supU−X−Y I
(
U ;Y

)
/I
(
U ;X

)
.

12.2.3 Binary reduction

Proposition 12.3.

η(PY |X) = sup
PX ,QX binary

DKL

(
QY ∥PY

)
DKL

(
QX ∥PX

) ,
where “binary” means PX and QX are supported on at most two points of X .
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Proof. It suffices to show that for any γ > 0 and any pair (PX , QX), defining

f(PX , QX) := DKL

(
QY ∥PY

)
− γ DKL

(
QX ∥PX

)
,

we can always find binary distributions (P̂X , Q̂X) such that f(PX , QX) ≤ f(P̂X , Q̂X).

To prove it, consider the map

P̂ 7→ f
(
P̂ ,

QX
PX

P̂
)
= DKL

(
PY |X · QX

PX
P̂ ∥PY |X · P̂

)
− γ DKL

(QX
PX

P̂ ∥ P̂
)
.

This map is convex over the set{
P̂ :

∑
x

QX(x)

PX(x)
P̂ (x) = 1,

∑
x

P̂ (x) = 1
}
.

When P̂ = PX , its value is f(PX , QX). A maximizer P̂ ∗ of a convex function over this polytope
must lie at an extreme point. Extreme points here correspond to distributions supported on at most
two atoms (hence binary). Letting Q̂X = QX

PX
P̂X gives the desired binary pair.

12.2.4 Characterization via Le Cam divergence and Hellinger diameter

Proposition 12.4.

η(PY |X) = sup
x,x′∈X

LCmax

(
PY |X=x, PY |X=x′

)
,

where

LCmax(P,Q) := sup
0<β<1

β(1− β)

∫
(p− q)2

(1− β)p+ βq
dµ,

and p, q are densities of P,Q with respect to a common dominating measure µ. In particular, if

diam2
H(PY |X) := sup

x,x′∈X
H2
(
PY |X=x, PY |X=x′

)
,

then
1

2
diam2

H(PY |X) ≤ η(PY |X) ≤ diam2
H(PY |X)−

diam4
H(PY |X)

4
.

Proof. The first claim (the Le Cam characterization) follows from the binary reduction above and
explicit computations for binary input distributions; see the textbook for details. We prove the
stated Hellinger bounds.

Lower bound. Fix two distributions P,Q (with densities p, q). For β = 1/2,

LCmax(P,Q) ≥ 1

4

∫
(p− q)2

1
2(p+ q)

dµ =
1

2

∫
(p− q)2

p+ q
dµ.

Now note that (p− q)2 = (
√
p−√

q)2(
√
p+

√
q)2 ≥ (

√
p−√

q)2(p+ q). Hence

1

2

∫
(p− q)2

p+ q
dµ ≥ 1

2

∫
(
√
p−√

q)2 dµ =
1

2
H2(P,Q).

Taking the supremum over x, x′ yields η(PY |X) ≥ 1
2diam

2
H(PY |X).
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Upper bound. For any 0 < β < 1, one can check the identity

1− β(1− β)

∫
(p− q)2

(1− β)p+ βq
dµ =

∫
pq

(1− β)p+ βq
dµ.

Using Cauchy–Schwarz,∫
pq

(1− β)p+ βq
dµ =

∫
(
√
pq)2

(1− β)p+ βq
dµ ≥

(∫ √
pq dµ

)2∫
((1− β)p+ βq) dµ

=
(∫ √

pq dµ
)2
.

Therefore

β(1− β)

∫
(p− q)2

(1− β)p+ βq
dµ ≤ 1−

(∫ √
pq dµ

)2
.

Since H2(P,Q) =
∫
(
√
p−√

q)2 dµ = 2− 2
∫ √

pq dµ, we have
∫ √

pq dµ = 1−H2(P,Q)/2. Thus

LCmax(P,Q) ≤ 1−
(
1− H2(P,Q)

2

)2
= H2(P,Q)− H4(P,Q)

4
.

Taking the supremum over x, x′ yields the desired upper bound for η(PY |X).

12.2.5 Examples and tensorization

Example 12.5 (Erasure channel). Let ECδ be the erasure channel with erasure probability δ, i.e.

PY |X =

{
Y = X, w.p. 1− δ,

Y =?, w.p. δ.

Then (as shown in HW1) for all U −X − Y ,

I
(
U ;Y

)
= (1− δ) I

(
U ;X

)
.

Therefore, η(ECδ) = 1− δ.

Example 12.6 (Binary symmetric channel). Let BSCδ be the binary symmetric channel with
crossover probability δ: X ∈ {0, 1} and Y = X ⊕ Bern(δ). In this case,

LCmax(PY |X=0, PY |X=1) = sup
β∈(0,1)

β(1− β)

(
(1− 2δ)2

(1− β)(1− δ) + βδ
+

(1− 2δ)2

(1− β)δ + β(1− δ)

)
= (1− 2δ)2 sup

β∈(0,1)

β(1− β)(
(1− β)(1− δ) + βδ

)(
(1− β)δ + β(1− δ)

) .
Let A = (1 − β)(1 − δ) + βδ, B = (1 − β)δ + β(1 − δ). Then A + B = 1 and one can compute
AB = δ(1− δ) + β(1− β)(1− 2δ)2. Hence

AB − β(1− β) = δ(1− δ)
(
1− 4β(1− β)

)
≥ 0,

so β(1− β)/(AB) ≤ 1, with equality at β = 1/2. Therefore

η(BSCδ) = (1− 2δ)2.

Example 12.7 (Tensorization bound). For the n-fold product channel, one has

η
(
P⊗n
Y |X
)
≤ 1− (1− η(PY |X))

n.
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Proof. Let U −Xn − Y n. Write Y n = (Y1, Y
n
2 ). Then

I
(
U ;Y n

)
= I
(
U ;Y n

2

)
+ I
(
U ;Y1 | Y n

2

)
≤ I
(
U ;Y n

2

)
+ η(PY |X) I

(
U ;X1 | Y n

2

)
= (1− η(PY |X)) I

(
U ;Y n

2

)
+ η(PY |X) I

(
U ;X1, Y

n
2

)
≤ (1− η(PY |X)) I

(
U ;Y n

2

)
+ η(PY |X) I

(
U ;Xn

)
.

Iterating this decomposition gives

I
(
U ;Y n

)
I
(
U ;Xn

) ≤ η(PY |X)

n−1∑
t=0

(1− η(PY |X))
t = 1− (1− η(PY |X))

n.

Taking the supremum over U −Xn − Y n proves the claim.

Remark 12.8. (A general result recorded in the notes.) In a Bayesian network, suppose each vertex
v is declared “open” with probability η

(
PXv |Pa(v)

)
. Then for S a set of vertices,

η(PXS |X0
) ≤ P(there exists an open path from 0 to some vertex in S),

which is a “percolation” probability from 0 to S.

12.3 Input-dependent SDPI

12.3.1 Definition

Definition 12.9 (Input-dependent SDPI constant). Given a channel PY |X and an input distribution
PX , define

η(PX , PY |X) := sup
QX

DKL

(
QY ∥PY

)
DKL

(
QX ∥PX

) .
12.3.2 Properties

Proposition 12.10. (1)

η(PX , PY |X) = sup
U−X−Y

I
(
U ;Y

)
I
(
U ;X

) .
(2) (Tensorization)

η(P⊗n
X , P⊗n

Y |X) = η(PX , PY |X).

Proof. The mutual-information characterization is analogous to the input-independent case. We
prove the tensorization statement.

By induction, it suffices to prove the case n = 2. Let U − (X1, X2)− (Y1, Y2) under the product
channel. Then

I
(
U ;Y1, Y2

)
= I
(
U ;Y1

)
+ I
(
U ;Y2 | Y1

)
≤ η

(
I
(
U ;X1

)
+ I
(
U ;X2 | Y1

))
,
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where η = η(PX , PY |X) and the second inequality uses that (U, Y1)−X2−Y2 and PX2|Y1 = PX2 = PX .
Now expand

I
(
U ;X2 | Y1

)
= I
(
U ;X2 | X1, Y1

)
+ I
(
X1;X2 | Y1

)
− I
(
X1;X2 | Y1, U

)
= I
(
U ;X2 | X1

)
+ 0− I

(
X1;X2 | Y1, U

)
≤ I
(
U ;X2 | X1

)
,

where I
(
X1;X2 | Y1

)
= 0 because X2 is independent of (X1, Y1) under the product input. Therefore,

I
(
U ;Y1, Y2

)
≤ η

(
I
(
U ;X1

)
+ I
(
U ;X2 | X1

))
= η I

(
U ;X1, X2

)
.

Taking the supremum over U − (X1, X2)− (Y1, Y2) yields η(P
⊗2
X , P⊗2

Y |X) ≤ η(PX , PY |X). The reverse
inequality is immediate by restricting to product auxiliaries, hence equality holds.

Remark 12.11. Unlike η(PY |X), the input-dependent SDPI constant η(PX , PY |X) can be much more
challenging to characterize. An example is when PY |X is the transition matrix of a Markov chain
and PX = π is its stationary distribution. Then SDPI implies (for all initial distributions π0)

DKL

(
π0P

n ∥π
)
= DKL

(
π0P

n ∥πPn
)
≤ η(π, P )nDKL

(
π0 ∥π

)
.

This is called the modified log-Sobolev inequality and leads to upper bounds on mixing times; both
tasks can be challenging for general Markov chains.

12.3.3 Example: jointly Gaussian pair

Let (X,Y ) be jointly Gaussian with zero mean and covariance(
1 ρ
ρ 1

)
.

Claim 12.12.

η(PX , PY |X) = η(PY , PX|Y ) = ρ2.

Proof. We only prove the upper bound η(PX , PY |X) ≤ ρ2; the notes indicate a matching lower
bound is obtained later.

Step 1: scaling. By scaling, we may assume

Y = X + Z, Z ∼ N(0, ρ−2 − 1), X ∼ N(0, 1), Y ∼ N(0, ρ−2).

Step 2: relate KL to entropy and second moment. For any random variable X̃ and Ỹ = X̃+Z,

DKL

(
P
Ỹ
∥PY

)
= −h(Ỹ ) + log

√
2π

ρ
+
ρ2

2
E[Ỹ 2]

≤ −1

2
log
(
2πe(ρ−2 − 1) + e2h(X̃)

)
+ log

√
2π

ρ
+
ρ2

2
E[Ỹ 2],

where the inequality is the entropy power inequality (EPI) applied to Ỹ = X̃ + Z. Also

DKL

(
P
X̃
∥PX

)
= −h(X̃) + log

√
2π +

1

2
E[X̃2].
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Step 3: rearrange. Using h(X̃) = log
√
2π + 1

2E[X̃
2]−DKL

(
P
X̃
∥PX

)
, we have

e2h(X̃) = 2π exp
(
E[X̃2]− 2DKL

(
P
X̃
∥PX

))
.

Substitute this into the previous bound, and use E[Ỹ 2] = E[X̃2] + (ρ−2 − 1). After simplifying (this
is the algebra shown in the notes), we obtain

DKL

(
P
Ỹ
∥PY

)
≤ −1

2
log
(
1− ρ2 + ρ2 exp

(
E[X̃2]− 2DKL

(
P
X̃
∥PX

)
− 1
))

+
ρ2

2

(
E[X̃2]− 1

)
.

Step 4: concavity of log. Using concavity of log, for x > 0,

log(1− ρ2 + ρ2x) ≥ ρ2 log x (equivalently, log(1− p+ px) ≥ p log x).

Apply this with x = exp(E[X̃2]− 2DKL

(
P
X̃
∥PX

)
− 1):

DKL

(
P
Ỹ
∥PY

)
≤ −ρ

2

2

(
E[X̃2]− 2DKL

(
P
X̃
∥PX

)
− 1
)
+
ρ2

2

(
E[X̃2]− 1

)
= ρ2DKL

(
P
X̃
∥PX

)
.

This shows the KL contraction factor is at most ρ2, i.e. η(PX , PY |X) ≤ ρ2.

Lower bound via another SDPI constant. The notes introduce the χ2-based SDPI constant

ηχ2(PX , PY |X) := sup
QX

χ2(QY ∥PY )
χ2(QX ∥PX)

,

with the following properties:

(1) ηχ2 ≤ η (KL dominates χ2 in this SDPI sense).

(2) ηχ2 = σ2(M)2, where σ1(M) ≥ σ2(M) ≥ · · · ≥ 0 are the singular values of

Mx,y =
PX,Y (x, y)√
PX(x)PY (y)

.

(3)
√
ηχ2 equals the maximal correlation between X and Y :

sup
g1,g2

corr(g1(X), g2(Y )) = sup
g1,g2

Cov(g1(X), g2(Y ))√
Var(g1(X))Var(g2(Y ))

.

(4) In Markov chains,

χ2(π0P
n ∥π) ≤ ηχ2(π, P )n χ2(π0 ∥π),

which is Poincaré’s inequality.

By (1) and (3), for a jointly Gaussian pair (X,Y ), η ≥ ηχ2 = (maximal correlation)2 = ρ2. Combined
with the upper bound, this yields η = ρ2.
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12.4 Applications of SDPI

12.4.1 Example 1: noisy gates

Suppose a noisy gate is an {AND,OR,NOT} gate with output corrupted by a Bern(δ) noise. A
natural question is:

Question. For every δ < 1/2, can we still reliably compute all Boolean functions {0, 1}n → {0, 1}?

Claim 12.13. For each input bit Xi,

I
(
Xi;Y

)
≤
(
2(1− 2δ)2

)di ,
where di is the minimum (graph) distance from Xi to the output Y .

Answer to the question (as in the notes): No. Suppose we’d like to compute

XOR(X1, . . . , Xn) =

n∑
i=1

Xi mod 2.

Then there exists i ∈ [n] with di ≥ log2 n. For this i, if

δ >
1

2
− 1

2
√
2
≈ 0.15,

then 2(1− 2δ)2 < 1 and

I
(
Xi;Y

)
≤
(
2(1− 2δ)2

)log2 n → 0 (n→ ∞).

Since XOR(X1, . . . , Xn) is sensitive to every Xi, its computation is impossible in this noise regime.

Proof of the claim. As written in the notes,

I
(
Xi;Y

)
≤ η(PY |Xi

)H(Xi) ≤ η(PY |Xi
).

Using the percolation interpretation of η for Bayesian networks,

η(PY |Xi
) ≤ (percolation probability from Xi to Y ) =

∑
paths Xi→Y

(1− 2δ)2 length(path).

When length(path) ≥ di and 2(1− 2δ)2 ≤ 1, this sum is bounded by
(
2(1− 2δ)2

)di .
12.4.2 Example 2: broadcast on trees

Let (π, PX′|X) be a reversible Markov chain. Consider the broadcasting problem on an infinite b-ary
tree. The root is X0 ∼ π, and each edge transmits the parent state through the same channel PX′|X .

Question. Given all variables on level D (denote the set of vertices at level D by LD), as D → ∞,
can you recover X0 reliably?

Claim 12.14. No if

b η(π, PX′|X) < 1.
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Proof. Let XLD
= (Xv)v∈LD

. The notes argue

I
(
X0;XLD

)
≤
∑
v∈L1

I
(
X0;XLD,v

)
, LD,v := {u ∈ LD : v is an ancestor of u}

≤ η(π, PX′|X)
∑
v∈L1

I
(
Xv;XLD,v

)
(XLD,v → Xv → X0, and reversibility)

= b η(π, PX′|X) I
(
X0;XLD−1

)
.

Iterating gives

I
(
X0;XLD

)
≤
(
b η(π, PX′|X)

)D
H(X0) → 0 (D → ∞)

whenever b η(π, PX′|X) < 1.

12.4.3 Application: stochastic block model

In the 2-SBM(a/n, b/n), a label vector X ∼ Unif({±1}n) is drawn and edges are generated
conditionally independently as

P
(
(i, j) is connected | X

)
=

{
a
n , XiXj = 1 (same community),
b
n , XiXj = −1 (different community).

Question. When can we recover X1, X2 ∈ {±1} with nontrivial probability as n→ ∞?

Claim 12.15. We cannot if

(a− b)2

2(a+ b)
< 1 (Kesten–Stigum threshold).

Proof. As written in the notes: since all edge probabilities are of order Θ(1/n), with high probability
the neighborhood of a vertex out to distance d is a tree (no cycles) for some d = dn → ∞. Moreover,
the number of children is approximately Poi((a+ b)/2), and the label flipping probability along an
edge is b

a+b . With high probability, vertex 2 does not belong to the local neighborhood of vertex 1,
so

I
(
X1;X2 | G

)
≤ I
(
X1; (Xi)i∈Ld

| G
)

≤
(a+ b

2

(
1− 2 b

a+b

)2)d
(see HW3 for details)

=
( (a− b)2

2(a+ b)

)d
→ 0 if

(a− b)2

2(a+ b)
< 1.

12.4.4 Example 3: spiked Wigner model

Let X ∼ Unif({±1}n) be unknown. Observe a noisy rank-one matrix

Y =
λ√
n
XX⊤ +W, (Wij =Wji ∼ N(0, 1) i.i.d.).

Claim 12.16. If λ < 1, then
I
(
X1;X2 | Y

)
= o(1),

i.e. weak recovery of X is impossible. (The threshold λ ≤ 1 is the BBP transition.)
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Proof. The idea is that Yij is determined by XiXj through

Yij | (XiXj) ∼ N
(√λ

n
XiXj , 1

)
.

Let θij ∈ {±1} denoteXiXj . For the Gaussian binary-input channel P = {N(
√
λ/n, 1), N(−

√
λ/n, 1)},

one can show

η := η(P ) = LCχ2

(
N(
√
λ/n, 1), N(−

√
λ/n, 1)

)
=
λ

n
(1 + o(1)).

Next, replace Yij by an erasure variable Zij defined by

Zij | θij =

{
θij , w.p. η,

?, w.p. 1− η,
i.e. EC(1− η).

Then for any U → θij → (Yij , Zij),

I
(
U ;Yij

)
≤ η I

(
U ; θij

)
= I
(
U ;Zij

)
.

We claim that
I
(
X1;Y | X2

)
≤ I
(
X1;Z | X2

)
. (∗)

Assuming (∗),

I
(
X1;X2 | Y

)
= I
(
X1;X2, Y

)
(I
(
X1;Y

)
= 0)

= I
(
X1;Y | X2

)
(I
(
X1;X2

)
= 0)

≤ I
(
X1;Z | X2

)
(by (∗))

= I
(
X1;X2 | Z

)
≤ P(1 and 2 are connected in the graph induced by Z),

where the induced graph has an edge (i, j) iff Zij ̸=?. Since this graph is Erdős–Rényi with edge
probability η = λ

n(1 + o(1)), it is known that when λ < 1, the largest connected component has size
O(log n). Therefore P(1 and 2 connected) → 0, giving the claim.

Proof of (∗). Write Y = (Y1, Y2) where Y1 corresponds to some subset of entries and Y2 to the
remaining ones. Then

I
(
X1;Y | X2

)
= I
(
X1;Y1 | X2

)
+ I
(
X1;Y2 | X2, Y1

)
≤ I
(
X1;Y1 | X2

)
+ η I

(
X1; θ2 | X2, Y1

)
= I
(
X1;Y1 | X2

)
+ I
(
X1;Z2 | X2, Y1

)
= I
(
X1;Y1, Z2 | X2

)
.

Proceeding with the same argument entry-by-entry replaces all Y coordinates by their erasure
counterparts, yielding I

(
X1;Y | X2

)
≤ I
(
X1;Z | X2

)
.

12.5 Example 4: proximal sampling

Suppose we would like to sample from

π(x) ∝ e−f(x), f : Rd → R.
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A proximal sampler aims to sample from the joint density

π(x, y) ∝ exp
(
− f(x)− 1

2η
∥x− y∥2

)
via an iterative procedure. Given initialization X0 ∼ PX0 , for each t = 0, 1, . . . :

• Given Xt, sample Yt | Xt ∼ N(Xt, ηI).

• Given Yt, sample Xt+1 | Yt ∼ πx|y(· | Yt).

(For convex f , the conditional πx|y(· | y) is η-strongly log-concave.)

Claim 12.17. If π satisfies an α-log-Sobolev inequality (LSI), i.e.

DKL

(
p ∥π

)
≤ 1

2α
FI(p ∥π) := 1

2α
Ep
[
∥∇ log(p/π)∥2

]
, ∀p,

then

DKL

(
PXt ∥π

)
≤
DKL

(
PX0 ∥π

)
(1 + αη)2t

.

Proof. We show the two one-step contractions written in the notes:

DKL

(
PYt ∥πη

)
≤
DKL

(
PXt ∥π

)
1 + αη

, (1)

DKL

(
PXt+1 ∥π

)
≤
DKL

(
PYt ∥πη

)
1 + αη

, (2)

where πη = π ∗N(0, ηI). Iterating (1) and (2) yields the claimed rate. The notes explain these are
equivalent to input-dependent SDPI bounds η(π,N(·, ηI)) ≤ 1/(1 + αη) and η(πη, π

x|y(· | y)) ≤
1/(1 + αη).

Forward step. Let pt = PXt and πt = π. Consider the heat flow

∂tpt =
1

2
∆pt, ∂tπt =

1

2
∆πt.

Then pη = PYt and πη = π ∗N(0, ηI). Now compute (as in the notes):

∂tDKL

(
pt ∥πt

)
= ∂t

∫
pt log

pt
πt

=
1

2

∫
∆pt

(
log

pt
πt

+ 1
)
− 1

2

∫
∆πt

pt
πt

= −1

2

∫
∇pt · ∇ log

pt
πt

+
1

2

∫
∇πt · ∇

pt
πt

= −1

2
Ept
[
∇ log pt · ∇ log

pt
πt

]
+

1

2
Ept
[
∇ log πt · ∇ log

pt
πt

]
= −1

2
FI(pt ∥πt).

Since π is α-LSI, one can show that πt = π ∗N(0, tI) is ( 1α + t)−1-LSI. Therefore

∂tDKL

(
pt ∥πt

)
= −1

2
FI(pt ∥πt) ≤ − 1

1
α + t

DKL

(
pt ∥πt

)
.
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Integrating from t = 0 to t = η yields

DKL

(
pη ∥πη

)
DKL

(
p0 ∥π0

) ≤ exp
(
−
∫ η

0

1
1
α + t

dt
)
=

1

1 + αη
,

which is (1).

Backward step. Let p−0 = PYt and π
−
0 = πη. Consider the reverse-time evolution written in the

notes:

∂tp
−
t = −div(p−t ∇ log π−t ) +

1

2
∆p−t = div

(
p−t ∇ log

p−t
π−t

)
− 1

2
∆p−t ,

∂tπ
−
t = −div(π−t ∇ log π−t ) +

1

2
∆π−t = −1

2
∆π−t .

Then p−η = PXt+1 and π−η = π (“by the reverse process of diffusion model”). A similar computation
gives

∂tDKL

(
p−t ∥π−t

)
= ∂t

∫
p−t log

p−t
π−t

=

∫ (
div(p−t ∇ log

p−t
π−
t

)− 1

2
∆p−t

)(
log

p−t
π−t

+ 1
)
−
∫ (

− 1

2
∆π−t

) p−t
π−t

= −
∫
p−t ∇ log

p−t
π−t

· ∇ log
p−t
π−t

+
1

2
FI(p−t ∥π−t )

= −1

2
FI(p−t ∥π−t ).

Since π−t = πη−t is (
1
α + η − t)−1-LSI,

∂tDKL

(
p−t ∥π−t

)
≤ − 1

1
α + η − t

DKL

(
p−t ∥π−t

)
.

Integrating from t = 0 to t = η yields

DKL

(
p−η ∥π−η

)
DKL

(
p−0 ∥π−0

) ≤ exp
(
−
∫ η

0

1
1
α + η − t

dt
)
=

1

1 + αη
,

which is (2).

12.6 Special topic: SDPIs

Guest lecture by Y. Gu on SDPIs.
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