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Lecture 1: Entropy & Mutual Information

Remark 1.1 (Logarithm convention). For information-theoretic quantities in this lecture, log denotes
log, (so entropies are measured in bits).

1.1 Entropy

Definition 1.2 (Entropy). Let X be a discrete random variable taking values in an alphabet X
with pmf p. Its entropy H(X) (or H(p)) is
1

H(X) =Y (o) log .

TeEX

(1.1)

Remark 1.3. 1. 0 < H(X) <log|X|. (One way to see the upper bound is via Jensen’s inequality.)
2. If |X| = oo, then H(X) may be finite or infinite.

3. For continuous (or more general) random variables, one chooses a reference measure p such
that X has a density f w.r.t. u, and defines the differential entropy

nx) = [ @ log 75 du) (1.2)

The value of h(X) depends on the choice of .
4. (Base of log.) For IT applications in this lecture, use base 2 (bits). In many other settings one
uses natural logs (nats).
1.1.1 Why entropy? Source coding (i.i.d. case)

Shannon (1948) showed that entropy characterizes the fundamental limit of source coding.

Source coding problem. Given:
(1) an input alphabet X' (e.g. English letters {a,b,...,z}),
(2) a known pmf p on X (the source distribution),

find a map (code)
frx={o1 = (J{o,1}7, (1.3)

n>1

such that



2 Lecture 1: Entropy & Mutual Information

(1) f is uniquely decodable: from the concatenation f(z1)--- f(z,) one can uniquely recover both
n and (z1,...,x,) € X™;

(2) the expected code length is minimized:

E[((f(X))] = D p(x) £(f(2)), (1.4)

TEX
where /() is the length (in bits) of a binary string.
Example 1.4. Let X = {a,b,c} and p = (%, %, %)
(a) The code a — 0, b — 10, ¢ — 11 is uniquely decodable (e.g. 1001011 decodes to babc).
(b) The code a+ 0, b+ 1, ¢ — 10 is not uniquely decodable (e.g. 10 could be ¢ or ba).
(¢) The code a +— 10, b~ 0, ¢ — 11 is uniquely decodable and has smaller expected length:

2-4+1.1+2.1 =15 bits < 1.75 bits for (a).

=

1.1.2 Kraft—-McMillan theorem

Given a length profile {{, },cx, when does there exist a uniquely decodable code f with £(f(z)) = £,?

Theorem 1.5 (Kraft-McMillan (Kraft inequality)). A necessary and sufficient condition is

d 2t (1.5)

reX

Proof sketch. Sufficiency. If ) 2~l= <1, one can construct a full binary tree whose leaves include
X with depth(z) = £,. Assigning each symbol the bitstring along its root-to-leaf path produces a
prefiz code, hence uniquely decodable.

Necessity. Assume w.l.o.g. that |X| < co and fmax := maxy £(f(x)) < co. For any m € N,

(Zg—emx)))m: S 2 e )

reX L1y, T EX

=Y W)

L1,y TmEX

Mlmax

= > 27'N,
t=1

where N; counts the number of m-tuples whose concatenated codeword has total length ¢. By
unique decodability, distinct m-tuples yield distinct binary strings, so Ny < 2. Hence

Mmax

( 3 Q—af(x)))m < 3 1= mbpa.
t=1

reX

Taking m — oo gives Y 27 f(®) < 1. 0



1.2. ASYMPTOTIC EQUIPARTITION PROPERTY (AEP) 3

1.1.3 Source coding theorem (uniquely decodable codes)

Theorem 1.6 (Source coding theorem for uniquely decodable codes).

H(X) S uniquelynéllierclodablef E[E(f(X))] < H(X)+1 (16)

Proof sketch. Upper bound. Set £, := [log ﬁ—‘ Then {¢,} satisfies Kraft’s inequality, and

S p@)te < Y ple (1og &+ ) = H(X)+1

zeX zeX

Lower bound. Minimizing >, p(w)l, subject to > 27% <1 (allowing real lengths) yields the
optimum £ = log —* @) giving value H(X). (One can verify this via Lagrange multipliers.) O

Remark 1.7. 1. The gap between H(X) and H(X) + 1 can be significant (e.g. if H(X) = 1.5
bits). In practice the alphabet is often a “super-symbol” alphabet, e.g. X = {a,...,2}?°% in
which case H(X) > 1 bit.

2. Information theory often provides robust results when a small error probability is allowed;
purely combinatorial arguments (like Kraft counting) typically do not extend as cleanly.
1.2 Asymptotic equipartition property (AEP)

Another way to write entropy is

H(X) = EXNp[log p(l)()} (1.7)

(A mild warning: the distribution p appears both in the expectation and inside the logarithm.)
Let Xi,..., X, beiid. ~p. If H(X) < oo, then by the law of large numbers,

71110gp(X1, Zlog X7) oo E[log (;{)] = H(X). (1.8)
For € > 0, define the typical set
TS .= {x" € X" p(am) € [2nHX)Fe) gmn(H(X)=)] } (1.9)
Theorem 1.8 (AEP). The typical set T satisfies:
(1) P((X1,...,Xn) €TE) = 1 as n — oo.
(2) (1= o(1)) 22(HX)=9) < |Tg] < 2n(H(X)+2),
Remark 1.9. In words: for i.i.d. samples, the joint distribution of X1, ..., X, is “roughly” uniform

over about 2™7(X) typical sequences.
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1.3 Source coding with error probability

Consider an encoder/decoder pair

(X1,..., X,) Aoty e 0,1 204 (%)X,
with a block error guarantee P((X1,...,X,) # ()?1, .. ,)?n)) <.

Theorem 1.10 (Source coding theorem with error probability). (1) Achievability. There exist
encoder/decoder pairs such that LE[((Y)] < H(p) + o(1) and § = o(1).

(2) Converse. If § = o(1), then any encoder/decoder pair must satisfy 2E[((Y)] > H(p) — o(1).

Proof sketch. Achievability. Encode only the typical sequences in 7} : enumerate the elements of T,
and transmit the index; declare an error otherwise. By AEP, P((Xy,...,Xy) ¢ 1);) — 0. Moreover,

UY) <log|T;| <n(H(p)+e) deterministically.

Since € > 0 is arbitrary, this gives %E[E(Y)] < H(p) + o(1).
Converse. Fix € > 0. Define

A:={X":LY)>n(H(p) —2)},
B:={X":X"=X"}.
By AEP and a union bound, P(7 N B) > 1 —6 — o(1). Also,

[T, BN A < [{y €{0,1}" : {y) < n(H(p) — 2¢)}|
n(H (p)—2e)
= Z ok 9. 9n(H(p)=2¢)
k=1

Each 2™ € T has probability at most 2-(H(P)=¢)  hence
P(TE N BN A% <27 HP)=e) |17e N BN A°| < 2. 277,

Therefore (I NANB)>1—-0—0(1) —2-27" =1—0(1), so P(A) > 1 —o(1). Finally,

CEIU(Y)] > (H(p) — 22) B(4) > (1 - o(1)) (H(p) ~ 2).

Letting ¢ | 0 yields the converse. O

1.4 Joint entropy and mutual information

Definition 1.11 (Joint and conditional entropies). For a pair (X,Y), define

H(X,Y) = IEXy[log (1.10)

1
p(X,Y)}’

HY | X):= Exvy[log p(Yl‘X)} = H(X,Y) — H(X). (1.11)
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Definition 1.12 (Mutual information).

I(X;Y) = H(X)+ H(Y) — H(X,Y) (1.12)
—H(Y) - H(Y | X) (1.13)
_ p(X,Y)
- IEXy[log m] (1.14)

Lemma 1.13 (Non-negativity of mutual information). I(X;Y) > 0. FEquivalently, conditioning
reduces entropy: H(X) > H(X |Y).
Typicality/AEP proof sketch. A one-line proof uses KL divergence, but we follow the typicality

argument.
For € > 0, define

13 R n ny . 1 1
TE(X) = {(a" ") : n;bgpm) ~ H(X)| <},
g O n ny . 1 - 1
TE(Y) = {(x ) 3 log —H(Y)’ <€},
(X Y) = ) iilogm ~H(X,V)| <<}

i=1
and the joint typical set TS :=TS(X)NTE(Y)NTS(X,Y).
If (X1,Y1),...,(Xn,Yy) are i.id. ~ pxy, then LLN + union bound give P((X",Y") € T%) — 1,
and hence [Tj;| > (1 — 0(1))275H()~(’Y)*5).
Now draw (X1, Y1),...,(Xp,Yy) ii.d. ~ pxpy (independent). Then
1>P((X™Y") e TE)
= > px(")py(y")
(zmym)eTy
Z (1 _ O(1))2n(H(X,Y)7E) . 27H(H(X)+€) . 2771(H(Y)+€)

_ (1 . 0(1))27n(I(X;Y)+3€)‘
Thus I(X;Y) + 3¢ > 0, and letting € | 0 yields I(X;Y) > 0. O

1.4.1 Some consequences (Shannon-type inequalities)

The non-negativity I(X;Y) > 0 is a fundamental inequality used to prove many others. For instance:
(1) HX1,...,Xn) =D p H Xk | X1, .0, X)) <> opy H(Xy).
(2) If Pynlxn = H?:l PYZ|X27 then

HXSY™) = B - B | X7 < S HY) - S HY | X) = 3 1(Xa ).
i=1 i=1 i=1
(3) If Pxn =[], Px,, then
XY™ = BXY - HOO | Y™ > S H) - S H 1) = Y 1K),
i=1 i=1 i=1
All inequalities that can be derived from monotonicity H(X) < H(X,Y) and submodularity
H(X,)+ H(Xp) > H(XauB) + H(Xanp) are often called Shannon-type inequalities.
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1.5 Channel coding and channel capacity

Channel model. A message m ~ Unif({1,...,M}) is encoded into a channel input X" € X",
passed through a memoryless channel Py x so that Pynjxn = I, Py, x,, and decoded into
me{l,...,M}.

Given a block error guarantee P(m # m) < §, the goal is to maximize the communication rate

_ logM
on

R, : (bits per channel use). (1.15)

Definition 1.14 (Channel capacity). The (Shannon) channel capacity is

C = C(PY\X) = HlljaXI(X;Y), where PXY = PXPY\X' (1.16)
X

Equivalently: choose an input distribution Px that maximizes the mutual information between
input and output.

1.5.1 Examples

Binary symmetric channel (BSC). For X =Y = {0,1} and crossover probability ¢ € [0, 1],
l1—¢ ¢
Pyix = ( e 1- 5> '

I(X:Y)=H(Y)— HY | X) < 1— ho(e), (1.17)

One has

with equality iff Py = (3, %) Here

(1.18)

is the binary entropy function.

Binary erasure channel (BEC). For X ={0,1}, Y ={0,1, L}, and erasure probability &,

| 0 1L
Pyx=0[1-¢ 0 «.
1 0 1—¢ ¢

Then

I(X;Y)=H(X)-H(X|Y)
(X)=P(Y # L) HX|Y#1)—-PY=1)HX|Y =1)

with equality iff Px = (%, %)
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1.5.2 Shannon’s channel coding theorem (statement)
Theorem 1.15 (Shannon’s channel coding theorem). Fiz any ¢ > 0.

(1) Achievability. If R,, < C — ¢, then there exist encoders/decoders such that P(m # m) — 0 as
n — oo.

(2) (Weak) converse. If R, > C+z¢, then for every encoder/decoder sequence, liminf,,_, ., P(m #
m) > 0.

(A strong converse strengthens the second statement to P(m # m) — 1; see later lectures.)

1.5.3 Achievability idea: random coding and typicality

Generate a random codebook XG), . ,XZIM) iid. ~ Pg?". To send me:sage m, transmit X("m).

Given the channel output Y, decode by finding the unique m such that (X () Y™) is jointly typical;

if none (or not unique), declare an error.
Assuming the true message is m = 1, successful decoding occurs if:

(1) (X("l),Y”) is jointly typical;

(2) none of (X&), Yn),..., (XE"”M), Y™) is jointly typical.

By LLN, event (1) holds with probability 1 — o(1). Moreover, since (X(”Q),Y”) ~ PY" @ PZ"
independent), the typicality bound implies P((X7,\,Y™) jointly typical) < 2-nI(X5Y)=3¢) - A union
(2)

bound gives
P(event (2)) > 1 — M . 2 UI(X5Y)=3¢),

If logM < n(I(X;Y) — 4¢e), then P(m = 1) > 1 — o(1). Optimizing over Px yields rates below
capacity.

Remark 1.16. Random coding was historically surprising (algebraic codes dominated early intuition)
and helped motivate the probabilistic method. The typicality decoder is computationally expensive;
capacity-achieving efficient codes (e.g. spatially coupled LDPC codes and polar codes) were developed
much later.

1.6 Weak converse via Fano’s inequality

Lemma 1.17 (Data processing inequality for mutual information). If X —Y —Z forms a Markov
chain (z'.e. PXYZ = PXPY|XPZ|Y); then

I(X;Y) > 1(X;2). (1.19)
Proof. Using Shannon-type identities,

I(X;Y)—I(X;2)=H(X | 2)—H(X |Y)=H(X | 2)—H(X |Y,Z)=1(X;Y | Z) > 0.

Theorem 1.18 (Fano’s inequality (one convenient form)). If X ~ Unif([M]), then

I(X;Y) 4 log2
log M '

PX#Y) > 1- (1.20)
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Proof. Let E:=1{X #Y} and p. :=P(F =1) =P(X #Y). Then

H(X |Y) = H(X|Y,E)+ I(X;E|Y)
<HX|Y,E)+ H(FE)
<PE=1)HX|Y,E=1)+P(E=0H(X|Y,E=0)+log2
< pe log M + log 2.

On the other hand, since X is uniform, H(X |Y) = H(X)—I(X;Y) =log M —I(X;Y). Rearranging
yields the claim. O

1.6.1 Applying Fano to channel coding (weak converse)

If the communication rate satisfies R,, > C' + ¢, then applying Fano’s inequality to (m,m) gives

I(m;m) + log 2

P m)>1—
(m # M) = log M
I(X™Y"™) +log2
>1-— (X" Y™) + log (Markov chain m — X" —Y" —m)
log M

mI(X3Y; log 2

>1- 2z [(Xi Vi) + log (memoryless channel bound)

log M

C +log?2

>1-— nt +log2 (definition of C).
log M

Since log M = nR,, > n(C + ¢), the right-hand side tends to £/(C + ¢) > 0, establishing the weak
converse.



Lecture 2: KL Divergence

2.1 Kullback—Leibler (KL) divergence

Definition 2.1 (KL divergence / relative entropy). Let P and @ be probability measures on the
same measurable space. The Kullback—Leibler divergence (or relative entropy) of P with respect to

Q is
Ex~p [log %(X)} , T P<Q,
00, otherwise.

DxL(P[Q) = {

Remark 2.2. 1. The definition covers both discrete and continuous cases. If p,q are pmfs on a
countable set X,

Dir(PIQ) = 3 pla) log 212

TEX 37)

If p, q are densities with respect to a common reference measure g,

D.(P|@) = [ pl2) 1og§§gu<dx>.

2. This is a divergence rather than a distance: in general Dkr,(P||Q) # Dki(Q|/P). Hence we
write Dkr,(P||Q) instead of Dk, (P, Q).

3. Information-theoretic origin (redundancy). In the discrete case,
D1 (P||Q) = ZP log——H(P)

where H(P) =" _p(z)log Tlx) is Shannon entropy. Thus Dxr,(P||Q) equals the expected code
length when using a code optimal for () minus the optimal expected code length for source P.

2.1.1 Basic properties

Proposition 2.3 (Property I: nonnegativity). For any P,Q, Dy (P||Q) > 0, with equality if and
only if P = Q.

Proof. Assume P < @ and write Z = %. Then Eg[Z] =1 and
DKL(PHQ) = Ep[log Z] = EQ[Z log Z].

9



10 Lecture 2: KL Divergence

The function ¢(t) = tlogt is convex on Ry and satisfies ¢(1) = 0. By Jensen’s inequality,

Diw(PIIQ) = Eqlp(2)] > ¢(Eq|Z]) = (1) = 0.

Moreover, equality holds if and only if Z =1 Q-a.s., i.e. P = Q. If P « @Q, then Dk, (P||Q) = +o0
by definition. O

Remark 2.4 (Mutual information as a KL divergence). For random variables (X,Y") with joint law
Pxy and marginals Px, Py,

dPxy

(X,Y):| = DKL(PXYHPX &® Py) > 0.

Equality holds if and only if Pxy = Px ® Py, i.e. X and Y are independent.

Proposition 2.5 (Property II: joint convexity). The map (P, Q) — D1 (P||Q) is jointly convez.

Proof sketch. In the discrete/density setting, Dxr,(P||Q) = [ qﬁ( ) q, where ¢(u) = ulogu. Equiva-
lently, one may use the joint convexity of (z,y) — zlog £ % on R2 . Indeed, for f(z,y) = zlog(z/y),

1 _1
Vif(z,y) = (_xl “j) = 0.

Y Yy

Proposition 2.6 (Property III: chain rule). Let X" = (X1,...,X,). Then

Dy, (Pxn[|Qxn) ZE i1 [DKL Py, xi-1[@x; xi- 1)}

P i
Proof. Write the likelihood ratio via conditional distributions: Pxn IT- “XlXTL Taking logs

Qxn ? 1QX |xi—=1

and expectations under Pxn gives

1
Dkr(Pxn||Qxn) = E En:lo Py (Xi ] X ZE Dy (P 1Q )|
KL Xn X" Pxn QX ‘Xz 1 X ’X’L 1 xi—1 KL X|Xl 1 Xle 1

O]

2.1.2 Data processing inequality

Theorem 2.7 (Data processing inequality (DPI)). Let Px,Qx be distributions on X and let Py x
be a Markov kernel (channel) from X to ). Let Py,Qy be the output laws induced by the same
channel: Py = PxPy|x and Qy = QxPy|x. Then

D1 (Px||Qx) > Dki(Py||Qy).

(In words: distributions become “closer” after processing.)

Proof (method 1: convexity / Jensen). Assume Px < Qx (otherwise Dki,(Px||Qx) = 400 and

the claim is trivial). Let

dPx

Lx(x) = —==(x).
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Define the joint laws Pxy = P)(Py|X and Qxy = QXPY|X‘ Then Pxy < Qxy and

dPxy . dPx .
Let AP
. Y
Ly (y) = 10y (y)-

We claim that
Ly (Y) =Ex~qyy [Lx(X) | Y]  Qy-as.

(this is the “exercise” step in the handwritten notes). Indeed, for any bounded measurable g,

Eqy [9Y) Ly (Y)] = Ep, [9(Y)] = Epy, [o(Y)]
= EQuy [9(Y) Lx (X)] = Eqy |9(Y) Eqyy [Lx(X) | Y]],

which identifies Ly as the conditional expectation.
Now use p(t) = tlogt (convex on Ry). Then

DxiL(Py||Qy) = Ep, [log Ly (Y)] = Eq, [Ly (Y)log Ly (Y)] = Eq, [¢(Ly (Y))]
= Eqy [¢(Eqy [Lx(X) | Y])] < Eo,Eqy, [p(Lx(X)) | Y] (Jensen)
= Eqy[p(Lx(X))] = Epy[log Lx(X)] = DxL(Px||@x)-
O]

Proof (method 2: chain rule). Form the joint laws Pxy = PxPy|x and Qxy = QxPy|x. Since
the conditional distributions coincide, the chain rule gives

Dk (Pxy||Qxy) = DkiL(Px||Qx) + Epy [Dxi(Py x| Pyx)] = Dxu(Px|@x)-
Applying the chain rule in the other direction,

Dxr(Pxy||Qxy) = DxvL(Py||Qy) + Ep, [ Dxr(Px|y |Qxy)] > Dxr(Py[Qy).
Combining yields Dk, (Px||Qx) > Dxr(Py|Qy)- O
2.1.3 Applications of DPI
Example 2.8 (DPI for mutual information). If X —Y — Z is a Markov chain, then

I(X:Y) > I(X: 2).

Proof. Using the KL representation of mutual information, I(X;Y) = Dk (Pxy | Px ® Py). Under
the Markov condition X —Y — Z, both Pxz and Px ® Pz are obtained from Pxy and Px ® Py,
respectively, by applying the same channel Pyy. By DPI,

Dx1,(Pxy||Px ® Py) > Dk, (Pxz||Px ® Pz),

which is I(X;Y) > I(X; Z). O
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Example 2.9 (Fano’s inequality (one form)). If X ~ Unif([M]) and Y is any estimator of X, then

I(X;Y) + log2
log M ’

Proof. Let A =1{X =Y}. Under Pxy, A ~ Bern(P(X =Y)). Under Px ® Py, since X is uniform
and independent of Y, Pp, gp, (X =Y) =1/M, hence A ~ Bern(1/M). By DPI,

P(X£Y)>1-

I(X;Y) = Dgr(Pxy||Px ® Py) > DkL (Bern(P(X = Y))HBern(l/M)).
Writing p=P(X =Y) =1—-P(X #Y) and expanding the Bernoulli KL,

D 1—p

1—p)log ——L > plog M — log 2.
1/M+( p)ogl_l/M_pog og

Dx1,(Bern(p)||Bern(1/M)) = plog

Rearranging yields the stated bound. O

Example 2.10 (A contiguity bound). For any event A,

Pp(A) log ePIF’PQ(Ei) < Dk (P|Q).

In particular, if Dy, (P||Q) = O(1) and Pg(A) — 0, then Pp(A) — 0.
Proof. Apply DPI to the mapping x — 1{xz € A}. Then

Pp(A)
ePo(A)’

DkLL(P||Q) > Dkr,(Bern(Pp(A))|Bern(Pg(A))) > Pp(A)log
where the last inequality is a standard lower bound on Bernoulli KL. O

2.1.4 Dual representations of KL

Theorem 2.11 (Donsker—Varadhan variational formula).
Diw(PQ) = sup{Ep[f] ~ log Eqle’] .

where the supremum is over measurable f such that Eg [ef] < .

Proof. (<) Take f = log %' Then Eglef] = 1 and the objective equals Ep[f] = DkL(P|Q).

(>) For any f, replace f by f — ¢ so that Eg[e/] = 1. Define a probability measure @ by
Q(dz) = e’®Q(dz). Then

Dki.(PQ) — Eplf] = Ep [ P } — Dy(P) > 0.

log — 2
ST RTa)
Thus Ep[f] — log Egle/] < Dkr(P||Q) for all f. O

Theorem 2.12 (Gibbs variational principle). For any measurable f with Egle/] < oo,

log Eqle’] = sup{Ep(f] ~ De(P]Q) }

Proof. (>) Take P(dx) = %.

(<) Follows from the Donsker—Varadhan formula. O
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2.2 Applications

2.2.1 Application 1: transportation inequalities

Example 2.13 (Pinsker’s inequality from Donsker—Varadhan). Restrict Donsker—Varadhan to
functions of the form f = Ag with [|g||,, < 1. Then

Dy (PlQ) > sup  {XEp[g] — logEqle]}.
AER, |lglloo <1

Using Hoeffding’s lemma for bounded g, log Eg[e*9] < AEglg] + )‘72 Hence

DxL(P||Q) > ) ”shlpq{A(Ep[g] —Eqlg]) - %2} = 1(” SHup<1(Ep[g] - EQ[Q]))2 =2TV(P,Q)*.

This is Pinsker’s inequality.

Example 2.14 (Bobkov—Gotze: a T} transportation inequality). Let (X, d) be a metric space. The
following are equivalent:

(1) For all 1-Lipschitz f and all A € R,
Eqexp(\(/ — Eqlf])] < exp(%5€).

(2) For all P < Q,

Wi(P,Q) < v/2C Dx1(P||Q).

Here the Wasserstein-1 distance is

Wi (P,Q) = reid, By [d(X,Y)] = fsf.leip{EP[f] - Eqlf1}-

Proof (sketch). (1)=(2): Restrict Donsker—Varadhan to f = A fy with fy 1-Lipschitz and apply (1)
to control log Eg[e°]. Optimizing over A gives Dk, (P||Q) > W1(P,Q)?%/(2C).
(2)=-(1): By Gibbs variational principle,

. 2
log Eq[e*V e sllljp{)\(Epf—EQf)—DKL(PHQ)} < Sgp{A(Epf—EQf)—W} <22
O

2.2.2 Application 2: variational inference

Setting. Consider a model family py(x™,y™) where both pg(z™) and py(y™ | ™) are tractable. We
observe y™ but not 2" (missing data / latent variables). The marginal likelihood

po(s") = [ pola® oy | 2" da”
is often intractable.

Theorem 2.15 (Evidence lower bound (ELBO)).

pe(X",y”)]

log pg(y") = sup Exn~ [log
q I q(X™)
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Proof. Apply the Gibbs variational principle with f(z™) = logpg(y™ | ™) and base measure pg(z™):
logpe(yn) _ IOngg(xn) [610gP9(y"|2")]
= sup{E,flog po(y” | X")] — Dicv(allpo(c™)) }
q

Lty

=supE [log —
q ! q(X™)

Example 2.16 (Ising model: variational lower bound on log 7). Let y € {£1}" and

p( - exp Z Az]yzyj + Z biyi

1<J

Then

log Z = log | 2"Ey < unif({+1}n) €XP ZAUYY +ZbY

1<J
— nlog2 + sup{ > AuvY; + Zb V;] — Dk ( pHUnlf({:I:l}n))}
p 1<j
:sup{ ZAZJYY —l—ZbY + H(p )}
p

1<j
Relaxing p to a product form p = [, Bern(p;) yields a tractable lower bound.

Example 2.17 (EM algorithm as coordinate ascent on the ELBO). The maximum-likelihood
estimator satisfies

mO),

arg max log pp(y") = arg max sup E, [log g(X™)

q

Successive maximization gives:
e E-step: for fixed § = "), the maximizer is ¢()(z") = Doy (2™ | y™).
e M-step: for fixed ¢ = ¢!, update
ei+D ¢ arg max Exnoq® [logpg(X”, y”)]
For exponential families py(z,y) o exp({0, T (z,y)) — A(H)), this reduces to computing conditional
sufficient statistics in the E-step and a standard MLE update in the M-step.
Example 2.18 (VAE: ELBO with reparameterization). A typical VAE generative model is
Xi~N(O,D), i | Xi~ N(uo(Xi), 03 (Xi)1),
with ug, 0p parameterized by neural nets. Choose an approximate posterior
ds(x | y) = N (up(y), o5 (y)I).-
Then the ELBO suggests optimizing over (6, ¢). In practice one:
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1. Replaces expectations under g, by Monte Carlo samples X;; ~ N (u¢(yi),a§(yi)l ), j =
1,.... M.
2. Computes Vy from the explicit form of log py(x,y).

3. Computes V4 via the reparameterization trick: if X ~ N(u¢,035[) and € ~ N(0,I), then
X = pg + 0ge and

M

VLS (X)] = Vol g + 06)] = BelVof (o + 090)] = 22 D Vol (1o + 05y).
j=1

2.2.3 Application 3: adaptive data analysis

Problem. Let X" = (Xy,...,X,) beiid. from P, and let {¢; : X — R} be a class of functions.
For fixed t define

Padi= 36X, Pou=Elg(X)]
i=1

What if the index 7" is chosen adaptively, i.e. T'=T(X"™)?
Example 2.19 (Russo—Zou (2016)). Assume each ¢(X) is o2-sub-Gaussian under P. Then

2
[E[Pé1] ~ E[Pg]| < /22 10X T).

Proof. Condition on T.

E[P"¢T | T] = IEPxn\T [TlL Z¢T(XZ)] ; E[P¢T ’ T] = prn
=1

By Donsker—Varadhan, for any A € R,

Dic.(Pyeirl| Pxn) = AE[Paor | T| = logE [exp(APagr ) |T]

~ A(E[Pag7 | T) ~ E[Por | T]) — log E [exp(A(Paér — E[Por | T))|T] .

The sub-Gaussian assumption implies log E[exp(A(P,¢7 — E[Por | T))) | T] < A%0® Therefore,

2n
\2o? nA?
Dgr(Pxn|r|Pxn) = sup {AA - } =——5. A=E[P¢r|T|-E[Peér|T]
AeR n 20
Taking expectations in 7" and using I(X™;T) = E[DKL(PXTL‘THPXTL)] yields the claim. O

2.3 Special topic: PAC-Bayes

Theorem 2.20 (PAC-Bayes inequality). Let X ~ P and let {fp : X — R} be a class of functions
indexed by 0. Fix any prior distribution m on 0. Then with probability at least 1 — 6 (over X ~ P),
for all distributions p on 0,

Eop [ fo(X) — $(6)] < Diu(pllm) +log%, $(6) = log Exp[e)].
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Proof. By Markov’s inequality, it suffices to show
Ex-p [sup exp (Egp fo(X) ~ 1(6)] - DKL@nw)ﬂ <1
p

By the Gibbs variational principle, the inner supremum equals log Eg..ef0(X)=%(®)  Hence the
left-hand side becomes

Ex~p [exp (log ngwef"(x)*w(a))} =ExpEyor [efe(X)*w(b")]

= Egr [IEXNP [efgm—ww)ﬂ .y
O

Example 2.21 (Why call it “PAC-Bayes”? (a quadratic PAC-Bayes bound)). Let F be a class of
functions f : X — [0,1] and let X1,..., X, "~ P. Write

Puf = 23 (XD, PP Exaplf(X))
i=1

For fixed f, Hoeffding’s inequality implies the usual concentration bound

1 2

(Pof —Pf)? < —log= with prob. > 1 — 4.
2n 1)

PAC-Bayes gives a “soft” uniform version: fixing any prior w on F, with probability at least 1 — 6,

simultaneously for all distributions p on F,

Dxr(pl|7) + log 3

Epr[(Pnf_Pf)2] < omn

Proof. Apply the PAC-Bayes inequality to the random variable X" = (Xy,...,X,,) and to the
function class

Fi(X") =M (Puf = Pf)?,  [eF,

where A > 0 is a parameter. Then, with probability at least 1 — ¢, for all posteriors p,
1
Ejp[NPof = PJ)? ~logEexp(M(Paf = P)?)| < D (pllm) + log . (2.1)

Now fix f. Since f(X;) € [0,1], the centered average Z := P, f — Pf is sub-Gaussian at scale
1/n. A standard computation for sub-Gaussian random variables yields the “square-mgf” bound

1 1
2
logEexp(/\Zf) S 5 log m for A < 4n.

Plug this into (2.1). Choosing A = 2n (so that A < 4n) gives

1 1 2
Efep [Qn (Pof — Pf)z] < Dk (p||7) + log 5 + 3 log2 < Dx1,(p||7) + log 5

Dividing by 2n yields the claim. O
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Example 2.22 (A Gaussian norm bound via PAC-Bayes). If X ~ A(0,Y), then with probability

at least 1 — 4,
1
X112 < v/ Te(2) +4/2 [[Ell,p log 5-

Proof. We start from the dual characterization

X1, = sup (v, X).

l[oll;=1

Fix parameters A > 0 and 02 > 0. Let the prior on § € R? be 7 = N(0,0%I). For each v with
|lv|ly = 1, define a posterior

po = N(v,°I).
Apply PAC-Bayes with the function fy(X) = A (0, X). Then, with probability at least 1 — 6,

simultaneously for all v,

1
Eg-p, | A (0, X) — log Eexp (A <9,X>)] < Dy (pym) +log 5. (2.2)

We now compute the three terms explicitly. First, since X ~ N (0,Y),

)\2
log Eexp (A (6, X)) = - 07x0.
Second,
2
— 2 oy _ lvllz 1
D (po||w) = Dk (N (v, 6°I) |N(0,0%1)) = 552 252"
Third, Eg.,, [(¢, X)] = (Ef, X) = (v, X) and
Egmp, [0 0] = v S0 + 02 Tr(D).
Plugging into (2.2) yields, for all v with |jv[|, =1,
Av, X) — )\—Q(UTEv—i— 2Ti(Y)) < 1 +lo !
’ 2 7 =952 T8
or equivalently
A, T ) 1/ 1 1
(0, X) < 50 T0+ 0 TH(D)) + 5 (272 +log 5). (2.3)

Now optimize over o2, For fixed ), the o2-dependent part in (2.3) is
Zo?Tr(%) + L
A 202

This is minimized at .
2

0 = —F—
A/ Tr (%)

in which case the minimum value equals 1/Tr(X). Hence (2.3) becomes

(0, X) < /Tr(D) + %vTEv + log(i/é).
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Using v' %o < ||, and taking the supremum over [jv[|, =1 gives

A log(1/5)
X < V(D) + 5 5], + —252.

Finally, optimize over A > 0 by choosing

2log(1/9)
A= —=,
1% lop
1
X1z < v/ Te(2) +4/2 [[Ellp log 5

Example 2.23 (Sample covariance (effective rank bound)). Let X1,..., X, be i.i.d. with E[X;] =0,
E[X;X,'] = ¥, and assume (v, X;) is sub-Gaussian with variance proxy v'Xv for every v € R9. Let

~

¥ =15 X;X,;". Then with probability at least 1 — 4,

_<cizl, (\/r(z) +log(1/0) | r(¥) +10g(1/5)> |

n n

which yields

O]

Hi—z

where r(X) = Tr(X)/ |||, is the effective rank and C'is a universal constant.

Proof. Throughout the proof, C' denotes a large universal constant which may change from line to
line.

Step 1: reduce to bilinear forms. Recall

= sup  u (-3

P ullp=llvll;=1

Hi—z

Fix u,v with ||ull, = |lv|l, = 1.

Step 2: construct truncated-Gaussian posteriors. Let f, be the density of A(u,o?I)
conditioned on the event
(x —u) Sz —u) <r?,

and define the product posterior on (#,6') € R? x R? by
Pup = fu® fo.
By symmetry of the conditioning set around u (resp. v), Egy,[0] = v and Egy, [6'] = v. Therefore,
E(go)mpe, [0 (E—2)0] =u" (E - D).

Let
p=P(Z'SZ<+?),  Z~N(007I).

By Markov’s inequality,
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Step 3: compute the KL term. Let the prior be
7= N(0,0%I) @ N(0,52I).
Write ¢, for the density of N'(u,o%I). Then

pu() (2 —u) T8 (z —u) < r’}

fulz) = ’
A direct calculation gives
2 2 2 1 ||U||§ 1 1 1
D1 (fulN(0,0°1)) = Dy, (N (u, a°I)||N(0,0°T)) —|-log;9 iy +log5 = 5,2 +log;o.

Hence ] ]
Dxr(pupl|m) = — + 2log —.
o p

Step 4: apply PAC-Bayes. Apply PAC-Bayes to the random sample X" = (X1,...,X,),
parameter (0,6’), and the function

Fgﬂ/(Xn) = )\HT(i — 2)9/,
where A > 0. Then with probability at least 1 — 9,

~ _ 1
E (0.0’ po.0 [AOT(Z ~%)0 —logEexp(\T (S — 2)0’)} < Dxe(puum) +log 5. (2.4)

Step 5: bound the log-mgf term (Bernstein-type control). Under the stated sub-Gaussian
assumption on (w, X;), one has the estimate (as in the handwritten notes)

& C\? 2 n
logEexp(A0T(Z —2)0') < == (0750 +0'T5¢' for A < . 2.
ogBexp(A0" (3 = 2)0') < = = (0736 + ) foras C(0T=0+0T50) 22)
Using (2.5) in (2.4) and dividing by A yields
o CA s 1,1 1 1
T _ < = T /T / —( - - - .
uT(§ =)o < =7F,,, (6750 +070) +>\<02+210gp+10g5) (2.6)

provided A\ satisfies the condition in (2.5).

Step 6: control "X under the truncation. If § ~ f,, then (f —u)' (0 — u) < 2. Hence,
using the triangle inequality in the seminorm z — vV "Xz,

VOTE0 < VaTSu+ /(6 - 0) 7260 — ) < /|2, +7,

07560 < (\/IIZllop +7)°

The same bound holds for ' ~ f,,. Consequently,

(0720 +07x0) < C (/IS + )"

SO
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Also, the condition in (2.5) is ensured if

n
A< .
Cl/ %l +7)?

Taking the supremum over u, v in (2.6), we obtain

- O\ 1,1 1 1

Z—EH <2 s 4 fo 21og = 1AJ

|82, < 7 (ISl +)* + 5 (52 + 2108 +1om;
forall)\SC

_n
VIElop+r)?

Step 7: choose r and ¢2. Choose

o IZlop 1

2 _
r= 2Hz]HOp? g = TI'(Z) - 'I"(E)

Then ) 1=
pzl—ijgacﬂ— op:}7
r 2(Ellep 2

S0) log% < log2. Moreover, (/][ + r)t =< HEng. Absorbing constants into C, (2.7) becomes

- Aoey 1 1
— < — — — <
HE ZHOP_C<n HZHop—l-)\(r(Z)—i—log 5)) for A <

Step 8: optimize over A\. Let a:=r(X)+log:. If a/n < 1, choose

n a
1Ellop V 2

. In both cases,

n

If a/n > 1, choose A < =

op

_n
ClI%lgp

n n

[E-2], <o, ({2+2) =c iz, <\/ ) +1og(1/0) | 1(2) + Log(1/0)

which is the claimed bound.

n

)



Lecture 3: f-divergences

3.1 f-divergence: definition and examples

Definition 3.1 (f-divergence (Csiszar, 1963)). Let f : (0,00) — R be convex with f(1) = 0. For
two probability measures P, () on the same measurable space with P < @), the f-divergence is

D;(PIQ) £ Eo[f(45)]:

Remark 3.2 (Normalizations and the case P € Q). 1. Some definitions additionally assume f/(1) =
0. This is without loss of generality: if ¢ € R then f(x) and f(x) 4 c¢(x — 1) induce the same
f-divergence, since Eq[45 1o — =0

2. If g—g =0, define f(0) £ f(0+). If P &« Q, pick a dominating measure x with densities p = Q
and g = i—g, and define

Dy(P|Q) 2 /{ af(B) an s e Pla=0) 10 £ Jim i),
q>

r—00 I

Examples
Below are standard choices of f and the resulting divergences.

1. Total variation. f(z)= 3|z — 1|.
DyPIQ) = TV(P.Q) = 3 [ 1aP - aql.
2. Squared Hellinger distance. f(z) = (v/z —1)%
Ds(PIQ) = W(P,Q) = [ (VAP - /4Q)"
3. Kullback—Leibler divergence. f(z) = zloguz.

D;(PIQ) = Dia(PIQ) = [ 1og(75) P

4. y%-divergence. f(r) = (z —1)2.

Dy(PIQ) = x*(PIQ) = [ 79 g (47 1Y,

21
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5. Le Cam distance. f(z) = %
B 1 [ (dP - dQ)?
6. Jensen—Shannon divergence. f(z) = zlogx + (z + 1)log m%
P+Q P+Q
Df(PHQ):JS(P’Q):DKL(PH 5 )+DKL(QH 5 )

3.2 Basic properties
Theorem 3.3 (Non-negativity). For any convex f with f(1) =0 and any P < Q,
Dy(P||Q) = 0.

Proof. By Jensen’s inequality,

D;(P|Q) = Bo[f(57)] = £ (Ba[ 5] ) = 1) =0,

Theorem 3.4 (Joint convexity). The map (P, Q) — D¢(P||Q) is jointly convex.

Proof. Fix a convex f : (0,00) — R and define its perspective transform

x
w(x7y)éyf(y) ) (.%',y) EIR2>0'
Assume first that f is twice differentiable and write t £ z/y. A direct calculation gives
0? 1 0? x 0? x?
e L A - (0]
ox Y Oz Oy y y Y
o Lrefy) S afy)
I aly) —m @)y
v?w(l,’y) = yx 1/ xg2 1 t 0’
=2 ly) m (2 /y)

since f” > 0 and the matrix has rank one. Therefore 1) is convex on R2>0. (For a general convex f,
the same conclusion holds by standard approximation.)
Now let P, Q admit densities p, ¢ with respect to a common dominating measure . For A € [0, 1],
define
PAEMI (1 =Np2, o E=xa+ (1= Ve

Pointwise convexity of 1 gives

q,\f<PA> =Y(Pn, 02) <M1, q1) + (1= N)p(p2, q2) = /\q1f<pl> . )\)qu(pz) .
ax o -

Integrating over p yields

Dy(APr+ (1= AP [ AQ1 + (1 = A)Q2) < ADf(P1[|Q1) + (1 = A) Dy (P2[|Q2),

which is joint convexity. O
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Theorem 3.5 (Data processing inequality). Let Px,Qx be distributions on X and let Py|x be a
Markov kernel. If Py,Qy are the induced marginals, then

D¢ (Px||@x) > Dy(Py[|Qy).

Proof. Write L £ SQL’;. For the channel (Markov kernel) Py |x, the induced marginals satisfy

APy (y) = / Pyix(y | 2) dPx(z),  dQy(y) = / Pyx(y | 7) dQx ().
Using dPx = L dQx, we can rewrite
APv(y) = [ Prix(y | 2) Liz) dQx (o).

Consequently, whenever dQy (y) > 0,

dPY( ) = J Pyix(y | =) L(z) dQx (z)
J Prix(y | =) dQx(x)

@ Yy :EQ[L(X)‘Y:?JL

where the conditional expectation is with respect to the joint law Qxy = Q x Py|x. Therefore
Dy(Pyl|Qy) = Eqy |(EqlL | Y1)].

By Jensen’s inequality (since f is convex),

d
Eoy [ (EolL | Y])] < Eo, [Eol/(1)| Y]] = Balf(L)) = Bay [£( 455 )| = Dy(Pxl@x).
This proves Dy(Px[|Qx) = Dy(Py[|Qy)- u
Py x
Px - Py
Qx P - Qy

3.3 Why f-divergence? Binary hypothesis testing
Consider simple hypothesis testing:
Hy: X ~ P, Hi: X~Q,
with a (possibly randomized) test 7' : X — {0,1}. The errors are
Type I. P(T(X) = 1), Type II: Q(T'(X) = 0).
Theorem 3.6 (Total variation and the best sum of errors).

irTlf(P(T(X) =1)+Q(T(X)=0)) =1-TV(P,Q).
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Proof. First recall the standard identity
TV(P.Q) = sup(P(4) — Q(4)). (3.1)

where the supremum ranges over measurable sets A. Indeed, if P,Q have densities p,q w.r.t. a
common dominating measure pu, then

VP =g [bdan= [ oo di=PA) QU a2z,

which proves (3.1).
Now fix any (possibly randomized) test T': X — {0,1} and let

A= {z:T(x)=0}.
Then
P(T(X) =1)+Q(T(X) = 0) = P(A°) + Q(A) = 1 = P(A) + Q(4) = 1 — (P(4) — Q(A)).
Taking the infimum over tests T is therefore equivalent to taking the supremum over sets A:
inf (P(T(X) = 1) + Q(T(X) = 0)) = 1 = sup(P(4) ~ Q(4) = 1 = TV(P.Q)
where we used (3.1). Finally, equality is attained by the deterministic test 7%(x) = 1{z ¢ A*} for

any set A* achieving the supremum in (3.1). O

Remark 3.7 (Interpretation of total variation). 1. TV(P,Q) = 0 iff P = @ (totally indistinguish-
able).

2. TV(P,Q) =1iff P L Q (perfectly distinguishable).

3. TV(P,Q) < 1 means partially indistinguishable.
This quantity is central in minimax lower bounds.

3.3.1 Why not just total variation? Tensorization

1. TV(P,Q) can be hard to compute.

2. TV does not tensorize well: in general,
TV(P®",Q%") <n'TV(P,Q)

is the best possible inequality in full generality, but it is often loose.

Example. How large is TV(Ber(3)®", Ber(3 + 6)®")? The bound TV(P®", Q®") < nTV(P,Q)
yields an nd-type upper bound, whereas Pinsker’s inequality gives

TV(P®", Q") < \/3Dke(Po Q") = | /3D (PIQ) = O(vn d),

which is much tighter for small §.
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3.3.2 Popular f-divergences that do tensorize
For product measures @), P; and ), Q;:

1. Squared Hellinger:

1- %H2 (® Pi,@Qi) = H(l - %HQ(B,Q»)-

Dk <®Pz ®Qz> = ZDKL(B”Qz’)-

X2(®Pi

Remark 3.8 (Optional: Rényi divergences unify these). Rényi divergence (order A\ # 1) is

Q@) +1=T[0C@Ie) +1).

i

DAPIQ) 2 0B [(50) ]

It tensorizes:

D)\(®PiH ®Qz) = Z Dy\(P;]|Qq).

For A = %, 1,2 this relates to Hellinger affinity, KL, and x?, respectively.

3.4 Similarities and differences between f-divergences

3.4.1 Locally x>-like

Assume f”(1) exists and P and @ are “close” (heuristically, 3—5 ~ 1). Then a Taylor expansion

gives dP (1), dP 2
dQ_1)+f2(><dQ_l)]

D;(PIQ) = Eo[1(5) | ~ Be[ 1)+ £/()(

Since f(1) =0 and EQ[% —1] =0,

ps(plQ) ~ T e (plq)

3.4.2 In parametric models: Fisher information

Let (Py)geo be a regular parametric model with # € R? and (for a dominating x) densities fp = %IZ’ .

For h € R% and small ¢,

2 [ o= f0)* oty [ fo@)folx)T - 2, T
PP = [ s enn ([ DD dua))h = £ IO)h

where fo(z) = Vgfg(z) and 1(f) € R®? is the Fisher information matrix:

10)- [ W dju(x) = E[(Vglog fo(X))(Valog fo(X))T] = E[~ V3 log fo(X)].
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3.5 f-divergence as “average statistical information”

3.5.1 Bayes error and statistical information

In binary hypothesis testing with prior P(Hy) = m € (0,1), the Bayes error is
BA(P.Q) = int (v P(T(X) =1) + (1= m) QT(X) = 0)) = [(dP) A (1~ 7) dQ).

where z A y £ min{x, y}.
The associated statistical information is the improvement from prior to posterior:

I;(P,Q) 2t A(1—-7)— B:(P,Q).

One can check that I;(P,Q) is an f-divergence:
dpP .
I+(P,Q) = Eq [fw(@)], frlt) 27 A (1= m) = (mt) A (1= ).

Theorem 3.9 (Liese-Vajda, 2006). For any f-divergence, there exists a (finite) measure I'y on
(0,1) such that for all P,Q,

1
Dy (PI|Q) = /0 I(P,Q)T4( dn).

Remark 3.10. Every f-divergence is an average statistical information, with different weights placed
on .

Proof. Assume f(1) = 0 and, without loss of generality, f’(1) = 0. For a convex f, its (distributional)
second derivative is a nonnegative measure f”(dxr) on (0,00). (When f € C2, one has f"(dx) =

f'(z)da.)
A standard calculus identity (which one can check first for f € C? and then extend by approxi-
mation) is:

t 1 00
f(t):/l (t—x)f”(dx):/o (x—t A 2) f”(da:)+/1 (t—t Az) (o). (3.2)
Define . .
f(t):/o (w—tAz)f (dx)+/1 (1=t Az f"(da).

Then, for any ¢ > 0, subtracting from (3.2) gives
(=P = [ (=11 (d) = (¢~ 1) (0,
1

which is affine in ¢. Hence for L £ g—g (so that Eg[L] = 1),

Eq[(f = H(L)] = f(o0) Eq[L — 1] =0,

and therefore )
Dy(P|Q) = Eq[f(L)] = Eq[f(L)]. (3.3)
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Next, for any = > 0 and any ¢ > 0,

(IAZ)—(tAz) = (1+2) <1ixA lix—tlix/\ 1;) S, (34

where fr(t) =7 A (1 —7) — (7t) A (1 —7) is the f generating I;. Combining (3.3) and (3.4) gives

1+x

|01, (P ) = Bo[ [T +a) £y (1) (de)] = EolF(1)] = DAPIQ).
Finally, define I'y as the pushforward of the measure (1 4+ z)f”(dz) under the map
1

Then the last display is exactly

1
D (PI|Q) = /O L(P,Q)Ty(dr),

which proves the theorem. ]

3.6 Different guarantees on contiguity

Definition 3.11 (Contiguity). A sequence of measures { P, } is contiguous with respect to {Qy}
(written {P,,} <{Qn}) if for any events A,,

Remark 3.12. o TV.If TV(P,,Q,) — 0 then {P,} <{Qy}. Indeed, for any event A,,

Po(Ay) = Qn(An)+(Pn(An)_Qn(An)> < Qn(An)‘}‘SB‘p | Pn(A)=Qn(A)] = Qn(An)+TV (P, Qn).

So Qn(A,) — 0 and TV(P,,Q,) — 0 imply P,(A,) — 0.
o KL. If Dk, (P,||@n) < C, contiguity already holds. In fact, for any event A,,

Py (Ay)
€ Qn(An)

Proof of (3.5): Let p 2 P,(A,) and ¢ 2 Q,(A,). Apply the data processing inequality for KL
to the mapping x — 1{x € A,} to get

Po(Ay) log < DxL(Pa]|Qn) < C. (3.5)

1-p
1—q

Dxr.(Pu]|Qn) > Dxr (Bern(p) || Bern(q)) = plogg +(1—p)log

Using the inequality logu > 1 — % (valid for all u > 0) with u = %{;, we have

1—p 1—¢q
>(1-p)(1l-—2) =g—np.
1_q_( p)< 1_p> q—p

(1 —p)log

Therefore » » »
DxL(Pu||@Qn) > plog = +q —p=plog — +¢q > plog —,
q eq eq
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which is exactly (3.5). To conclude contiguity, suppose g, — 0. If p, /4 0, then there exists
€ > 0 and infinitely many n such that p, > e. For those n,

€
C'>pnlog— > elog — — o0,
€qn €(qn N0

a contradiction. Hence p,, — 0.

o 2. If \3(P.|Qn) < C, one gets a stronger quantitative control. Let p = P,(A,) and

q = Qn(A,). By data processing for x? under the same indicator map,

_ 2
A(PullQn) > x2(Bern(p) || Bern(q)) = M'

Thus
(Pn<An) — Qn(An))2

Since 1 — ¢ < 1, this implies (p — ¢)? < Cg, and hence
Po(An) < Qn(An) + v C Qn(An).

Different f-divergences give different “powers” for establishing contiguity results, due to different
growth of f(t) as t — oo. In this context, a popular choice is to upper bound x?(P,||@Q,), known as
the second moment method.

<XA(P||Qn) < C

3.7 Dual representations of f-divergence

Definition 3.13 (Convex conjugate). For a convex function f on R, its convex conjugate is
I"(y) £ sup (vy — f(2)).
Remark 3.14 (Standard properties). 1. f* is convex.
2. f*=f.
3. (Young) f(x)+ f*(y) > xy.

Theorem 3.15 (Dual form of f-divergence).

Di(PIQ) = sw  {Eplg] - Eqlf(9)]}.

9:EQ[f*(9)]<o0

Proof. Using f(x) = supy(m/ - ")),

D;(P|Q) = Eq[ (5]

- [S‘lp<j@y f())}

_SUP{EQ[SS } EQ[f*(g)]}

= sgp{Ep[ ] — EQ[f*(g)]}
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Example 1: total variation

For f(z) = %

x — 1|, one has
vy <
f(y) —{ :

+oo, |y| > %

Hence

sup |Eplg] — Eqlg]|.
llglleo <1

| =

TV(P,Q)= sup (Eplg] —Eqlg]) =
lglloes1/2

Example 2: KL and Donsker—Varadhan

For KL, one convenient normalization is f(x) = xlogx — x + 1 (equivalent to xlogx up to an affine
term), whose conjugate is f*(y) = e¥ — 1. Then

Dyt (P|Q) = sup{Eplg] ~ (Eq[e*] ~ 1) }.

Since u — 1 > logu, this is weaker than the Donsker—Varadhan variational form. A standard way to
recover Donsker—Varadhan is to optimize over constant shifts:

Di1(P]Q) = supsup{Eply +a] - Eq[e?™] +1}
(Bgle?] — o)}

= supd Eplg] — inf
sup{Erls — jnt

— sup{Eplg] ~ log Eqle] },
g9

where the infimum is attained at a = —logEqg[e?].

Example 3: % and a variance representation
For f(x) = (z — 1)?, the conjugate is f*(y) = y + y?/4. Hence
2 9>
X“(PlQ) = Sup{Ep[g] —Eq [9 + Z} }
9

By a scaling/centering trick (optimize over A(g + ¢)), one can show

2 o, (Erldl — Eglg))?
X (PlQ) = o)

Corollary 3.16 (Hammersley-Chapman—Robbins (HCR) lower bound). In a (scalar) parametric
family (Pp)gcr, if an estimator 6 is unbiased, then
5 (-0

Varyg(0) > sup —————.
(6) 00 X*(Por || Pp)

In particular, taking 0" — 6 recovers the Cramér—Rao bound
1

Varg(6) > 0
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Example 4: Jensen—Shannon and GANs

For f(z) =zlogx + (z + 1)log %H, the conjugate is

. —log(2 —e€Y), vy <log2,
fy) = ( )
00, y > log2.

Therefore

JS(P,Q) = sup {Ep[g] + Eg[log(2 — eg)]}.
g<log2

With the reparameterization h = e9/2 € (0, 1),

JS(P,Q) = 0i1111<)1{EP[10g h] + Eglog(1 — h)]} + log 2.

This is closely related to the classical objective for generative adversarial networks (GANSs):
min JS(P, Paz)) = min sup (EXNP[IOg D(X)] +Ez~n[log(1 - D(G(Z)))D,
D

where G is the generator, D the discriminator, and Z is a noise input.

3.8 Joint range: inequalities between two f-divergences
Definition 3.17 (Joint range). Fix two f-divergences Dy and D,. Define
R = {(Ds(P||Q), Dy(P||Q)) : P,Q arbitrary probability measures},
and for distributions supported on [k] = {1,...,k},
Ri = {(Ds(P||Q), Dy(P||Q)) : P,Q probability measures on [k]}.
Theorem 3.18 (Harremoés—Vajda, 2011).
R = conv(R2) = Ry4.

Remark 3.19 (Key implication). To establish an inequality relating Dy and D, (e.g. Pinsker’s
inequality), it suffices to prove it for binary distributions

P=(pl-p), Q=(q1-0q).

Proof. We follow the argument in the notes.

Step 1: R C conv(R2). Fix any point (Df(P[|Q), Dy(P||Q)) € R and assume P < Q. Let
ap

d@’

so L is a random variable taking values in [0, 00) with Eg[L] = 1. Then

(Ds(PllQ), Dy(PIQ)) = (Eq[f (L)}, Eqlg(L)])-

L2
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Now consider the set
= {,u : p is a probability measure on [0, c0) with /azu(dx) = 1}.

For each 1 € C, associate the point

o) 2 ([ f@)udo). [ o) u(da) < 72

Clearly C is convex and @ is affine, and the law of L under @ is an element of C.

We claim that the extreme points of C are exactly the probability measures with mean 1 and
support size at most 2. Indeed, suppose p € C has support size at least 3. Partition [0, c0) into
three measurable sets Ap, Ay, A3 such that p(A;) > 0 for all i. Define the conditional measures
wi = p(-| A;) and write

= A1p1 + oo + Asus, Ai & p(Ai) > 0.

Let m(v) £ [z v(dz) denote the mean. The constraints that 4 is a probability measure with mean
1 are exactly
AMF+ A+ A3=1, Alm(,ul) + )\gm(,u,g) + )\3m<,u3) =1.

These are two linear constraints on the three unknowns (A1, A2, A3), hence the feasible set contains
a nontrivial line segment passing through (A1, A2, A3). Therefore i can be written as a nontrivial
convex combination of two distinct elements of C, so u is not extreme. Conversely, if u has support
size < 2 and mean 1, it is straightforward to check it cannot be decomposed nontrivially.

By the Choquet—Bishop—de Leeuw theorem (every point in a metrizable compact convex set is a
barycenter of its extreme points), any p € C is a convex combination (in the barycentric sense) of
extreme points, and since @ is affine we obtain that ®(u) lies in the convex hull of the set of values
attained by ® on two-point supported measures. Equivalently, every point in R lies in conv(Rz2).

Step 2: conv(R2) € R4. The set Ry C R? is connected, hence by the refined Carathéodory
theorem in R? (the d = 2 case), any point of conv(Rs) can be written as a convex combination of
two points in Re. A convex combination of two binary experiments can be realized on an alphabet
of size 4, so the point lies in R4.

Combining the two steps yields R = conv(R2) = R4. O

Theorem 3.20 (Carathéodory). Let S C R? and x € conv(S). Then there exists S' = {x1,..., 21} C
S such that x € conv(S") with

1. k< d+1 in general;

2. k<dif S has at most d connected components.

Examples of inequalities

1. TV vs. Hellinger:

2. TV vs. KL:

3. KL vs. x%:
Dyi, < log(1+ x?).
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3.9 Special topic: a chain rule for H?

Theorem 3.21 (Jayram (2009)). For all joint distributions Pxn and Qxn,

H2(PXn, Qxn) < CZEP [H2(PX1'|X1'*17QXZ»|XF1)]7
=1

where
[o@)

1
C = -~ 3.46.

Remark 3.22 (Proof idea). The proof is surprisingly combinatorial. It suffices to prove the result for
n = 2F: for general 251 < n < 2%, one can pad with dummy coordinates.

Lemma 3.23 (L? geometry). For arbitrary distributions Py, Py, ..., Pp,

% > HQ(Pian)Sin(Pi,PO)-

1<i<j<m i=1

Proof. This holds for any L? distance. Writing || - || for the L? norm,

1 m
— Y IR-BIFY IR R

1<i<j<m i=1
Indeed,
1 & 9 1 & ,
2-LHS = — " [P =Bl = — 3" (B~ R) — (P, — Ro)
4,j=1 ij=1
2 U 9 2 m 9 m )
=2 IP=Rol* - %HZ(H - PO)H <2)"||P - R|[* = 2-RHS,
i=1 i=1 i—1
Finally, H*(P, Q) = [(V dP — /dQ)? is an L? distance. B

3.9.1 Interpolating distributions

For A C [n] 2 {1,...,n}, define an interpolation P via the (conditional) product

pA s H(Pxilxi—l)ﬂ{iﬂ} (QXi|Xi—1)]1{i€A}-
i=1

Then P? = Pxn» and Pl = Qxn.

Lemma 3.24 (Cut—paste property). Let a,b,c,d € {0,1}"™ be the indicator vectors of sets A, B,C, D C
[n]. If a+b=c+d (entrywise), then

H2(P4, PB) = H2(PC, PP).
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Proof. Write densities (or Radon-Nikodym derivatives) for the conditional factors. Then

n

/ 2—a;—b; ~Hai+b;
HQ(PA>PB) =2- 2/ pApP =2 — 2/ HPXi‘(;(i—l Qg(JXi—l'

=1

The right-hand side depends on a + b only, hence is invariant under replacing (A, B) by (C, D)
whenever a + b = ¢ + d. O

Lemma 3.25 (1-factorization of cliques). For even m, the complete graph K,, can be decomposed
into (m — 1) edge-disjoint perfect matchings (“round-robin tournaments”).

3.9.2 Completing the proof

Assume n = 2F. We prove by induction on m = 0,1,..., k that for any partition Ay, ..., Agm of [n]
(each of size 2F~™),

2m m
> HA(PY, P?) > e BA(PML P?), e 2 TJ(1-279). (3.6)
i=1 j=1

Base case m = 0. The partition is just A; = [n], so (3.6) is trivial with ¢y = 1.

Induction step m —1 — m. Assume (3.6) holds for m — 1. Let Ay,..., Asm be any partition of
[n]. Apply Lemma 3.23 (Lemma 1 in the notes) with Py = P? and P; = P4 (i € [2™]) to get

2m

. 1
ZHQ(PAI,P@)Z?TL > m(PY, P
i=1 1<s<t<2m

Using the cut—paste property (Lemma 2 in the notes), for each pair (s,t) we have

HQ(PAS,PAt) — HZ(PASUAt,Pg).

Hence -
1
A; AsUA
> HA(P4, P?) > o > mE(pAUA PO, (3.7)
=1 1<s<t<2m
Now consider the complete graph Kom on vertex set {1,...,2™}. By Lemma 3 (1-factorization

of cliques), Kom can be decomposed into (2™ — 1) edge-disjoint perfect matchings F1, ..., Eom_j.
Therefore the sum over all pairs can be written as

2m—1

Z HQ(PASUAt,PQ) — Z Z H2(PA5UAt,P®).

1<s<t<2™m a=1 (st)€EE,
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Plugging this into (3.7) yields

om —
> HA(PA, P?) > im Z Z H2(pAsYAr p2). (3.8)
=1 a=1 t)eE

Fix a matching E,. The sets {As U A; : (s,t) € E,} form a partition of [n] into 2™~! blocks (each
of size 2F=(m=1)) " Applying the induction hypothesis (with m — 1) to this partition gives

Z HQ(PASUAt,PQ) Z Crn—1 H2(P[n],P®)
(s,t)EEq

Substituting this bound into (3.8) gives

om

ZHQ (P4, P?) > Z m_1 H2(PM P2y =
=1 a=1

2m—1

em—1 H2(PM, P?) = ¢, H2(PI", P?),

where ¢, £ 27;,;107,1,1 = ¢p—1(1 —27™). This is exactly (3.6) for m.

Conclusion. Taking m =k in (3.6) (so the partition is into singletons) gives

H2(PM, P?) < ZH2 plit p2y = ZEP (P, |xi-1, Qx, xi-1)]-

Letting k — oo yields the constant C' = limy 00 1/cx = [[;5,(1 — 277)~L,



Lecture 4: Large Deviations, Hypothesis Test-
ing

4.1 Large deviations in finite alphabets: method of types

ii.d.

Suppose P is a pmf on X with |X| < oco. For Xi,...,X,, ~ P, what is the typical “type” of

(X1,...,Xp)?
Definition 4.1 (Type). For an “empirical distribution” @ on X, let the type class
TS = {(331,..., N EXT S Zﬂ{ajz—x} O(z), VazGX}.
=1
(In other words, T, 5 is the set of all length-n sequences with empirical distribution equal to @Q.)
Why types? Types encode all necessary information for P(z™).
Lemma 4.2. Ifz" € 15, then

Pla") = e (P (QIPHH(@).

Pia")=[[P@)=]] [I P =]]P@"™ ("ec1})

i=1 rEX i:x;=x zeX

= exp(n Y Q@) log Pla ) exp(—n(Dx(Q||P) + H(Q))-

zeX

O]

Another intriguing property: the number of sequences in a given type is exponential in n, but
the number of different types is only polynomial in n.

Lemma 4.3. The number of different type classes is

n+|X| -1 X|-1
< 1)l*=1

("hidy ) <o
Proof. The number of types equals the number of nonnegative integer solutions to ) .y 1z = n,

which is (S, O

35
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Lemma 4.4. For any type Q,

H(Q)
— <TB| < M@,
(n+1)1x1-1 < 1Tgl =
(Equivalently, |T5| = e"(Q) jgnoring polynomial factors.)

Proof. Under Q, every 2" € T¢) has probability Q(z™) = e (@) hence

QX" eTh) =Thle ™M@ <1 = |15 <@,

For the lower bound, note that

1= > QX"eTP) < (n+ HYMTQX" € TY) = (n+ 1)1 Tgle (@
types P

where we used that the mode of a multinomial(n; Q) has type @ and the number of types is at most
(n + 1)I¥I=1, O

Corollary 4.5. For any type Q,

e—"DxL(Q|P)

n n —nDk1(Q|| P
WSP(X € Tf) < e "Pre@IP),

Proof. Combine the previous lemma with P(z") = e~ PxL(QIP)+H(Q)) for zn ¢ 15 O

The above corollary, together with the bound on the number of types, yields Sanov’s theorem.

Theorem 4.6 (Sanov’s theorem). Let |X| < oo and let P be the empirical distribution (type)
of X1,...,Xn ~ P where P is strictly positive on X. Let £ be a closed set of distributions with
non-empty interior. Then

~

P(Peg) = exp(—n min Dt (Q|[P) + o(n)).

Remark 47 The map
P in D P
arg melfgl kL(Q||P)

is called the information projection.

Proof sketch. Upper bound.

N

P(Pe€&) = Z P(X" e Tg) < Z e~ "DkL(QIP) < (n+ 1)\X\—1e—nmincge£ DxL(QIP)
Qee Qee

Lower bound. For any Q € £, P(X" € Tj5) > (n+ 1)~ (¥I=De=nPxL(@IP) - Choose @ — Q* and use
continuity of @ — Dk (Q|P). O
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4.2 Information projection, exponential tilting, and CGF

A corollary of Sanov’s theorem is:

Corollary 4.8.

1 1
lim —lo = i D P).
n1~>n;>lo n & P(% Z?:l X; > ’U) Q:IEICI;[I)I(I}EU KL(QH )

If Ep[X] > v, then one can choose Q = P and the right-hand side is 0. Can we find the
minimizer Q* if Ep[X] < v?

Definition 4.9 (Exponential tilt). For A € R, the exponential tilt of P along X is
Py\(dz) = exp(Az — ¢(N)) P(dx),

where
P(A) = log EpeX

is the cumulant generating function (CGF) of X.

Remark 4.10. The family {Py} is called an exponential family in statistics, where ¥ () is the “log
partition function.” In particular, Ep, [X] = ¢/(\), and A — 9()) is convex.

Theorem 4.11 (“Maximum entropy distribution”). Assume Ep[X] < v, and there exists A € R
such that Ep, [X] =v. Then

o2 Dr1(@IIP) = Die(PAIP) = Mo = 6(3) = 4 (v),

where * is the conver conjugate of .

Proof sketch. Since Ep[X] = ¢'(0) < v = ¢/(\), by convexity of ¢ we have A > 0. If Eg[X] > v,
then

dQ dQ dP,
DL(Q|[P) = Eq|log 55| = Eq log 75 +loa 5|
= Diw(QIIP) + EIAX — 9(N)] = Ao — v(N).
Also Dkp,(Py||P) = Ep, [AX — ¢(A)] = Av — 9(A). Finally, since v = ¢'(\),

P (v) = fgﬂg{tv — ()} = v —P(N),

by convexity of . O

4.3 Large deviations in general alphabets: Cramér’s theorem

Theorem 4.12 (Cramér’s theorem). For i.i.d. Xi,..., X, ~ P with Ep[X] < v < || X||oc,

1 1
R s ) ) gl P @)

where V* is the convex conjugate of the CGF ¢()\) = log Epe*X.

Remark 4.13. This generalizes the previous results to arbitrary alphabets. Two different proofs illus-
trate the connections between (i) probabilistic large deviations (yielding ¥*(v)) and (ii) information-
theoretic arguments (yielding infg g, (x]>0 Dkr(Q|P)).
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4.3.1 Probabilistic proof (sketch)

(Lower bound on the exponent) Chernoff inequality.
P(LY"Xi>v) < inf e MEp [ 25 N = inf exp(—n(Av - (A
n; > v < infle ple ] ;\goexp( n(Av —(N)))
= exp(—ny*(v)).

(Upper bound on the exponent) Exponential tilting. Since Ep[X] < v < || X||s, there
exists A = A(¢) > 0 such that Ep, [X] = v + ¢, where Py is the exponential tilt of P. By the law of
large numbers,

P,\GLZ;XZ- € (v,v+25)) =1-0(1) (n— ).

At the same time, for sequences with 1 37, X; € (v,v + 2¢),

dPy

ﬁ(xl, ceeyTp) = exp ()\ ; T — mp()\)> < exp(n(A(v + 2e) — (X)),

p(% Y Xie (vt 25)) > (1 - o(1)) exp(—n(A(v + 2) — ¥(A))).
=1

Letting € | 0 completes the proof sketch.

4.3.2 Information-theoretic proof (sketch)
Let E, := {23 | X; > v}.

Upper bound. Fix any @ with Eg[X] > v. Then Q(E,) =1 — o(1) by the law of large numbers.
Using the binary relative entropy bound,

Q(En)

P(En) = Dxr(Q¥"[|P®") = nDxL(QI P),

Q(Ey) log

which implies
1

1
—1
n S P(E,)
Taking the infimum over such @ yields lim sup % log ﬁ < infoE, x>0 PDrL(Q| P)-

< (14 o(1))DkL(Q| P).

Lower bound. Let Pxn := Pxn|g, (the conditional law given E,). Then Pxn has mean > v and

1 1

1 -
Zlog ——— = = Dy (Pxn || PEM).
CBE) " n KL (Pxn || PF™)

Moreover,
Dk (Px»||P®") =Y Ep[Dki(Px,xi-11P)] 2> Dki(Ep[Py; xi-1]|| P)
=1

=1
P) ,

1 <~ -~
> nD (f Py.
Z NUKI, nzzl X;
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by convexity of KL. Writing P := 1 3% | Py, we have E5[X] = Ep[L 3, Xi] > v. Therefore

1 ~ .
*DKL(PanP(gn) Z inf DKL(QHP),
n QEq[X]>v

as desired.

4.4 Simple hypothesis testing and Neyman—Pearson

4.4.1 Setup

Simple hypothesis testing:
H():XNP, HlXNQ

For a test T'=T(X) € {0, 1} (possibly randomized), define
a:=P(T=0) (1-Typelerror), B:=Q(T'=0) (Type II error).

Definition 4.14. Let R(P, Q) denote the set of all achievable points (a, 3) € [0, 1]? when T ranges
over all possible tests.

Basic properties.
1. R(P,Q) is convex (randomized combination of two tests).
2. (a,a) € R(P,Q) for all a € [0,1] (take T' ~ Bern(1 — «) independent of X).

3. (,p) € R(P,Q) «<— (1—a,1—-p5) € R(P,Q) (replace T by 1 —T).

4.4.2 Neyman—Pearson lemma
Likelihood ratio tests (LRT) attain the lower boundary of R(P, Q). Fix a threshold 7 € R and define

P(x)

0, log ngg > T,
T*(x) =1 €{0,1}, log gg% =7 (randomized),
1, log g z) < T

Then for any other test T,
aoT) 2 a(T") = B(T)=B(T7).

Proof sketch. a(T) > a(T*) implies Ep[T — T*] < 0. Moreover, distinguishing the cases % ze ”
yields

Ep((q# —e (T -T] <0 = Ep[@(T-T7]<0.

But Ep[22(T — T*)] = Eg[T — T*], so Eg[T — T*] <0, i.e. B(T) > B(T*). O
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4.5 Asymptotics: Chernoff regime

Consider
H()ZX”NP®n, HlanNQ®n, n — oQ.

What are all possible values of (Ey, E1) such that there exists tests T;, with
1—a(T,) <e ™ A099 and B(T,) < e ™1 A0.99 asymptotically?

In other words, what are the best tradeoffs between (FEjy, E1), the error exponents on Type I and
Type II errors?

Theorem 4.15 ((Ey, F1) tradeoff). Assume P < @ and Q@ < P. The upper boundary of all
achievable (Ey, E1) pairs is given by

Ey = Dk (Py||P), Ei = Dy (PA|Q), A€ 0,1],

where Py is the (normalized) geometric mizture

P)\ o Pl*)\Q/\.
Corollary 4.16 (Chernoff information).
in{En. B}V =— inf 1 dpl—)\d /\.
(Eo,Elr)n(?c)f(Lievable mll’l{ 0> 1} )\61&),1) Og/( ) ( Q)

This quantity is denoted C'(P,Q) and is called the Chernoff information.

Remark 4.17 (Relation to Hellinger distance). Let H?(P, Q) := [(VdP —1/dQ)? (squared Hellinger
distance), so that [/dPdQ =1 — %H2(P, Q). Then choosing A = % gives

—1og(1 - $H(P,Q)) < C(P,Q) < —210g(1 - §H*(P,Q)).

One inequality uses

/zn”qA = Ep[(]qjﬂ > (H-zp\/@2A - (/ \/pT]>2A for A > 1.

: 1
and symmetrically for A < 5.

4.5.1 Proof of the corollary and achievability (notes)

For N
_PQ ._ 1-A A
Po= a2 = [ap) e
we have
B Py dQ
DxL(Py||P) = Ep, [mg d—P} —Ep, [)\ log 7= — log Z()\)],

DrL(P\]|Q) = Ep, [1og ‘fg} —Ep, [(1 ~\)log Zg ~log Z(A)} .
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Hence

Dxr(Px||P) — DkL(PA||Q) = Ep, [log %ﬂ '

Let A* minimize the convex function A — log Z(\) on [0, 1]. Then

d 40
0= ylogZz(N)| _  =Ep. [Og dP}’

SO DKL(P/\*HP) = DKL(P/\*HQ) and

DKL(P)\*

P)=—log Z(\*) = — inf logZ(\).

A€(0,1)

Achievability. A sufficient statistic is

L:=— LZ‘, Lz‘ = log .
n ZZ_; Q(Xi)

A natural test is T, = 1{L < ~} for some threshold v € R. By large deviations,

1 1
lim —log ———— =9} = Dk, (P*||P
M L 2y~ VRO = PR,
1 1
lim —log ———— =9} =D *
Jm S loe TS Yo (v) = DxL(Q7|1Q),
where
Yp(A) = logEpe’t = log/pl"')‘q_)‘ (similarly for vq),
and

P*(dx) = exp(\p log % — ¢¥p(Ap)) P(dz), Ep«[L1] = v,
Q" (dz) = exp(Aplog BE — 4o (35)) Q(dz),  Eqe[Li] = 1.

Since P*,Q* lie in the family (Py)xeo,1), one concludes P* = Q* = Py for an appropriate choice of
~. Thus one asymptotically achieves all pairs

(Eo, E1) = (DkL(PA||P), DxL(PA]|Q)), A€ [0,1].

4.6 Converse: weak vs strong
Suppose some test T, asymptotically attains

a(T,) >1— e*”EO, B(T,) < e B

Weak converse (by DPI).
Dky(Bern(a)||Bern(f)) < nDki(P||Q),  Dki(Bern(8)||Bern(a)) < nDky(Q|P).

(These are insufficient to establish the tight (Ep, F) tradeoff.)



42 Lecture 4: Large Deviations, Hypothesis Testing

Strong converse (on the whole likelihood ratio). For all v > 0,
a—~8< P(Z log ) > logfy)

_ %< (Z log ) < log 'y)

v
Proof of the first inequality. Let L :=>"" | log %(Xi) = log %(X”). Then
a—vB8 = P(T, = 0) — yQ¥*(T), = 0) = Egen [(e" — ) 1{T}, = 0}]
<Egen[(e" =) L{T, = 0, L >logy}] < Egen[e” 1{L > log}] = P"(L > log~).
The second inequality is similar. O

Returning to the converse, choose v = ¢™?. Then

1 —e B0 _ pn(B1-0) < ¢ _ 78 < P(lZIOgg(Xi) > 9),
L
o)
min{Eo, E1 - 0} S ’Lﬂ}ka((9>, V0.
If Ey > Dk (Py\||P) + ¢ and Ey > D1 (Py||Q) + &, choose

0 = Dx1,(P)\||Q) — DkL(Py||P) =Ep, [IOg Zﬂ,

then ¥} (0) = Dxr,(Py||P) and we get a contradiction.

4.7 Special topic: Stein’s regime

Stein’s regime:
Hy: X" ~ P®" Hp: X" ~ Q%"

There exists a test T, such that «(T},) = 1 — ¢ and 8(T,,) = e "F. What is the largest possible E}?
From the Chernoff regime with Fy = 0, we already know

E’ = Dx1(P||Q) + o(1) (Stein’s lemma).

4.7.1 Next-order term
Theorem 4.18.

5, = D (Pl — V1Y)

erfc™(e) + o(\/lﬁ) ,

where

erfc(z) :==P(N(0,1) > z) = /OO \/176332/2 dx, V(P||Q) := Varp <log §> (< 00).
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Proof sketch. Achievability. Consider

1 — P
=1{- Px) <L
1{- ;log (X0 < 7}
By CLT under P,
1 n
s 2 (log L (X))~ Dru(PI@) 5 N(O.V(PIQ).
i=1
Thus choosing
V(P _
7= Di(PIQ) - 1f I argemr
ensures a(7;,) — 1 —¢e. For B(T},), by Markov,
(Zlog ) > nV) <e ™ EQ[ Zy:llogg(Xi)} =e M.

Converse. If E, > Dk (P||Q) + ﬁ, then the strong converse gives a CLT-based bound implying
c < —/V(P||Q) erfc () (up to a vanishing slack). O
Remark 4.19. Using Berry—Esseen bounds (under moment conditions), the o(1/y/n) term can be
improved to O((logn)/n).
4.7.2 Strong converse for channel coding (sketch)
Recall the standard channel coding setup:

e Message m ~ Unif({1,...,M}).

e Encoder maps m — X" € A™.

e Channel: Py x; output Y" € Y".

e Decoder outputs m € {1,...,M}.

Error probability: P(m # m) < e.
Communications aim to maximize/minimize the rate

log M
-

R =

In Lec 1, one uses Fano’s inequality (DPI for KL) to prove the weak converse R < (1 + 0(1))C' if
e = o(1), where
C =max I(X;Y) = max I(Px; Py|x).
Px Px

Theorem 4.20 (Strong converse). For any fized € < 1,
R<(1+0(1)C.

Remark 4.21. This means the communication problem has a “sharp” threshold on the error
probability. When R > 1.001 C, then asymptotically one cannot achieve success probability 107%;
when R < 0.999 C, then asymptotically one can suddenly achieve success probability 1 — 1078.
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Idea. The communication problem is not binary hypothesis testing (it is a recovery problem), but
one can reduce recovery to detection: if one can distinguish between different inputs, then one can
also distinguish from the case where input and output are independent.

4.7.3 Reduction to hypothesis testing

Consider two scenarios (joint laws on m, X" Y m):

1
HO . Pm,X”,Y”,Th == M PXn‘m PY7L|XTL Pm‘yn,

1 .
Hy: Qmxrynm= Vi Pxnjp Qyn Pyyn, ((m, X™) L (Y",1)).

Then P(m = 1) > 1—¢ and Q(m = 1) = 2. Moreover,

Pm,X”,Y”,A PYn‘Xn H Ple
Qm,xn yn

Therefore, by the strong converse inequality,

n

Py x.

Y Y| X
1—5——§P<E log —— > lo )
M P & Qy; &7

Technical difficulty. Pxn is often not a product distribution.

Solution via types (finite |X|). When |X| < oo, we can WLOG assume all codewords X" have
the same type FPy. Since there are at most (n + 1)|X -1 types, one can find a type class that changes
the error probability to € + o(1) while the rate changes by at most O(log")

When X" has type Py a.s., choose

Qv = Y Po(z) Py|x—s-

reX
Then
[Zl Y|X} =nI(Py; Py|x) < nC,
and
Var (é log PSSI:Z{Z) =nEp, [Var (log ‘ X)} <n Var (log 5}'/)() =0(n).

Now choosing v = %M and applying Chebyshev’s inequality yields

logy <nC+0(yn) = R= log M

< C+O<7)
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4.7.4 Converse for finite blocklength (sketch)

Is there a next-order upper bound on R?

Theorem 4.22. Suppose the capacity-achieving input distribution Py is unique and |X|,|Y| < oco.
Under regularity conditions,

R<C - \/Z erfc™(g) + 0(\/17), V= Var(log P;{l;()a

where Py 1s the output distribution induced by P% .

Proof sketch. Using the previous analysis and the uniqueness of P%, one only needs to deal with
input type Py =~ P%. Then the result follows from Stein’s regime as long as we can show

*

Epy [Var (log P;g;x ‘ X)} = Var <log P;}'/X) =V.
This follows from the lemma below. O
Lemma 4.23. Any capacity-achieving input Py satisfies
Dxr(Pyix=:||Py) <C,  VzeX,

and
Dxv(Py|x=.||Py) = C, Vx € supp(Px).

Proof. Consider the directional derivative of I(Px; Py|x) at Py in the direction Px — Py:

. I(P% +e(Px — Px); Pyix) — I(P%; Py|x)
0> lim

e—0t €

= (Epy — Epy)[Dxw(Pyx || Py)]-

Choosing Py = 0, yields Dkp(Py|x—||Py) < C for all x. The second claim follows since C' =
Epy [DkwL(Py x| Py)] < C, hence equality must hold for all x € supp(Py). O
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Lecture 5: Functional (In)equalities

5.1 From Shannon-type inequalities to functional inequalities

Recall (Shannon-type inequalities). All entropy inequalities that can be derived using:
(1) Monotonicity: H(X) < H(X,Y).
(2) Submodularity: 1(X;Y | Z) > 0.

This lecture covers some non-Shannon-type inequalities.

Definition 5.1 (Differential entropy). For a random vector X with density f on RY, its differential
entropy is

B(X) = h(f) = /R —f{a) o f(x) da.

Notes.
(1) h(X) € RU{zxoo}. In particular, it can be negative.

(2) For a scalar a # 0, h(aX) = h(X) + log|a| in dimension d = 1. More generally, if X € R?,
then h(aX) = h(X) + dlog|al.

(3) The inequality A(X) < h(X,Y) no longer holds. However, it is still true that
I(X;Y) = h(X) + h(Y) — h(X,Y) > 0.

Example 5.2 (Gaussian differential entropy). If X ~ A (x, %) on R, then

1 _
flz)= WM]GXI)(— %(ﬂf—ﬂ)TE 1(37—M))7

SO

h(X) = Ex.; [% log ((2m)*det ) + L(X — ) TR 1(X — u)}

d 1
=3 log(2me) + 3 log det X.

Easy fact (maximum entropy principle). If Cov(X) =3, then h(X) < h(N(0,X)).
Proof. 0 < Dy, (Px || N(EX, X)) = —h(X) 4+ h(N(0,%)) (check!). O

Theorem 5.3 (Entropy power inequality (EPI)). For independent random vectors X,Y on RY,

exp (%h(X + Y)) > exp (3h<X)> + exp (%h(Y))

47
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Notes.
(1) Equality holds iff X, Y are Gaussian and X x = ¢ Xy for some ¢ > 0.

(2) EPI shows that for given values of h(X) and h(Y), h(X 4+ Y) is minimized when X,Y are
Gaussian.

5.2 Proof of EPI via Fisher information (Stam 1959)

We present the proof in Stam (1959).

5.2.1 A detour: Fisher information

Definition 5.4 (Fisher information of a location family). For a real-valued random variable X
with density f, the Fisher information is

(@R,
J(X) ._/R F

Recall (parametric Fisher information). In Lec 3, for Y ~ Py with density py,

2
1(6) == 1Y () ::/(aem dz.

Po
These are connected via 1Y (6) = J(X) when Y =60 + X.

Properties.
(1) J(aX) = HJ(X).
(2) DPL. IY(9) < IX(0) if § — X — Y is a Markov chain.
Proof sketch:

.1 .1
I"(0) = lim = x> (Pyjo+s | Prjg) < lim x> (Pxjo+s | Pxjo) = I (6).
6—0 0 6—0 0

Theorem 5.5 (Stam). For independent X, Xo,

1 S 1 n 1
J(X1+X2) ~ J(X1)  J(X2)

FEquivalently, for all a,b >0,

(a4 b)2J(X1 + Xo) < a?J(X1) + b?J(X3).
Proof. Write Y1 = af + X1, Yo = b0 + X5. Then

1"1(0) = 1"V/9(0) = J(X1/a) = a®J(X1).

Therefore,
(a 40T (X1 + Xp) = IV2(0) < P'2(0) = a®J (X1) + 02T (X2),

where the inequality is the data processing inequality. O



5.2. PROOF OF EPI VIA FISHER INFORMATION (STAM 1959) 49

5.2.2 de Bruijn’s identity
Theorem 5.6 (de Bruijn). Let Z ~ N(0,1) be independent of X. Then for a > 0,

%h(XJr\/ﬁZ) _ %J(XJr\/&Z).

Proof. Let p, = p* N (0, a) be the density of X + y/a Z. Then

Ope 1
Po_ ) (5.1
(" denotes the second derivative).

To see (5.1), note that for any test function ¢,

aaaEpa[so] = lim %EMX +Va+AZ)—p(X +VaZ)

:iigO%E[gp(X—l—\/aZ—l-\/KZ,) — (X +VaZ)],

where Z’ is an independent copy of Z. A Taylor expansion gives
(X +VaZ+VAZ)—p(X +vaZ)=¢ (X +VaZ)VAZ + 1" (X +VaZ)A(Z') +o(A).
Since E[Z’] = 0 and E[(Z')?] = 1, we obtain

1 1
2 Bl = 3Bl = 5 [oplde (integration by parts),
which is exactly (5.1).

Therefore,

d

. Opa . 1 1
ah(X-l-\/aZ)— /(1+10gpa) 9 dz = 2/(1+10gpa)pa dz

1 /\2
_ 1 / (Pa) dz (integration by parts)
2 Pa

= %J(X +vaZ).

5.2.3 Proof of EPI in dimension d =1

Step 1: smoothing. Let
for some functions f, g (to be chosen later). Using de Bruijn’s identity,

d
o) a0 g(x,) (0,
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Step 2: a monotone ratio. A direct computation yields

(2N T(X) ) + 2OV (¥2)g (M)

d | e2M(Xn) 4 2h(Ya) )
A\ o2h(XA+Y3) T G2h(XatYh)

— (2PN 4 2 ) 1(X +Y3) (F/(N) + 9/0\)))-

Step 3: choose f’,¢' . Choosing

the Stam inequality implies

2h(Xx) 2h(YA)
d [e re >0, VA>O0.

dx e2h(XA+Y2)

As XA — oo, both X, and Y), are “more and more Gaussian”, hence the ratio — 1. Therefore, the
ratio at A = 0 must be < 1, which is exactly the EPI for d = 1.
5.2.4 General d > 2 by induction

Let X9 = (X1,...,X,) and similarly Y¢, with X9 1l Y9 Write X% ! = (X1,..., X4_1) and Xy
for the last coordinate. Then
X+ YD) = (X + YT + h(Xg+ Yy | X4+ Y4
> h(X4+ydh) + h(Xq+ Yy xda-1 Yd_l) (conditioning reduces entropy)
d

v

-1 2 yde 2 vde
5 log (e X e h (Y 1)> (induction hypothesis)

n %Exd—17yd—1 log <€2h(Xd|X’1*1=xd*1) + 62h(Yd\Yd*1=yd71)> (X 1L Y)
=1 (BT X 4 T ) | %log (2O . 20l

gl()g (eg(h(xd_l)Jrh(Xd‘Xd_l)) + e%(h(yd_1)+h(Yd|Yd_1))>

\Y]

\Y]

(convexity of (z,y) — log(e® + e¥) again)

= glog (e%h(Xd) + e%h(yd)>7

which is the EPI in dimension d.

5.2.5 Example: the entropic CLT (Barron 1986)

Let X1, Xo,... be i.i.d. with E[X;] =0, Var(X;) =1, and h(X;) > —oo. Let
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be the standardized sum. Then by EPI,
m 1 — n e
h(Thim) =h _— X; — X;
(Totm) (\/n+m\/ﬁ; +\/n+m\/ﬁi%1 )
1 g <e2h( n#—Lme) + e2h(\/ m—ann))

O

1
> -
-2
_1
2 n-+m n—+m

2h(Tn) ig super-additive:

In other words, the sequence a,, = ne
An+m > ap + A, Vn, m.

Moreover, since Var(T},) = 1, the maximum entropy principle implies
hT,) < %log(Zwe), so that C;—n < 2re.
Therefore a,,/n must have a limit, i.e. h(7T,) — h*, and
Dict.(Pr, | N(0,1)) = —h(T,) + %log(%re) D",

Barron (1986) shows that D* = 0, a result known as the entropic CLT.

5.3 Information and estimation in the Gaussian model: I-MMSE

Let X be a general random variable and
Y,=\7X+Z, Z ~ N(0,1) independent of X,
where v > 0 is the SNR parameter.

Theorem 5.7 (I-MMSE).

(;I(X; Y,) = %E[(X ~ElX | Y,)?] = %mmse(X | Y,).

Notes.

(1) Perhaps the most surprising part is that this is an equality.

(2)
mmse(X | V) =E[(X —E[X | Y])?] = mfinE[(X — f(Y))?]

is called the minimum mean squared error for estimating X based on Y.
There are several proofs for the [-lMMSE formula; the most generalizable one is via SDEs.
Theorem 5.8 (A more general result). If
dY; = X; dt + dB;, t€0,77,

then

(X7, YTy = ;/TIE[(Xt CE[X, | Yt})Z] dt.
0
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How it implies I-MMSE. Take X; = X. Then Y7 is a sufficient statistic of YT for estimating
X, ie.
IXTvh) =1(X;vr),  EX | YT =E[X|Yy]
Moreover,
YT f
— =VT X +N(0,1),
VT 0.1)

so the SNR parameter is 7.

5.3.1 Two lemmas from filtering theory
Lemma 5.9 (Lemma 1). For dY; = f(t) dt + dB; with f(t) adapted to the filtration F} ,

dpyT

T T
o o€ = [ f0 s -5 [ rw? a

Remark 5.10 (Intuition). For ¢ > 0 and small A > 0, the conditional distribution of &4 A — & | &' is
t+A
/\/(/ f(s) ds, A) under Py, N(0,A) under Pgr.
t

So the log-likelihood ratio is

T 00 s - ox ([ 560 0" % s06s - ) - S0

Summing up over a partition yields the stochastic integral representation. (Think: where did we

use that f is adapted to FY ?)

Lemma 5.11 (Lemma 2). For dY; = X; dt + dBy, define
_ t
B=v —/ E[X, | Y] ds.
0

Then Et is a Brownian motion adapted to FY .

(A magor difference is that X; could be an unknown signal not adapted to F* ; however E[X; | Y] is
always adapted to FY .)

Proof. Clearly Et is adapted to FY. In addition,
~ t
By :/ (Xs —E[X, | Y?]) ds + B,
0

is an F Y_adapted martingale, satisfies EO = 0, and has quadratic variation ¢t. By Lévy’s criterion,
By is a Brownian motion.

(Think: B; is a BM; but is it adapted to F¥?) O

5.3.2 Returning to the proof of the general identity

Returning to the proof:

P
I(XT:YT) =Ep_, ., [log YT'XT] -

PyT
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First term. Since X7 is given (conditioned), Lemma 1 gives

PyT|XT T 1 [T
Epyr yr [bgPBT] =FE [/0 X, dY; — 2/0 X? dt] :

Second term. Lemma 2 tells us that B; = Y; — fg E[X; | Y*] ds is an FY-BM, so Lemma 1 again
yields

P P ’ L
log];/T(YT)zloglf(YT):/ E[X; | Y] dYt_Q/ E[X; | Y dt.
BT B 0 0

Combine. Therefore,

T
I(XT.yT)=E

S—

1 T
(- B YY) dY+ 5 [ (B | VP - XP) dt]
2 Jo

T 1
/ <(Xt —E[X; | Y X; + 5 (ELX: | Y - Xf)) dt]
0

\V)

- /T SE| (X~ EX: | Y])*] at.
0

5.3.3 Why is I-MMSE useful in statistics?

Suppose we expect a problem to have a sharp phase transition at SNR = ~*. We can try to show
that

(I—-0(1)) for all v < (1 —e)y*  (see picture),

: SNR

SNR

Figure 5.1: Heuristic phase transition: MMSE drops sharply around v*, while mutual information
grows and saturates at H(X).

In this case,

(1—¢e)"
2

Moreover, v — mmse(y) is non-increasing, so

(1—e)vy~
mmse(0)(1 — o(1)) < I(X;¥_sy,-) = % /0 mmse(y) d.

(1—e)y
/ mmse(y) dy < (1 — 2¢)7* mmse(0) + 7" mmse((1 — 2¢)7*).
0

Therefore
mmse((1 — 2¢)7*) > (1 — o(1))mmse(0),
i.e. the MMSE does not really drop before v = ~*.
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Comparison with Fano. At a high level, Fano’s inequality shows that the estimation error is
large when the information I(X;Y") is small. Surprisingly, the -MMSE formula shows that this is
also the case if I(X;Y) is “too large”, and it is particularly good at showing sharp transitions and
identifying the exact threshold.

5.3.4 An example: sparse mean estimation

Consider the sparse mean estimation problem:

YNN(O,l), GN(lip)50+p5lh p=o(1).
Theorem 5.12. If 1 < ,/2(1 —¢) log%, then

mmse(f | V) > (1 —o(1))E[6?] = (1 — o(1))pu?.

(In other words, the MMSE is essentially attained by the best estimator = pp without seeing Y'.)

Proof sketch. Let X ~ (1 —p)dp + pdy and set p = /7. Then

Y2V, = 7X +N(0,1).
The mutual information can be computed as

P P
I(X;Y,)=E {log ;'X} ~E [log “HhiX
Y-

~y

] — Dy (Py, [ Qy,) for any Q.

v

Choose Qy, = N (py/7,1). Then

P X — 2 1—
E {log 5;5(} = E[DKL(PYAX | QY’Y)] =E [(ﬁ 2 l ] - & 2 . 7

Moreover, Dxr(Py, || Qy,) = o(py) after some algebra if v < 2(1 — ¢) log %. Hence

p(1 —p)

I(X;Y,) > 5

1
v (1—o0(1)) if v <2(1—¢)log—.
p
Now using the previous I-MMSE program proves that
1
mmse(X | Y,) > (1 —o(1)) Var(X) = (1 —o(1))p if vy <2(1—¢)log—.
p

Therefore

mmse(d | V) = ymmse(X | Y;) > (1 —o(1))py = (1 — o(1))pp?, if p<4/2(1—¢) log;.
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5.3.5 Tensorization of I-MMSE
Theorem 5.13. If Y, = /v X + N(0,1,,), then

d 1 1
(X% = SE[IX —E[X | V]3] = gmmse(X | ¥3).

Proof. Consider the model where Y; = ,/%; X; + N (0,1) for possibly different (y1,...,7,). Then
d 0 0

I(X;Y"™) = I(X; Y™ I(X_;Y" | X;
_ iI(Xl-Y )+ i[(){..)/ Y.,
- a’yz (2 —1 8’}/1 1y 1 1)

where the term 0,,1(X_;; Y™ | X;) is zero since ,/7;X; can be subtracted from Y; when X; is known,
and 0,,1(X;;Y_;) = 0 because Y_; does not depend on ~;. By the 1-D I-MMSE formula,

0
dvi

1
I(X;Y") = §mmse(XZ- [ Y™).

Summing over ¢ and then setting v; = v gives

d )
—I(X;Yy) =) %I(X; Y,)
i=1 "

1
O = §mmse(X | YS).

Vi=Y

5.4 Area theorem for the BEC and sharp thresholds

5.4.1 Area theorem: a tensorization-flavored identity

Consider communication over a binary erasure channel (BEC)

X p-1-
Y — ) w p 67
7, wW.p. €.

Let the input be
X" ~ Unif(C) = Unif ({«,...,2%}), M =",
where C is the codebook. How to find a codebook such that

1 n
—g H(X;|Y") =0 when R<(C=1-¢?
n

i=1

(average bit error rate)

Definition 5.14 (EXIT function). For i € [n], define
1
hie) = H(X; [ Y=),  h(e)=— > hile).

Lemma 5.15. H(X; | Y") = ¢ hi(e).
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Proof.

= 5H(Xz | Y,Z) = 6hi(€).

O]

Remark 5.16. h;(¢) can be interpreted as the error probability of decoding X; in the “non-trivial”
scenario Y; =7.

Lemma 5.17. q
deH(X" | Y (e)") =nhle).
Proof. Think of n independent channels with possibly different erasure probabilities (g1, ...,&,).
Then
0 0 b
—H(X"|Y") = —H(X; | Y") + —H(X_; | X;,Y"
= aasH(XZ | Y™) since H(X_; | X;,Y") = H(X_; | X;,Y_;) (no dependence on ¢;)
= 6851 (:H(X,; | Y_;))  (previous lemma)
= H(X; [ Y=).
Therefore,
d n
—H(X"|Y()") =) H(X;|Y, =nh(e).
de ( | Y(e) ) ; (Xi | ) ey —e nh(e)
O
Theorem 5.18 (Area theorem for the BEC).
1
/ h(e) de =R
0
Proof.
1 1 1 H(X"|Y ny _ H(X"|Y n
/ h(é-)d&.:/ Ay xn ) v(eyr) de = HE LY Q) = HEX" | Y(0))
0 nJo (3 n
H(X™
_HXY _p
n
O

What does the area theorem tell us? For a capacity-achieving code of rate R = C, it must
hold that h(e) = o(1) when € < 1 — R. However, since h(e) < 1 and fol h(e) de = R, it must be
the case that h(e) = 1 for every € > 1 — R, i.e. the code is really bad in the high-noise regime.
Therefore any capacity-achieving code must have a sharp transition for the decoding error.

5.5 Special topic: symmetric linear codes achieve BEC capacity

Linear code. A code C = {z,... 27} is linear if it is a linear subspace of F5. (Encoding for
linear codes is easy: just a matrix—vector product.)
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g

Figure 5.2: A capacity-achieving code forces a sharp transition in the EXIT curve.

Symmetry. For all i # k and j # ¢, there exists a permutation m € S, such that n(i) = j,
(k) = ¢, and
mC =C (mC applies 7 to all vectors in C).

Theorem 5.19. For every symmetric linear code with w — R, it attains the BEC capacity
under the bit-MAP decoding

T = P(x; | y™).
T = arg max (i [ y")
Remark 5.20. In the coding literature, this shows that the Reed—Muller code, which is symmetric

and admits efficient encoding and decoding algorithms, is capacity-achieving.

5.5.1 Proof ingredient I: Boolean function sharp thresholds

Let 2 C {0,1}". We call
(1) Monotone: if x € Q and z < 2’ (coordinate-wise), then 2’ € Q.
(2) Symmetric: if for all i, j € [n], there exists m € S,, such that n(i) = j and 7Q = Q.

For € € [0, 1], define
p=(Q) :=P(Bern(e)*" € Q).

By monotonicity, € — p.(2) is non-decreasing. For symmetry, we shall only need that all influence
functions of Q are the same, i.e. [;(Q) =--- = [,(2), where

IZ(Q) = ]P)5<$ S {0,1}” : (xl,. . .,xi_l,O,le,...,wn) ¢ Q and (xl,.. . ,xi_l,l,le,...,xn) S Q)

Let
£(9) = max{e : p:(Q) < d}.

Theorem 5.21.
e(1—10)—¢e(6) =o(1), Vé e (0,1/2).

(So € — p:(Q) has a sharp threshold.)
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Figure 5.3: Sharp threshold phenomenon for a monotone, symmetric Boolean set 2.

Proof sketch. A classical result shows that
Z L;(Q2) = nl1(Q) (by symmetry).

It remains to show that nl;(Q2) = w( ) whenever p.(2) € [0,1 — 4].

Classical Efron—Stein bound:
p=(2)(1 - p=(Q Z L(Q

only shows nl;(Q2) = Q(1).
Key improvement (KKL theorem):

p=(Q) (1 - pe(Q)) < max{/1(),..., In(Q)}

(essentially the log-Sobolev inequality on the hypercube) implies nl;(Q2) = Q(logn) = w(1).

logn

5.5.2 Proof ingredient II: area theorem + sharp threshold = capacity
For a given linear code C, define
Q; = {all erasure patterns w € {0, 1}"71 such that w ® x_; fails to decode x; for some z € C},

where 1 represents erasure and 0 represents non-erasure.
Since C is linear, WLOG assume that the transmitted codeword is x = 0, i.e.

Q,; = {w € {0, 1}"_1 c Joo; <w st (xoy,1) € C}.
Then:
(1) €; is monotone (obvious).
(2) € is symmetric (follows from symmetry of C).
(3) pe(2) = P(Y_; fails to decode X;) = h;(e).
(4) hi(e) = h(e) (symmetry of C again).

By the previous part, € — h(e) = p:(€2;) has a sharp threshold. In addition, fo ) de = R by
the area theorem. This threshold can only be

i.e. the code is capacity-achieving.
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cal asymptotics

6.1 Statistical decision theory

Definition 6.1 (Statistical model). A statistical model is a family of distributions (Py)gco.
e Parametric: dim(©) < oc.
e Nonparametric: dim(0) = co.

e Semiparametric: © = ©; x O3 with dim(©;) < co and dim(03) = oco.
Observation. We observe X ~ Py with an unknown 6 € ©.

Decision rule / estimator. A (possibly randomized) decision rule is a map
0: X — A,
where A is the action space.

Loss. A loss is a given function L : © x A — R_.

Risk (expected loss). The risk of an estimator 6 under L is

r(0,0) =Ex~p, [L(0,0(X))].

We often abbreviate Ex..p,[-] as Eg[-].
Although originally proposed by Wald for statistical estimation, this framework is general enough
to encapsulate many other scenarios.

Example 6.2 (Density estimation). Let Xi,..., X, ~ i f beii.d. from an unknown density f.

Then the parameter is # = f and Py = f®". Different losses capture different goals, such as

Density at a point: Li(f,a) =]a— f(0)],
Global estimation: La(f,a) /|f — a(x)|]? dz,
Functional estimation: Ls(f,a) = ‘a - /h(f(x)) dx‘.

59
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Example 6.3 (Linear regression). Let X7, ..., X, be either fixed or random design points, and let
Py x satisty
ElY | X]=(6,X).

Losses include

. . 2
Estimation error: Li(0,6) = |6 — 9” ,

Prediction error: L2(6,0) = Ex.py [( 0, X) — <é,X> )2]

Example 6.4 (Learning theory). Let (X1,Y1),...,(Xn,Y,) ~ Pxy. A loss that captures excess
risk w.r.t. a given function class F is

L(Pxy f) = Epgy [(Y = f(X))?] = inf Epy, [(V = £(X))]:

Example 6.5 (Optimization). Parameter: a function f to be minimized.
Action: a query strategy x;11 = ¢(at, ).
Observation: queries ! and answers ¢ (e.g. y; = f(z¢) + &).
Loss:

L(f,zr41) = f(zr41) — min f.

6.2 Comparison of estimators

For an estimator 0, recall that its risk r(é, 0) is a function of #. How to compare two estimators 01
and 057
Option I: (In)admissibility
ég is inferior to 91 if ) R
r(62;0) > r(01;0) for every 0 € ©,

and X K
r(02;0) > r(61;6) for some 6.

In this case, 0 is called inadmissible. However, admissibility is a weak notion: even the constant
estimator 8 = 0 can be admissible.

Option II: Bayes risk

Given a probability distribution 7(f) on O, look at the weighted average
re(0) = / 7(0) (0;0) d6.

The distribution 7 is called the prior. The minimizer of 6 — r,(f) is called the Bayes estimator
under 7.
Option III: Minimax risk

Look at the worst-case risk

(0) = 5101p r(0;6).

The minimizer of § — r*(0) is called the minimaz estimator.
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risk A

Figure 6.1: A schematic plot of several risk functions, matching the qualitative sketch in the notes.

6.3 Bayes risk vs minimax risk

Define the Bayes risk

rr = inf rﬂ(é) = infEpr [r(é; 0)],
6 0

and the minimaz risk
r* = inf r*(0) = inf sup r(6; ).
0 0 6

Theorem.
(1) r* > rZ for every prior 7.
(2) Under regularity conditions (a minimax theorem),

r* =supry.
™

The maximizer 7* is called the least favorable prior.

Proof. First, for any fixed estimator é,

sup 7(0;0) > Egr[r(0;0)] (max > average),
0

hence taking inf; on both sides yields r* > r7.
For the other direction, recall that a randomized estimator can be viewed as a conditional
distribution p(- | X) over actions. Then

supry = supinf EgrExEq (. x)[L(6,a)] (affine in both 7 and p)
™ T P
= inf sup EgrExE,px)[L(0,a)] (by Sion’s minimax theorem)

P r

— inf ExE ... Lo, =r*,
inf sup Ex arp(1x) [L(0:0)] =7
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Posterior and Bayes estimator. Given a prior 7(#), it induces a joint distribution 7 (0)pg(z)
on (0, X), which admits the posterior

(0 | ) o< 7(0)po()-

The Bayes estimator is the barycenter of 7(6 | X) under L, i.e.

0.(X) = arg main Egor(|x) [L(6,a)].

Finding the Bayes estimator is often statistically easy (it is an expectation under the posterior), but
can be computationally hard. Finding the minimax estimator can be statistically hard and is only
feasible in a few examples. This motivates studying asymptotically minimax estimators (second
part of the lecture) or rate-optimal results, namely to find 6 such that

() < Cr* for some constant C.

6.4 Examples

6.4.1 Binomial model

Example 6.6 (Binomial). Let X ~ Bin(n,6) and L(6,a) = (§ — a)?. To find the least favorable
prior, try
m(0) x 0°~ 11— 0"t (Beta(b,b)).

Then the posterior is
(0] X) o< w(0) 0% (1 — )X
= 0T — gyt X-1  (Beta(b+ X, b+n — X)).
The Bayes estimator is

A X+b
0(X) =E[0 | X] = 0.

Its risk is

r(0,0) = Eg [(é — 0)?] = Bias® + Var
_<n9+b )2 nb(1 —0)

n+2b (n+2b)?
1
= ———— b —4b%)0(1 - 0)|.
e HGRURER L)
By choosing b = 4, we have n — 4b? = 0, hence
A 1
0,0) =
Therefore i
G_X+ 9
n++/n
attains the worst-case risk r*(f) = 4(\/771“)2, and
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6.4.2 Gaussian location model with bowl-shaped loss

Setup. Let X ~ N (0,1;) and let
L(Q,CL) = p(e - CL),

where p: R? — R is continuous and bowl-shaped (i.e. p(z) = p(—z) and p is quasi-convex).

Example 6.7 (Gaussian location: minimax estimator). Claim. 0 = X is the minimax estimator,
with minimax risk

r* =E[p(Z)], Z ~ N(0,1).

Proof (via a Gaussian prior). Try a prior 7 = N'(0,721;). Then

o1 11X — 0| 72 72
X (— - ) - ( X, I )
(0] X) x exp 52 5 N T2 T2

Hence

=E [minE . . H—a}
X | awN(HiQx,H%Id)P( )

=E [p( 1:_272 Z)} (by Anderson’s lemma below).

Letting 7 — oo gives r* > E[p(Z)]. On the other hand, the estimator § = X has constant risk
Eg[p(X — 0)] = E[p(2)],
so it achieves the lower bound and is minimax. O

Lemma 6.8 (Anderson). If X ~ N (0,X) and p is bowl-shaped, then

éIel]iRI}l E[p(X +a)] =E[p(X)].

Proof. Let K. = {x : p(z) < c}. Since p is bowl-shaped, K is convex and K. = —K.. Then
E[p(X + a)] = / P(p(X +a) > ¢) de
OOO
:/ (1-P(X +a€K.))dc
0

[e.e]
> / (1-P(X € Kc))de (see the comparison below)
0
= E[p(X)].
It remains to justify that P(X € K.) > P(X € K.+ a). Using convexity of K,
Ke.= (K. +a)+ 3(K. — a),
hence

P(X € K,) = IP(X € Y(K.+a)+ L(K.— a))

>P(X €K, +a)P(X € K. —a) (X has a log-concave distribution)
=VPXcK.+a)P(X € -K.—a) (K.=-K.)
=P(X € K. +a) (the distribution of X is symmetric around 0).

This proves the claim. O
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6.5 Hajek—Le Cam classical asymptotics

‘We now consider X1,..., X, ~ Py with n — oo.

6.5.1 Regular models: differentiable in quadratic mean (QMD)

Definition 6.9 (QMD). A statistical model (Py)gco is called differentiable in quadratic mean
(QMD) at 6 if there exists a score function sg(x) such that

[ [Voei = VB~ $hTsovma) du=oflP)

where p is any dominating measure for (Py) and pg = %—I:f.

Remark 6.10. (1) When h +— /pg1y, is differentiable everywhere,

_ 2 0 B Oppe() B
sp(x) = W%m = (@) = Oplog pp(x).

(2) Since
[ (i = VB) du = X (Poa, ) < 2
QMD implies that the Fisher information
1(0) = Eg[spsj]

exists.

6.6 Fisher’s program and Hodges’ estimator

Historically, a major goal of classical asymptotics was Fisher’s program:

(1) The MLE 6, satisfies
Vil — 0) S N(0,1(0)71),

where I(6) is the Fisher information matrix of (FPp)gco.

(2) For any other sequence of estimators (7),) with

VT, —0) S N(0,%), V€0,

we must have ¥y = I(#)~!. (In other words, the MLE attains the asymptotically smallest
variance.)

While (1) is true under mild regularity conditions, (2) is not true in full generality, as witnessed
by Hodges’ estimator (1951).

Example 6.11 (Hodges’ estimator). Let Xi,..., X, big N(6,1) and let X,, be the sample mean.
Define

n =

A X’rm ’Xn’ Z n71/47
O = _
0, | X| < n V4,
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It is easy to show that

- a |N(0,1), 6+#0,
Vit = 0) = {0, = 0.

Therefore Fisher’s statement (2) does not hold when 6 = 0.

Hodges’ example shows that caution is needed when defining the “optimality” of the MLE or
inverse Fisher information. It then took statisticians roughly 20 years to find the right definitions,
through angles such as:

(1) Hodges’ estimator is not regular (one restricts the class of estimators).
(2) The set of violations has Lebesgue measure 0 (“superefficiency” occurs rarely).

(3) The performance of Hodges’ estimator is bad when 6 ~ n~/* (a large asymptotic local risk).

6.7 A collection of asymptotic theorems

Convolution theorem. Let (Fy) be QMD. If
V(T —4(0)) S Ly under PE™,
and (7},) is regular in the sense that

\/ﬁ<Tn—¢<9+ h )) % Ly under P2, , Vh e RY

7 %

then there exists a probability measure My such that
Ly = N(0, Vo (0)T1(0) ' V() « My, V0.

Here * denotes convolution: (p* v)(A) = [ p(dz)v(A — z).

(Convolution makes the distribution more “noisy”.)

Almost everywhere convolution theorem. Under all of the above conditions except for
regularity of (7)), we still have

Ly = N(0, Vy(0)T1(0) V() * My

for Lebesgue-almost-every 6.

Local asymptotic minimax (LAM) theorem. For every continuous bowl-shaped loss p
and any sequence of estimators (7),),

lim liminf sup E,, & [p(\/ﬁ(Tn — (0 + %)))} > E[p(Z)],

c—00 N—0o0 |h]|<c vn

where

Z ~N(0,Vy(0)T1(0) 'V (0)).
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(This is a lower bound on the minimax risk of the local family (Fy. /. /n)|n|<c under the loss
L(0,a) = p(v/n(a —4(0))).)

The proofs rely on the asymptotic equivalence between models (P, 1,/ ) |n|<c and the Gaussian
shift model (A(h, I(8)™"))n|<c; see the special topic at the end of this lecture.

6.8 A special case of LAM via Bayesian Cramér—Rao

6.8.1 Bayesian Cramér—Rao in one dimension (van Trees inequality)

Let 6 € [a,b], and let 7(-) be a differentiable prior density on [a, b] with 7(a) = 7(b) = 0 and

B b,n_l(e)Q
J(?T)—/a ) df < oo.

Then for any estimator é,

E.Eo[(0 — 0)?] >

E.[I(0)] + J(r)

(Compare with the usual Cramér-Rao bound Eg[(6 — 6)2] > 1/1(6) for unbiased 6.)

Proof. Consider
EﬂEg[(e 0) 9y (1og (6) / / 7(0)po(x)) d6 u( dax)

/ / x)df p(dzx) (integration by parts)

Then, by Cauchy—Schwarz,

1 < (E-Eq[(6 — 0)%]) - (EW]EQ [0 log(m(0)pe(X ))]2)-

Next expand

By [0 log(m(0)ps(X))]” = Ex [(7:((99)) )2} + E.Eg [(59199()( ) )2}

The cross term equals 0 assuming

/ u(dz) Bypo () = By / u( dz) po(z) = 0.

Therefore )
ErEg [0 log(m(0)pe(X))]” = J () + E[1(8)],
and the inequality follows. O



6.9. APPLICATIONS OF LAM 67

6.8.2 Multivariate Bayesian Cramér—Rao

Statement. Let 7 = Hle m; be a differentiable prior density on Hle[ai, b;] vanishing on the

~

boundary, and let J(m) = diag(J(m1),...,J(7g)). Then for any estimator 6,
E.Eq | Ha - QHQ] > Tr((Eﬂ[I(H)] + J(w))_1>.
Key step (as in the notes). Similar to the 1-D proof, one can show for each k = 1,...,d that
ErEq [(ék —6k) Vo 10g(7f(9)P9(X))} = ek
(the k-th standard basis vector). Let
S = E[Vylog(x(6)ps(X)) Volog((0)ps(X))" | = Exl1(6)] +J ().

Then by Cauchy—Schwarz,

i 2 { »€k>2 _ oyl
ExEo[(0k — 0r)%] > sup ~—5— = (X7 -

6.8.3 Deriving LAM from BCR when (0) = 6 and p(z) = ||z|?
First, note that if
7 20— (a+D)

w0 =gt (35

then 7(a) = w(b) = 0, and

bogr? L, m 20— (a+Db) 472
s = [ e (5 ) 0= G

(Exercise: show that this choice of m minimizes the value of J(m).)
Next, choosing the above prior on [fy — ﬁ, Oo + ﬁ], Bayesian Cramér—Rao gives

~ 2 N 2
inf sup E L[HG—G%—LH}ZinfEﬁE L[He—ajuim
6 lnlo<e °TVA G+ 75) 0 bot /= (B + %)

2
> Tr((n E.[1(0)] + %I)A) (Fisher info. for n samples is nI(6))

1 1
= +n0<)Tr(I(90)_1) as n — oo and ¢ — o0,

assuming that 6 — I(#) is continuous at 6.

6.9 Applications of LAM

Since the global minimax risk is always lower bounded by the local minimax risk, LAM gives
asymptotic lower bounds on 7.
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6.9.1 Binomial revisit

Revisit X ~ Bin(n, ). Then

ry =inf sup Eg[(é —0)?]
0 6€(0,1)
> inf E 0 —
=0 e %+T{( G+
1—o0,(1)  1—o0,(1)
nl(3) — dn

(cp, = 00 as n — o0)

w\r—‘
§\:~
S—
SN—
S

|

This is consistent with the exact expression r; = X \/ﬁl syl

6.9.2 Nonparametric entropy estimation

i f, where f is a density on [0,1]. The target is to estimate the differential

1
= | ~f@)oz f(@)as

Challenge. This is not a finite-dimensional model, so LAM does not directly apply.

Let X1,..., X,
entropy

under the squared loss.

Solution. Consider a one-parameter subfamily (fo + tg)|¢<.. Then

d 1
" o) dz, ah(fo + tg)‘t:o = _/o (1 + log fo(:c))g(a;) dz.

LAM applied to this subfamily at ¢ = 0 gives

Ty > L—on(l / o )j dz </01 (1 +log fo(z))g(z) dx)2

= 1‘71“ Vifo.0)

We can maximize this lower bound w.r.t. g. Since [¢g = 0 (because fp + tg must remain a
density), Cauchy—Schwarz gives

)2 1 2
Ving) = ([ 975 a0) " ([ (log olo) + h(fo))ate) o)

< / e ) 00 0
0
1

= /0 fo(x) 10g2 fo(x) dr — h(f0)27

where equality holds when g(z) = fo(x)(log fo(z) + h(fo))-

Therefore,
1—op(1

TZZ*SHP /fo ) log? fo(x) da — (fo))-

n
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6.9.3 Pros and cons for asymptotic theorems
e Pro 1: plug-and-play bound for essentially all statistical models.
e Pro 2: exact constant for the asymptotic risk.
e Con 1: bounds are asymptotic, assuming n — oo while d is fixed.

e Con 2: bounds are for asymptotic variance, while for high-dimensional scenarios bias can be
the dominating factor.

This motivates studying techniques for non-asymptotic lower bounds in the next few lectures.

6.10 Special topic: Le Cam’s distance between statistical models

Ref: Liese and Miescke, Statistical Decision Theory, Springer (2008).
For two models (Py)pco and (Qp)gco with the same parameter set ©, how do we compare their
“strength”? Throughout this section we assume that © is a finite set.

Definition 6.12 (Deficiency). A model M = (Fp)gpeco is called e-deficient with respect to N =
(Qp)oco if

e for every finite decision space A,
e for every bounded loss L(6,a) € [0, 1],
e for every (randomized) estimator  under A/,
there exists an estimator 6 M under M such that
r(Or;0) <r(Op;0) +e,  VOeO.
Theorem 6.13 (Randomization criterion). The following are equivalent:
(1) M is e-deficient w.r.t. N.

(2) For every finite action set A, bounded loss L(6,a) € [0, 1], and prior m on ©, the Bayes risks
satisfy
rE(M) < ri(N) +e.

(3) There exists a Markov kernel K from X to Y such that
TV(K Py, Qp) <e, vl € O,

where (K Py)(y) = 3, Po(a) K(y | ).

Proof. (1)=-(2). Fix any finite action set A, any bounded loss L(6,a) € [0, 1], and any prior 7 on
©. Let ay be any (randomized) decision rule under . By e-deficiency, there exists a decision rule
an under M such that

r(aa;0) < r(an;0) + e, Vo € O.

Averaging w.r.t. 7 gives

/r(dM;H) m(df) < /r(&/\/;e)ﬂ'(de)-i-s.
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Taking the infimum over ays yields rX (M) < r¥(N) +e.

(3)=(1). Assume there exists a kernel K from X to ) such that TV(K Py, Qg) < ¢ for all
0 € ©. Given any decision rule ay : Y — A under N, define a decision rule under M by

X ~ Py, Y~ K(-| X), apm = an(Y).
Then for each 6,
r(anm;0) = r(an;0) = Eyarcp, [L(0, an (V)] = Ev~q, [L(0, an(Y))]
<TV(KFP, Q) <e,
since L(6,apn(y)) € [0,1]. Hence M is e-deficient w.r.t. N.

(2)=-(3). Let the action set be A =) and consider the (non-randomized) decision rule under
N given by
ax(y) =y
Any randomized decision rule under M with action set ) can be identified with a kernel K from X
to ). Condition (2) then implies (as in the notes)

sup sup inf Egr [EXNPQEGNK(,‘ L6, a) —EGNQQL(Q,Q)] <e, (6.1)
o<r<1 =« K

where 0 < L < 1 means L(#,a) € [0,1] for all (6,a). The objective is linear in K(- | ) and in

{m(0)L(0,a)}pco,acA, 50 by a minimax theorem we can swap inf and sup:

inf sup sup Epr [EXNPGEGNK(_‘X)L(G,CL) —EaNQeL(H,a)] <e. (6.2)
K o<r<i o«

For fixed K and L, the expression inside is linear in 7, and since © is finite,

supEg~r[g(0)] = max g(0).

Moreover, for each 6,

sup <Ea~KP9 [f(@)] — Eanqylf (G)D =TV (K Py, Q).
0<f<1

Therefore the inner supremum in (6.2) equals maxgeg TV (K Py, Qg), so

inf TV(KP, <e.
inf max (KPp,Qp) <€

Hence there exists a kernel K such that TV (K Py, Q) < ¢ for all § € ©, proving (3). O

Definition 6.14 (Le Cam’s distance). For finite models M = (Py)gco and N = (Qg)gco, define Le
Cam’s distance as

A(M,N) =min{e : M is e-deficient to N, N is e-deficient to M}.

Example 6.15 (Sufficiency). For M = (Py)pco and a statistic 7' = T'(X), define the T-induced
model N = (T Py)pco. By the randomization criterion,

AM,N) =0 < M and N are mutual randomizations
< (0 > X —T)and ( T — X) are Markov chains <= T is sufficient for X.

(Factorization theorem: T is sufficient <= py(z) = g(x)h(0,T) for some g, h.)
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6.10.1 Standard model and a route to asymptotic equivalence

For a sequence of models (M,,),>1 and (NV,,)n>1, how to show asymptotic equivalence A(M,,, N,,) —
0 asn— oo0?

Definition 6.16 (Standard model). Let M = {Pi,..., Py} be a finite model and let

Then

is sufficient and lies on
Ay = {u € RT : 1Tu = m}.

(Applying the factorization theorem to P;(x) = P(z)T;(x).)
Thus M is equivalent to the T-induced model N' = {u1, ..., tm} with
pi(dT)

p(dT) "

where 4 is the distribution of 7' under P, known as the standard distribution. Indeed,

£, [(1)] = Ep [f(T(X))] = Bp| 2 F(T(X))] = AT (7))

Implication: standard model unifies all statistical models of size m to standard distributions u on
A,
Theorem 6.17. If u, 4, w, then A(My, M) — 0.

Proof. By (2) in the randomization criterion, it suffices to check that

sup ‘r;(Mn) - r;‘r(M)} — 0.

STy

In a standard model,

(M) = inf > mi By [L(i, 0(T))]
=1

- ire}fEu[ngi L, é(T))} .

Let
C = conv({(mL(i, Q) ta € A}).
Then the inner infimum can be written as

inf B, [EZWT L(i, é(T))} —E, [cigé (e, T) } .

Since f(T) = infecc (¢, T) is bounded by m and is 1-Lipschitz under ||-||,,
sup ‘r;(Mn) — r;(M)‘ < sup ‘Eﬂnf - Euf’ — 0.
A, L £l oo <,
|f (@)= f )| <llz—yl,

(Here one can use that Dudley’s metric metrizes weak convergence.) O
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Now we’re ready to present the main result.

6.10.2 Weak convergence of likelihood ratios = asymptotic equivalence

Theorem 6.18. Let M, = {Pi,,...,Ppn}t forn>1, and M ={Py,...,Py,}. Let

L :(PZ” Pm*”) L= (& &)
= E B ) B )

Suppose M is homogeneous, i.e. P; and P; are mutually absolutely continuous. If

Law(Ly | Pin) & Law(L | Py),

then
A(My, M) = 0.

(In other words, weak convergence of likelihood ratios implies asymptotic equivalence.)

Proof. Tt suffices to show that the standard distributions p,, 4, . Also note that Law(L, | Piy,) is
unchanged when moving to the standard model.
By compactness of A, = {u € RT : 17y = m} and Prokhorov’s theorem, it suffices to show

that if p,, N along some subsequence, then v = pu.
For s = (s2,...,8m) with s; > 0 and >, s; < 1, define

£y =113,

=2

which is a continuous function of L. Let s; =1—>"",s; € (0,1). By Hélder’s inequality,
Ep, [f(D) V] = Ep, [Ly - Lo/ ] < T[Ep (L1 <1
i=2

So the sequence of random variables fs(Ly,) is uniformly integrable. Therefore, by weak convergence,

E[T3 T3 T3] = Epy[fo(L)) = lim Ep,, [fo(La)]

On the other hand, as uy, 4 v,
EPl,nk [fs(Lnk)] = Eunk [Tlsl U T;zm] — Eu[Tlsl © 'quzm]-
Hence

m
EM[Tfl .. .T%m] — Eu[Tfl .. .T;Lm:l’ Vs; > 0, Zsi -1
=1

By uniqueness results for moment generating functions, this implies that i = 7, where [ is the
restriction of u to

A ={zcR™:z; >0, 170 =m}, ie. fi(A)=pu(AnAY).

Since M is homogeneous, i = u and u(A%) = 1. Since v is a probability measure, it follows that
v = v. Therefore p = v. O
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6.10.3 Local asymptotic normality via likelihood ratios

Finally, we show that if (Py)gco is QMD, then for any finite set I,

My = {ngj_i}hel

is asymptotically equivalent to

M= {N(7, 1(00) ™) } e

This is called local asymptotic normality.

73

Proof (likelihood ratio expansion). Check the likelihood ratio. In the limiting Gaussian model,

for Z ~ N(0,1(60)7%),

o N T(00) ™)
& N(0,1(60)T)

with I(6p)Z ~ N(0,1(6p)).
For the product model, define

(2) = h"1(60)Z — §h" I(6o)h,

Then
Xn
p h
log eo®n (X" =2 Z log < Wy l)
0o i=1
SOUAEEDSUERS LT
i=1 i=1
By QMD, )

Ery, [(Wai = J5hTs0,(X0))°] = o(1/m),

thus
Varp, (ZWM— IZ}LTSQO )) <n-o(l/n)=o0(1).

=1 =1

Also,
IEJZVVm = —n/ ( Poyt L~ ,/pgo) dp — —%hTE[Sgosg;]h = —%hTI(GO)h.

Moreover,

Z =3 (s () + 1)

=1

- Z hT s9,(X:)s00(X1)Th + 0,(1) = hTI(8p)h  (by the LLN).
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Therefore,
p®n n
log 5 (xm) hT<1 S s (X3)) — SHTT(B0)h + 0,(1)
08—t =h'(—=) 59,(Xi)) — 3 0)h + o0p(1),
and

O

Combining Anderson’s lemma and the limiting Gaussian model above, and extending the previous
definitions to general models by taking the supremum over all finite submodels, we arrive at the
local asymptotic minimax theorem.



Lecture 7: Minimax lower bounds (Le Cam,
Fano, Assouad)

7.1 Setup and the minimax risk

We consider a statistical model {Py : @ € ©}. We observe X ~ Py and use an estimator 6 = 6(X).
Let L(6,a) > 0 be a loss function.
The minimax risk is

r* = infsup Eg [L(6,0(X))].
0 6O

~

e Upper bound: construct an estimator 6 and bound supy Eg[L(6, 6(X))].

e Lower bound: show that no estimator can beat a certain rate.
In the previous lecture (LAN), we focused on asymptotic analysis and exact constants. In this

lecture we focus on non-asymptotic minimax lower bounds, usually aiming for the optimal rate.
A high-level idea: for any prior m on ©, the minimax risk dominates the Bayes risk,

* *
>,

rr = inf EgEg [L(0,0(X))].
0
Finding a least favorable prior can be hard. Instead we use simple priors:

1. Binary prior: m = Unif{6y, 6;} (Le Cam’s two-point method).

2. Multiple hypotheses: 7 = Unif{0y,...,0,,} (Fano, Assouad).

7.2 Le Cam’s two-point method

Definition 7.1 (Total variation). For two distributions P, @ on the same measurable space,

TV(P,Q) := Sup [P(A) — Q(A)].

If P, have densities p,q w.r.t. a common dominating measure,

1
V(P,Q)ZQ/IP—QI-
75
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Theorem 7.2 (Le Cam’s two-point lower bound). Let 0y,0; € © and suppose the separation
condition

i]gf (L(6o,a) + L(61,a)) > A.

Then
o1 5 - A
> H}f 7<E90L(9079(X)) + E91L(01a9(X))> > 5(1 - TV(PHOaP91))'

Proof. Fix any estimator 6 = é(X) Let po, p1 be densities of Py, Py,. Then
Eo, L(6o,0(X)) + Eg, L(01,0(X)) = /L(Go,é(x))po(x) dx+/L(91,é(x))p1(x) dx
> /i%f (L(o,a) + L(61,a)) min{po(z), p1(x)} dx

> A/min{po(m),pl(x)}d:c.

Next,
. 1

min{po, p1} = 5(1)0 +p1— po — p1),
SO

. 1 1

min{po, p1} = 5 [ (po+p1) =5 [ |po—p1]
=1—-TV(Py,, Py, ).

Combining and dividing by 2 gives the claim. O

7.2.1 A useful template
To lower bound 7* via Le Cam, pick 6y, 87 such that
e Separation: inf,(L(6p,a)+ L(61,a)) > A.
e Indistinguishability: TV (P, Py, ) <1 —Q(1).
Often the indistinguishability condition is shown via stronger (more tractable) bounds such as
1. H%(Py,, Py,) <2 - Q(1),
2. Dk (Py,||Ps,) = O(1) or Dxr(Py,||Ps,) = O(1),
3. X*(Pyol|Po,) = O(1) or x*(Py, || Py,) = O(1),

4. I(©;X) <log2—Q(1) for © ~ Unif{hy, 61} (exercise).

7.2.2 Example 1.1: normal mean estimation (one-dimensional)

Let X ~ N (0, 0?) with unknown # € R and known o2. Take squared loss L(6,0) = (§ — 6)2. The
minimax risk is

r* = inf sup By [(é(X) —0)%].
0 6eR
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Upper bound. Choosing é(X) = X gives

sup By[(X — 0)%] = o,
(SN

so r* < o2.

Lower bound (two points). Pick 6y =0 and 6, = 6. For squared loss,

(01 —00)® 82

iIalf ((a —00) + (a— 01)2) = 5 5

so A = §2/2.
For Gaussians with equal variance,

1= TV(N(0,0%), N (5,0%) = 2(1 - ®(9]/(20))),

where @ is the standard normal CDF. Therefore Le Cam yields

. A o R 5 )
2 sup 5 (1= TV) = sup - 2(1 - @(\5|/(2o))) = sup 5(1 - <1>(|5|/(20—))) ~ 0.33202.

(Compare with the exact value 7* = o2 from Anderson’s lemma in Lecture 6.)

7.2.3 Example 1.2: binomial model
Let X ~ Bin(n, ) with unknown 6 € [0, 1]. Target:

r* =inf sup Egy [(é(X) —0)?].
0 6€[0,1]

Upper bound. Choose §(X) = X/n. Then

(o) 10 <

1
n n 4n

= O(1/n).

Lower bound (two points). Apply the two-point method with

1 1 1

0025, 91:§+m

For squared loss the separation parameter is

A= %(91 )2 = ;(2\1/5)2 —Q(1/n).
For indistinguishability, compute
Dk (Bin(n, 6o) || Bin(n, 61)) = n Dk, (Bern(6p) || Bern(61))
- g(u +L)log(1+ =) + (1 - ) log(1 -
= g -0(1/n) = O(1).

S

)

Thus Le Cam implies 7* = §2(1/n), matching the O(1/n) upper bound.
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7.2.4 Example 1.3: functional estimation (entropy estimation)

Let X = (X4,...,X,) be i.i.d. draws from an unknown pmf P = (py,...,px) on [k]. Consider the
loss

L(P,a) = |a— H(P)|,
where H(P) = — Zle p; log p; is the entropy.

Known sharp result. (Jiao et al. 2015; Wu and Yang 2016)

k log k
f Ep[l) — H
H; Sup P“ (P )H nlogn+ vn

(in particular when k& < nlogn).

A simpler Q((logk)/y/n) lower bound via two points. Since
DgL(P*"]|Q") = n DxL(P||Q),

the two-point method motivates the optimization problem

max ’H(Po) - H(Pl)’ s.t. DKL(P()le) S

Slo

Try

11 1
Po=(2
0 (2’2(k—1)’ ’2(k—1)>’
k—1 times
l1—¢ 1+4¢ 1+4¢
P =
! ( 2 2(k—1) ’2(k—1))

k—1 times

€ (0,1/2).

KL computation. Only two types of coordinates appear, so

1 1/(2(k — 1))
Dxi(Bol[P1) = ( ) (k—1)- 2(k — 1) 1Og((14—5—:)/(2(14:—1)))

%( ) ot ()
() o

Thus DKL(P()le) = O(l/n) if e = O(l/\/ﬁ)

Entropy difference. Compute

H(PRy) = —%log (%) — (k=1 2(k1— 1) log (2(/{1— 1)>

1 1
=3 log2 + 3 log(2(k —1)).

Also

H(P1>:_1;€1°g(1;€) _(k_l)'z(lij_i) log(z(lkti))

() e (D),
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Therefore

1 1 1—¢ 2 1+e 2(k—-1)
H(P)) — H(P)| = |=1og2 + = log(2(k — 1)) — 1 _ 1 ‘
[H(Po) ~ H(Py)| = |5 log 2 + 5 log(2(k — 1) = —~ log () =~ log (F——7)

2 e logk.

Choosing e =< 1/4/n yields

r* = Q(l(\)/gﬁk)

(The other term Q(k: /(nlog n)) requires a more involved two-point construction; this is the topic of
Lecture 8.)

7.2.5 Example 1.4: two-armed bandit (Gaussian rewards)

Let 6 = (u1, u2) € [0,1]2. For t € [T], the learner pulls an arm 7; € {1,2} based on past history
(xt=1,71=1), and observes reward

Tt NN(Mﬂ—t,l).

The (expected) regret is
T

RT(ﬂ—) = Tmax{:ulv M2} - Z,Um-
t=1

Let A :=|u; — po| be the gap. We will show

: 1V log(TA?
rp = inf sup Ep o [Rr(m)] = Q((gA()> A TA).
T pe [ —pa|>A

In particular, choosing A =< 1/+/T gives the usual lower bound Q(v/T).

Proof. First, by the chain rule for KL divergence (exercise),

ph)? (2 — pih)?

1{m =1} + 5

T
DKL(P‘“’“QHP“,U% ZEPM 2 [ 1{m =2}
t=

(:u’l /) E[Tl] + (/’LQ - M/2>2 E[TQ],

2 2

where T; := ZtT:l 1{m; = i} is the total number of pulls of arm 1.
Motivated by this, choose two points

(w1, p2) = (A,0),  (ph, p3) = (A, 24).
The separation parameter for regret is TA (the gap is A in either model). Moreover,

DxL(P, = 2A%E, (T3],

1#2” 74 ,u2)

where Ey := Ep, ;. Le Cam’s two-point bound then gives
rh = Q(TA exp (- 2A2E1[Tg])),

using the inequality (1 — TV(P,Q)) > % exp(—Dkw(P||Q)).
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Note that E;[T5] depends on the policy 7, and the above is useful only if E;[T5] is small. A
different lower bound comes from evaluating the regret directly under (A, 0):

rp > Ei[Rp(n)] = AE[Ty].
Combining,

rk = Q(maX{AIEl[TQ], TAexp(—2A2E1[T2])}>

_ . A2
= Q(tg[lol%] max { At, TAexp(—2A t)})

_ Q((l\/logA(TA2)) ATA)

7.2.6 Example 1.5: multi-armed bandit

Same observation model, but with K arms. Let 6 = (u1, ..., ux) € [0,1]% and

T
Ry(m) =T max p; — L, -
( ) 1€[K] ;

We will show
r* :=infsup Eg[Rp(7)] = Q(VKT).
9

(Interestingly, two points suffice for this example!)
Proof. Choose
01 = (A,0,0,...,0),

and for each i = 2,..., K let

02 = (A,0,...,0, 2A ,0,...,0).

i-th coordinate

For each pair (61,62,;), the separation parameter for regret is always T'A. Moreover, for any policy
7T?

T
Dxu(Py,||Ps,,) = 20° B [T}, Ti=) 1{m =i}.
t=1

Key observation: since Y 1, E{[T;] < T, there must exist some ig such that E[T;,] < T/(K — 1).
Applying the two-point argument to (61,602 ,) and choosing A =< /K /T makes DKL(P91|]P92,iO) =
O(1). Therefore

= Q(TA) = Q(VKT).
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7.2.7 Why two points may fail in high dimensions

Consider normal mean estimation in n dimensions:

~ 2
X ~N(0,021),  L(6,0) = 9—9“2.

The two-point method gives at best
2
> sup 160 — 01115 (1 3 (p(!\@o - 91”2)) <o
00,61 2 20

This does not capture the dependence on dimension n. (Recall that 7* = no? by Anderson’s lemma.)
At a high level: testing between two hypotheses does not capture the true difficulty of high-
dimensional problems.

7.3 Testing multiple hypotheses

7.3.1 Challenges in high dimensions
e Separation: we may want different separation structures than a single A for a pair of points.

e Indistinguishability: in binary testing, 1 — TV(P, Q) tightly controls the optimal testing
error. In multiple-hypotheses problems, the analogous tight quantity is often not tractable, and
we need further lower bounds.

7.3.2 Pairwise separation: Fano’s inequality

Theorem 7.3 (Fano-type lower bound). Let 61, ...,60,, € © satisfy the pairwise separation condition

H;éln inf (L(Qz, a) + L(Gj, a)) > A
i#j a

Let m = Unif{6y,...,0n}, and let © ~ 7, X | © ~ Pg. Then

. é(l— I(@;X)—HogQ).
logm

Before proving it, we establish a useful “golden formula” for mutual information.

Lemma 7.4 (Golden formula for mutual information). For any pair (X,Y),
I(X;Y) = %;D Dk (Pxy||PxQy) = %iYnEPX [Dkr(Py x]1Qy)].
Proof. Simply note that for any Qy,
I(X;Y) = Dxr(Pxy||PxQy) — DxiL(Py||Qy).
Taking Qy = Py shows the minimum equals 7(X;Y). O
Proof of Fano. Fix any estimator § = é(X ). Consider the indicator map
(0, X) > Z:=1{L(©,0(X)) < A/2}.

Under Pox, Z ~ Bern(p) with p := P(L(®, I(X)) < A/2). Under PgPx (independent © and X),
define ¢ := Por, x~py (Z = 1).
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Step 1: bound ¢ by the separation condition. Fix x and let a = é(x) Because for any i # j
we have infq(L(6;,a) + L(6;,a)) > A, there cannot be two distinct indices i # j such that both
L(0;,a) < A/2 and L(6j,a) < A/2. Hence for any fixed action a, at most one hypothesis can satisfy
L(0;,a) < A/2. Since © ~ Unif{fy,...,0,,} is independent of X under Pg Py, this implies

1
q< —.
m
Step 2: data processing. By the data processing inequality,
Dk, (Bern(p) || Bern(q)) < 1(0; X).
Since ¢ < 1/m, one can bound the Bernoulli KL to obtain

p< 1(©; X) + log 2

logm ’

equivalently

I1(©; X) + log 2

P(L(©,0(X)) > A/2) > 1~ logm

Step 3: Markov/thresholding. Finally,

~

E[L(©,0(X))] >

| >

P(L(©,0(X)) > A/2),
so the claimed lower bound follows after taking the infimum over 0. O

7.3.3 (Generalized Fano

The previous argument yields a more general statement.

Theorem 7.5 (Generalized Fano). For any prior m on © and any A > 0,

O~m X |0~ P,

s A(l— I(@;X)—I—log2)7

log(1/Fy)

where
Py :=sup 7(L(©,a) < A)

is the small-ball probability.

The classical Fano inequality is a special case with 7 = Unif{6, ..., 6,,} and a pairwise separation
condition.

7.3.4 Additive separation: Assouad’s lemma

Theorem 7.6 (Assouad). For a hypercube parameterization u € {£1}%, associate 0, € ©. Suppose

d
inf (L(0u, a) + LB, a)) = A - > 1{ui # uj}
=1
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Let 7 = Unif{f, : u € {+1}9}. Then

where

The following corollaries are often used.

Corollary 7.7 (Classical Assouad). Let u,u’ be neighbors if they differ in exactly one coordinate.
Then A
ry > —(1 —  max TV(P,, Pgu,)>.

u,u’ neighbors
Corollary 7.8 (Averaged-neighbor version). Let u @ i denote u with the i-th bit flipped. Then
dA
(1 — Eyotmit({2139) BinUnit () TV (Pou > Po,cs ))

Proof of Assouad. Fix any estimator 6. Construct an estimate @ = (i1, ...,1q) € {£1}? by

@ = argmin L(6,, ).
ue{£1}4d

Then for any u,

~ _ L(6y,0) + L(64,0)
2

d
> 1{us # ).
=1

o | >

Averaging over u uniformly,

2dZE9 ¢9u,9 = QZQdZPG ul?’éuz

*Z<z+ul7é+1)+P (i 7&_1)>

l>

ZZ (1=TV(Py,P)),
i=1

where the last step applies Le Cam’s two-point bound to testing P;  vs P; _. Taking the infimum
over f yields the theorem. O

Remark 7.9. (Exercise.) Show that

d d
Z V(PP )=1-0(1) < Z (Ui; X) =log2 — Q(1)

&. \

for U ~ Unif ({£1}%). Also note that I(U; X) > S>%, I(Us; X), so under a hypercube construction
Assouad is no weaker than Fano.
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7.4 High-dimensional examples
7.4.1 Example 2.1: normal mean model (high dimensions)
Let X ~ N(8,02L,) and loss L(6,§) = He . HHz We show

™ = Q(no?).

Proof 1 (Fano via packing). Construct a subset ©g C {£J}" (with ¢ to be chosen) such that
o m := |0y is large enough,
[ mingygg/e@[) ||9 — 9,”3 > (5271/5

By the Gilbert—Varshamov bound below, we can choose m = exp(€2(n)). Then for squared loss,

min inf ( 1L —aHg + HG/ —CLH;) =

040'c0, a min ||6 — 9’“; >0 A

1
2 0£0'€0,
Using the golden formula for mutual information,
1(6;X) < max Dy, (N(0,0%I,) || N(0,0%1,))
€060

el ne?

0c6, 202 202’

Fano then gives

nd?/(202) + lo
= Q(&Qn(l— d /(29(7)1;_1 g2)>.

Choosing § < o yields r* = Q(no?).

7.4.2 Gilbert—Varshamov bound
Lemma 7.10 (Gilbert—Varshamov). There exists a set A C {£1}" such that

n

min {u; #u} >d
u#u’GAizl {Z7é 7'}_ ’

and

m i |A| > — 2 — gn(i=ha(d/m)-+o(n)

d—1 - ’
250 (5)
where hy(z) = zlogy 1 4 (1 — x)logy 1 is the binary entropy.

Proof. (Volume argument.) Fix u € {£1}". The number of «’' € {£+1}" within Hamming distance
d — 1 of u equals

n d—1
Hu’ e {£1}": ZZ;]I{Uz # uj} §d71H :jzo (])

So if we have selected fewer than 2"/ Z;l;(l) (?) points, there must exist a new point at Hamming
distance at least d from all selected ones. Greedily adding such points constructs a set A of the
claimed size. O
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Proof 2 (generalized Fano on the full hypercube). Let © ~ Unif({£4}"). Then I(0; X) <
né?/(20?). Pick

né>

I

The small-ball probability satisfies

~l12
Py=supn(]|© —al? < A) < sup ”(H@_‘)H < 4A),
a fe{£s)n 2

~ ~l12 ~
where 6 can be taken as a nearest hypercube point to a. Now, ||© — 9H2 = 46%2dy(0,0), so the

112 .
event H@ - HHZ < 4A = nd?/3 implies dy(0,6) < n/12. Thus

ln/12]
Pp<2 Y (”) =279 (by Stirling).
; J
j=0

Applying generalized Fano again gives r* = Q(no?) for § < o.

Proof 3 (Assouad). For § > 0, let 6, = du for u € {£1}". For neighbors u,u’, we have
1|6, — 0u1||§ = 462, hence
. 1
inf ({|6u — allz + 0w — ally) = 5 10w — 0wl = 262
Also,
1—  max TV(N(0y,0°L,),N(Oy.0%I,)) =2(1 - ®(5/0)).

u,u’ neighbors

Choosing § = o and applying Assouad yields r* = Q(no?).

7.4.3 Example 2.2: learning theory (VC lower bounds)
Let (X1,Y1),...,(Xp,Yn) ~ Pxy i.id. with Y e {0,1}. Let F be a class of functions X — {0,1}
with VC dimension d. For a trained classifier f based on the sample, define the excess risk

ER(f) = Pxy (Y # f(X)) = min Pxy (Y # f(X)).

We will show that for n > d,

inf sup E[ER(f)] = Q (\/z) (agnostic setting),

f Pxy

and

inf sup E[ER(f)] = Q(g) (realizable setting).
f Pxy:3feF,Y=f(X) Pxy-as. n

Recall (VC shattering). VCdim(F) = d implies that there exist z1,...,24 € X such that for
every u € {£1}? there exists f, € F with f,(x;) = u; for all i € [d]. (Here we encode labels as +1
for convenience.)
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Agnostic case (Assouad). Fix zy,...,24 and the functions {fu},ci1ya. For each u € {£1}4,
construct P, = Pxy,, as follows:

o X ~ Unif{zy,...,zq}.
e Y | X = x; equals u; with probability % + 4 and equals —u; with probability % — 9.

Separation. For all u,

. 1
min P.(f(X) £ ) = 5 =8

For any f, writing ER(f, P,) = Pu(Y # f(X)) — (3 — ), one can check that for all u, v/,

ER(f, Pu) + ER(f, Pw) = Pu(Y # f(X)) + Pu(Y # f(X)) —2(3 - 0)

Thus Assouad holds with A = 2§/d.
Indistinguishability. For neighbors u,u’,

1 nd?
Dt (P{"[PS") = nDict.(Pul|Pur) = - Dict.(Bern(} +8) || Bern(} - 9)) = 0(7).

Choosing § =< \/d/n makes this O(1). Assouad then yields

inf sup E[ER(f)] = Q(dA) = Q( ﬂ).
f Pxy n

Realizable case (Assouad). Now define a different family {P,} where the Bayes error within F
is zero. Let u € {#1}%"1 (we vary labels only on s, ...,z4). Define P, by

e X =12y wp. 1—(d—1)/n,and X = z; w.p. 1/n for each 2 < i < d.

e Y | X = x; equals the prescribed label (deterministic): ¥ = wu; for 2 <i <d (and fix Y = +1
on xi).

Clearly minycr P, (f(X) # Y) = 0 for all u. A similar analysis gives a separation parameter
A =< 1/n. For neighbors ' = u @i (flipping the label at some z;, i > 2), we have

TV(PP", PS") < P(z; appears in X1,...,X,)=1—(1-1/n)" =1-Q(1).

Therefore Assouad yields
. 5 d
inf  sup  E[ER(f)] = Q((d—1)A) = Q(—)

f realizable Pxy n

(See homework for further generalizations.)
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7.5 Assouad in sequential settings: a communication lower bound

Assouad’s lemma is also surprisingly flexible in sequential settings.

7.5.1 Example 2.3: distribution estimation under sequential communication
protocols

Let P = (p1,...,pr) be an unknown pmf on [k]. We observe Xi,..., X, 1 p However, the

estimator P must be formed via a sequential distributed protocol: node t sees X; and sends a

message Y; € [(] to a central server, where Y; can depend on (X, Y1) (a protocol II to be designed).

Assume a communication constraint ¢ < k.

distributed nodes

i € [4] protocol II
(X1)
(X2) el { central server P
(%) Y, €[4
We will show
= (]iar}rf[) s%pEp [TV(P, ]5)] = Q(\/%) (e.g. when k < £ and n > k?/¢).

Proof. Without loss of generality assume k is even. For u € {£1}*/2 construct

14 0u; 1—duy 1+ duy o 1—(5uk/2)

Pu:< i ma RS . , . 5 € (0,1/2) (to be chosen).

It is easy to check that for the loss L(P, ]5) =TV(P, ]5), this hypercube construction has separation
parameter A = Q(0/k).

We use Corollary 2 of Assouad and upper bound the averaged-neighbor total variation distance
between the message distributions. Let u @ ¢ denote u with the i-th bit flipped. Write Py, for the
law of Y™ under P, and protocol II. Then

EuEi TV (Pynjy, Pynjugi) < \/EuEz TV(Pynju, Pynjugi)®  (Jensen)

< \/IEUIEi H2(Pynjy, Pynjusi)  (TV < H)

n
<O\ STEEER, L [F (Pt Papyretusi)|
t=1

where the last step uses Jayram’s subadditivity of H? (Lecture 3).



88 Lecture 7: Minimax lower bounds (Le Cam, Fano, Assouad)

Next, we upper bound the conditional Hellinger distance. Since H?(P, Q) < x2(P||Q),

E; {Hz (Py,jyt1,u, PYt|Yt*1,u€Bi):| < E; [X2 (Pyjyt—tumi | PYt|Yt*1,u)]'

Write

P}/t‘yt717u = Z PYt|Yt*1,Xt:w Pu(x)
z€[k]

Since 6 < 1/2, we have P,(z) > (1 —9)/k > 1/(2k) for all z, so

1
Prye1a(y) 2 5 ;[k] Py jye-1 x, = (y)-
X

Therefore

2
(Prizylyt—tumi — Primylyt—1.u)

X (Pyipye-1 wail | Py jyt-1) < Z

1
yell] 2k Zze[k] PYt:y\YFl,Xt:m

Now note that u @ i differs from u only on the pair (2 — 1,2i), and the change in the pmf is £2§/k
on those two coordinates. Thus

Primylyt=1umi = Primylyt—1
20
=% Py, —yiyi-1 x,=2i-1 = Pyi—y|yt-1 x,=2; |-

Plugging this into the previous display,

2
2(5 2 P — t—1 o _P _ -1 o
X2(PYt|Yt*1,uEBiHPYt|Yt*1,u) §2]{;<7> Z ( Yi=y|Yt—1,X;=2i—1 Yi=y|Yt-1 X, 21)
F yEl] er[k] Py—ylyt=1 X,=o
802 <~ Primyly=1 Xi=2i1 T Primylyt=1 X2
- yell] Za:e[k:} PYt=y|Y’5—1,Xt:x ’

where we used (a — b)? < a + b. Averaging over i ~ Unif([k/2]),

8;;2 Z E’L [PYt:y|Yt_1,Xt=2i71 + PY}=y|Yt_1,Xt=2i]

Eix? (Pyijye-1 ueil | Py, jyt-1,) <

ye[e] er[k} Pm:ylytilth:a7

8;;2 % er[k} Pth=y\Y’5717Xt=ﬂf

yell] Z756[/’f] Pﬁ:yIY*‘l,Xt:a:

1662 5%
= 2 1=0(3)
yE[(]
Hence

E; [H2 (Pyt‘ytfl’u,Pthtfgu@i)} < O(ijf)

Putting everything together,

n52€)'

E BTV (Pyojy, Pynjusi) < 0( o
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Assouad’s lemma (Corollary 2) then yields

#=a(s(i-0(,"55)).

Choosing § = k/v/nf (and ensuring § < 1/2) gives

7.6 Special topic: interactive Le Cam and the DEC

7.6.1 Model for interactive decision making

We consider an interactive/sequential setting with

e an unknown true model M* in a given model class M (e.g. the reward distributions of all
arms),

e at eachround t=1,...,T":

1. learner chooses an action a; € A;

2. nature reveals reward r; € [0, 1] and possibly an additional observation o, with
Elr¢ | ap = a] = TM*(a)a (re,00) ~ M*(ar).

e learner aims to minimize the regret

Ry = Z ('ri\/‘[* - rM*(at)), rM .= rgleai(rM(a).

Example (multi-armed bandit). Take A = [K]| and

M*"(a) = Bern(pu,), M (@) = pta, M={M":pel0,1]5}.
Question. What is a general two-point lower bound for Rp?

Idea. Let
g (@) =l — V()
denote the gap of action a under model M. A naive two-point lower bound might suggest

inf sup E[Rp|2T- sup { inf (g™ (a) + g™ (a)) : H* (Mo, My) < c/T},
{at} Mrem Mo,M1eM \ acA

for small ¢ > 0. However, several issues arise.
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7.6.2 Challenges

1. The metric inf, (g (a) + g™ (a)) can be too pessimistic. If a policy uses an action distribution
p under My, then E,,[¢™!(a)] may be a better separation metric.

2. H2(My, M) is not well-defined in the interactive setting, since the distribution of (r¢, o;) depends
on the chosen a;. One should instead consider an averaged quantity such as Eq,[H2(Mo(a), M (a))].

3. Where should we take the infimum over p (learner as the min player)?

® supyy, u, inf, can be too small (same reason as item 1).

e infj, supy, s, can be too large, since the learner can adapt p sequentially.

7.6.3 Definition: constrained decision-to-estimation coefficient (DEC)

Definition 7.11 (DEC). The constrained decision-to-estimation coefficient is defined as

dec. (M) :=su inf su Eop[d™(a)] : Equp[H2(M (a), M(a))] < £2}.
Mymsup inf s {Bonylo¥ (@] By (@), M) < '}

e This is a sup-inf-sup structure: first choose a reference model M, the learner chooses an action
distribution p based on M, then nature chooses an alternative model M.

e The separation condition is with respect to the average under p.

e The reference model M does not need to belong to M.

7.6.4 Examples

Example 3.1 (two-armed bandit). For two-armed Bernoulli bandit (Bern(uq), Bern(uz)) with
|1 — p2| > A, choose the reference

M = (Bern(} + A), Bern(1)),
and consider alternatives
M e {(Bern(% + A),Bern(3)), (Bern(3 + A),Bern(3 + A + 5))}

A calculation gives

2

dec.(M) > pgie%,l] max {pzA, (1 —p2) (p% — A) + 5} = Q(A A %)

Example 3.2 (multi-armed bandit). For M = {Hfil Bern(u;) @ i € [0, 1]}, we may choose
M = Hfil Bern(1/2). For any distribution p on [K], pick ig = argmin;p; and set M (ip) =
Bern(1/2 + ¢V/K). This gives

dec.(M) = Q(eVK),  when eV K = O(1).
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7.6.5 DEC lower bound for regret
Theorem 7.12 (DEC lower bound). There ezist absolute constants ¢,C > 0 such that
c

{1}5} Ms*ugw En+[Rr] = Q(T (decE(M) — C’e)+), €= T

Specializing to the previous examples gives a lower bound Q(1/A) for Example 3.1 when

A >1/VT, and Q(VKT) for T > K.

7.6.6 Proof sketch (simpler case M € M)

(Foster, Golowich, Han 2023). Let A := dec.(M).
Let p(- | H'™!) denote the learner’s action distribution at time ¢. Define the learner’s average

play under M by
Bl Zpt Kt

Let M be an inner maximizer under p = p;y, and deﬁne the learner’s average play under M by

_ ]EM |: Z D Ht 1 :|
By definition of dec., we have

Earpy 9" (a)]

A, (1)
Eapy [H(M(a), M(a))] < €%,

(2)

>
< é?

By way of contradiction, assume that
Eanpy[g" ()] < A/100,  (3)
Eampy g™ (a)] < A/100.  (4)

We introduce two lemmas.

Lemma 7.13 (Lemma 1). For ¢ > 0 small enough (hence ¢ = \/¢/T small enough),

TV (par,pyr) <0.1.

Proof. Let P% or and P% ,r denote the law of the full interaction sequence. By data processing,
TV(pM,pM) < TV(PT OT7PT OT) < HQ(PT OT,PT OT)

Using subadditivity of H? in sequential models,
H2(P7{\T4,0T7 ]‘740T <CZEM{ Tt 0t|Ht I’PT]\t{OHHFl)]
=C Z Ey [H M(ar))]

= C’T]EaNpM [H2(M (a), M(a))] < CTe* < 0.1,

where the last step used (2) and the choice € = \/c¢/T. O
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Lemma 7.14 (Lemma 2).

Egnp ‘TM(a) - T‘M(CL)‘ <e.
(This step critically uses that the rewards are observed.)

Proof. As r, € [0, 1], we have
’TM((I) - TM(CL)’ < TV(M(a), M(a)) < H(M(a), M(a)).

Taking expectation over a ~ py; and using Jensen,

Eapyy [ (@) = 17 (0)] < B H(M (), M (a)) < \/Eavp, H2(M(a), M () < c.
where the last step used (2). O
Contradiction argument. Let
AM = {a: g™ (a) < A/10}.

1. By Lemma 2 and (1),

A< Tiw - EaNpM [TM(Q)}
< Tiw - EaNPM [TM(G)} +e
= =M+ Banpy 9" ()] + €
<M _ M L AJI00 + € (by (4)).

Hence _
rM _ M > 99A /100 — «.

2. By (3) and Markov’s inequality,

3. By item 2 and Lemma 1,

4. By item 1 and item 3,
Eompy, [ (a) — M (a))1{a € AM}] > (M — AJ10 — #M) py (AM)

4
> (89A/100 —¢) - -

However, Lemma 2 states that the left-hand side is at most €. This is a contradiction when
A > Ce.

Therefore, at least one of (3) or (4) must fail, implying a regret lower bound of order T'(A — Ce)
(up to constants).
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General M (Glasgow and Rakhlin 2023). For M ¢ M, (4) is no longer a consequence of
small regret. A stopping-time argument fixes this. Let ALG be the original learner’s algorithm, and

define ALG' as follows: ALG}, = ALG; as long as

. AT
M e
E 9" (as) < 1007

s<t

and ALG' always pulls )
a* = argmax 7 (a)

otherwise. Now redefine p;, M, pps using ALG'. Then (1), (2), (4) and Lemmas 1-2 still hold.
Let 7 > 0 be the stopping time of

i AT
M
E > —.

By Lemma 2 and Markov’s inequality, with probability at least 0.9 under PZe[LG/,
1 & ;
T Z ‘TM(at) - TM(at)‘ < 10e.
t=1

On this event,

1 TAT 1 TAT

=30 = 5 3 (= ()
t=1 t=1
TAT

TAT
y T
gM(a) + ;\T (0.99A —¢) —10e.  (5)

Here the last step used item 1 above, i.e. rM — ri‘z > 99A /100 — e.

e If 7 > T, then by (5),

TAT

1
= Z gM(a) > 0.99A — 11 = Q(A) for A > Ce.

T
t=1

o If 7 < T, then by definition of 7,

1 AL 1 < v A
M M

— — >

T ; 1 g (ar) T ; - g" (ar) > 100

so (5) yields
1 ZgM(at) > A 10e = Q(A) for A > Ce.
T 2 = 100
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Therefore,
1 TAT
pALG <T 3 oM (a) = Q(A)) > 0.9
t=1

in both cases. Since TV(PA’%LG/, P]QLG/) < 0.1 by Lemma 1, we get

TAT

pALG (% > 0M(a) = (8)) > 08
t=1

Finally, since ALG’ and ALG coincide up to time T A 7, this gives the claimed result.

Remark 7.15. In Glasgow and Rakhlin (2023), this stopping-time argument establishes a stronger
high-probability statement: for any fixed cg > 0,

. R(T
ggf}SﬁPPM*( <T) >((l—co)dece(u)—C€)+>:Q(l), e =

where ¢, C' depend on ¢g.



Lecture 8: Advanced Le Cam’s Method

8.1 General hypothesis testing
We observe X ~ Py, where § € ©. We aim to test
Hy: 0 €0 VS. Hy: 0e€ 0.

Remark 8.1. Simple hypothesis: one of ©g, ©; is a singleton. Composite hypothesis: ©¢ and/or 0
is a set.

In the composite setting, for a test 7': X — {0, 1},

Type I error = sup Fy(T = 1), Type II error = sup Py(T = 0).
[AS(S]} 0cO,

Theorem 8.2 (Composite testing via least favorable priors).

inf ( sup Py(T = 1) + sup Py(T = 0)) —1— inf TV (ngo [Py], Egor, [Pg]).
0€0g 0cO, Woggggog
™1 1

Remark 8.3. Last lecture, the basic Le Cam two-point method reduces estimation problems to
hypothesis testing between two simple hypotheses. However, it can be helpful to let one or both
hypotheses be mizture distributions (i.e. Eg..[Pp]) with a carefully chosen prior 7.

8.2 Advanced Le Cam I: point vs. mixture
Theorem 8.4 (Point vs. mixture). Let 6y € © and ©1 C O. Assume there exists A > 0 such that

inf inf (L(6 L(6 > A.
916n®1 in ( (6o, a) + (,a)) >

Then for any probability distribution ™ on ©1,
A

inf  sup Eg[L(8,0(X))] > =
0 0e{6o}UO, 2

(1 —TV(Py,, IE@W[PG])).

Proof. Consider the two-point prior %((590 + 7). The Bayes risk lower bound follows from the
same two-point argument as in basic Le Cam, with P = Py, and Q = Eg[Fp]. O

95
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8.2.1 How to upper bound TV(PgO,EQW[Pg])?
The “point vs. mixture” structure is only helpful when
TV (Py,, Eonr[Py]) < Gien@f TV(Py,, Py),
1
i.e. the mixture increases closeness.

A standard method is the Ingster—Suslina x? method (a.k.a. the second-moment method), by
upper bounding x*(Eg~-[FPs] || Ps,)-

Theorem 8.5 (y2-method). Assume Py has density pg w.r.t. a common dominating measure. Then

Po Doy
X* (Bomr [ Po] || o) = E‘w“”[/ pae } ot
0

where 0’ ~ w is an independent copy of 6.

Proof.
2 (Egnunlpo])” Eg g/~r[Pope’]
2 (Bon [ Pa] || Po) +1 = / Eo~rlpol) _ /
p90 p@o
_ Ea,e/w[ / pepef]’
Do,
by Fubini. 0

Corollary 8.6 (i.i.d. models). For i.i.d. observations,

C(Eerl ) | P57 = Eages ([ 222)] -1

/ Py"Py" _ ( / Pepy )"
P P,

8.2.2 Example 1.1: Planted clique

Proof. Just check

Given an undirected graph G on n vertices, aim to test between
Hy: G~G(n,3) VS. Hi: G~G(n, 3.k),
where under H; there exists an unknown S C [n], |S| = k, such that
o 1, 4,j€8,
P((i,j) € E) = {, .
5, otherwise.
Target. Find a constant C' such that if
k < 2logyn — 2logsy logyn + C,

then no test can reliably distinguish between Hy and H;.

Remark 8.7. Why is the mixture structure in H; important? Because for each fized instance of Hy,
the learner knows the set S and can look at whether G[S] is a clique.
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Proof. Let P be the law of G ~ G(n, 3). Let Ps be the law of G with a clique planted at S, and
let S be uniform over ([Z]). Then

J%RV_EjRﬂGﬂ%mg__ > 1{zy; = 1Vi,j € S} My =1Vi,j € 5} (5)25)-20)
P —~  P(@) . (1))
(xij)E{O,l}(Q)
_ o (3
Therefore

X (E[Pd] || P) = Es,s [20525")} 1

n

=) G
222(2)¢—1:0(1) when k < 2logyn — 2log, logyn + C,
r=0 k

by algebra. O

8.2.3 Example 1.2: Uniformity testing
Given X1,..., X, i p = (p1,-..,Dk), aim to test

Hy: P = Unif[k] VS. Hy: TV(P, Unifk]) > e.

Target. The sample complexity of a reliable uniformity test is

e2

n=6(

Remark 8.8. A naive two-point method does not succeed: if the learner knew the pattern of how P
deviates from uniform, then O(e~2) samples would suffice.

Proof of the lower bound. WLOG assume k is even. Under Hy,
P=Q1/k,...,1/k).

Under Hq, let

1—2ev; 14 21y 1- 251%/2 1+ 2€Uk/2)

: k/2
P I — - v = (vi,...,v42) ~ Unif({£1}*/2).

P, = (

Note that TV (P,, Unif[k]) = ¢ for all v € {£1}*/2. Moreover,

PPy A P@)Pu(z) L2 (1 2e0)(1—2e0)) (14 2ewi)(1+ 220))
/ P :Z; P(z) :§;< k + k )
k)2
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Hence
2 [( 8¢e? %% )n}
X (E[PE"| PE™) =Epu | (14+ — ) wivj) | —1
kI
8ne? &2
< Ey, exp vivs ) — 1
)
1/8ne2\2 k 16n2s4
SeXp(i( k ) '5)_1:eXp( k )_1‘
(The sum Zfﬁ v;v} is k/2-subGaussian.) Therefore, x? = O(1) when n = O(vVk/e?). O

8.2.4 Example 1.3: Linear functional of sparse parameters

Let X ~ N (p, 1) with |||, < s.

Target.

d

2 d

. 2

H%f sup E, (T— g ui) 2 s7log (1 + ?>
llullo<s i=1

Proof of lower bound. Let
C o . L o/ (d] .
Hy: p=0 (callit P), Hy: p=plg, S~ Unif . (call it E[Pg]).

The separation condition is satisfied with A =< p?s2. Also,

PsPy _ / Pz —pls)p(z —pls) \ _ pPsig) _ 0%IS0s]
P o(z)

To proceed, note that |S N S’| ~ Hypergeometric(d, s, s). By Hoeffding’s lemma (stated next),

YA(EIPs)|| P) +1 = E[e575] < B[ B0o/D) — (1-2 4 2"} — 0(1)

when p =< +/log(1 + d/s?). O

Lemma 8.9 (Hoeffding). Let C = {c1,...,cn} C R be a fized population. Let X1,...,X, ben
draws from C without replacement, and X7,..., X} ben draws from C with replacement. Then for

any conver f: R — R, . .
<[(3x)] = =ls(3 )

8.2.5 Example 1.4: Quadratic functional estimation
Let X1,..., X, L f, where the density f is supported on [0,1]¢ and Hf(s)Hoo = O(1) for some
integer s.

Target.
. 2 — ks —-1/2
inf sup Ef‘T— f(x) dx‘ =X n Astd 4n7 /7
T s [0,1]¢



8.3. ADVANCED LE CAM II: MIXTURE VS. MIXTURE 99

Proof of the lower bound. The parametric rate Q(n~1/2) is trivial (by LAN or a simple

4s
two-point argument). For the Q(nfm) lower bound, let

h*d
Ho: f=1, Hi: foz)=1+c> v hsg(x — CZ), v ~ Unif({£1}"7%),
i=1
where g(-) is a smooth function on [0,1]¢ with [ g = 0. The cube [0,1]¢ is partitioned into h~¢
subcubes with edge length h; ¢; is the lower-left corner of the i-th subcube.

For a small absolute constant ¢ > 0, one can verify fﬁs) ‘ = O(1) for all v, and

h—d
fo@)?dz=1+¢ Zh%/

(TS ) do =1+ g3
[0,1]¢ i—1 [0,1]d

h

Thus the separation condition holds with A = h?.
For indistinguishability,

h—d h—d
/fv}fv/ :1+/ CZZUiU£h2sg2<$;cz)d:E: 1—}—62“9”% h2s+dzvivéo
(RN i1

Therefore
h_d

X2 (E[ 2r ] f®n) +1<[Eexp (nc2 HgHg h2s+d2viv§>
=1
< exp (O (n2h4s+2d : hid)) = exp (O(n2h4s+d)) =0(1)

2
when h < n~ %+d, O

8.3 Advanced Le Cam II: mixture vs. mixture
Theorem 8.10 (Mixture vs. mixture). Fiz any ©g C O and ©; C O. Suppose

inf _inf (L(6 Lo N
606@(1)?91691 12 ( (U,CL)+ ( 1aa)) >

Then for any probability distributions mg and 1,

it swp ELOT0)] 2 5 (1= TV(Ernr, [P, B [P2]) — 10(05) = ma ().
0€OoUO

Proof. The only new observation is that if 7 is the restriction of my on ©g, then
TV (Egry [Po], Eguzy[Po]) < TV(mo, To) = m0(OF).

(Similarly for m.) O

Challenge. What is a good way to upper bound TV (Eg.r,[Ps], Eg~r, [Pg]) beyond trivial convexity
arguments?
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8.3.1 Orthogonal functions/polynomials

Suppose (Fp)ge[oo—e, 6o+¢] 18 @ 1-D family of distributions, with likelihood ratio expansion

P00+u
g o) f <e.
Pou pm x;6p) or |u| <e

Under some structural conditions, {pm, (:13; 00) }m>0 are orthogonal under Py, .
Lemma 8.11. If

P uP v
/90"‘90"‘ depends only on (0y, uv),

Py,
then
Ex~py, [pm(X;00)pn(X560)] =0 ¥V m #n.

Proof.

[ P B [( 3 pai00 ) (o005

0

= > Exeny, [pn(X; 00)pn (X3 60)] = ,7;!.

m,n>0

Since this quantity depends on (u,v) only through wwv, all coefficients with m # n must be 0.

8.3.2 Two important examples

Gaussian. For Py = N(0,1),

The corresponding p,,(x;0p = 0) are the Hermite polynomials H,,(x), with
Exon0,) [ Hm(X)Hp(X)] = n! 1{m = n}.

Poisson. For Py = Poi()\),

PruPro _ 5 coacue (A0 0D ouw
/ Py _kzzoe kIR _eXp(A>'

The corresponding p,,(x; 60y = \) are the Poisson—Charlier polynomials Cy,(x; \), with

n!
E x Poi(n) [Crm (X5 A)Cr (X5 N)] = 0 1{m =n}.

8.3.3 Bounding TV and x?: methods of moments
Theorem 8.12 (Gaussian mixture). For p € R and random variables U,V ,
1/ <= (E[U™] —E[V™])2\1/2
TV(EW G+ U ), EW e Vi) < (30 B EVIDE

m=0

If in addition E[V] = 0 and E[V?] < M2, then
By

CEW (i + U D] || BNV (i + V1)) < eM*72 Z

O
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Proof (for the TV bound). WLOG assume p = 0, and let A,, := E[U™] —E[V"™]. Let ¢ denote
the NV(0, 1) density.

TV(EN (U, 1), EN(V,1)]) =

using Cauchy—Schwarz and the orthogonality E[H,,(X)H,(X)] = n! 1{m = n}.
Proof sketch (for the x? bound). For the x? upper bound, lower bound the denominator as

Egv[p( = 0)] = (@) By [exp(0n — 5] = o(x) exp (Eguv [0 = §1) = p(@)e™72,
and the rest is the same as the TV proof. O

Theorem 8.13 (Poisson mixture). For A > 0 and random variables U,V supported on [—\, c0),

TV (E[Poi(\ E[Poi(A <1 DTG A E[U™] -E[V™
V(E[Poi(A + U)], E[Poi(A+V)]) _Q(mEZOmMm) : m = E[U™] —E[V"™].
If in addition E[V] =0 and |V| < M, then
2 : M
x° (E[Poi(A + U)] || E[Poi(A + V)]) E '/\m

Proof. Exercise (the same argument as the Gaussian case, but using Poisson—Charlier polynomials).
O

8.3.4 Example 2.1: Generalized uniformity testing

Given X1,..., X, i p = (p1,---,Dk), aim to test

Hy: P = Unif(S) for some S C [k] Vs. H Snél[rlg] TV (P, Unif(S)) > /2.

Target. The sample complexity for a reliable test is

n:@(§+§j§).
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Proof of lower bound.
(1) n = Q(Vk/e?) follows from uniformity testing (Example 1.2).

(2) For n = Q(k?/3/*/3), assume Poissonization, where the observations are
ind .
(Nla"'aNk)7 N; ~ POl(npl)

Construct two product priors:

ii.d.

under Hy : p1,...,Pk i Law(U), under Hy : p1,...,pr ~ Law(V),

where
0 w g2 1—¢ 1
. b 'p 1+€27 . k ) W'p' 2’
U V=
1+e¢ 1 1+e¢ wp 1
PR e oo Py
Notes.

(1) Under Hy, p; € {0,(1+€%)/k}, so (p1,...,pk) is generalized uniform.
(2) Under Hy, (p1,-..,pr) is Q(e)-far from generalized uniform w.h.p.

(3) E[U] = E[V] = 1/k, so under both Hy and Hy, (p1,...,px) is a pmf in expectation. (Additional
arguments are needed to justify restricting to “approximate pmfs”; omitted here.)

(4) E[U?] =E[V? = (1 +¢&?)/k?, and

2
BT — /K™ — B[V — 1/k)"]| € o) m23.
Now by the Poisson mixture result,
2m 3.4

X2 (E[Poi(nl)] || E[Poi(nV)]) < e/ Z = ene/k Z 4e! ”/ k)™ o(”k—j).

Tensorization of x? yields
n3ety\ \k n3et
(IEU ®P01 np;) H EV ®P01 an)D +1< (1 +O< 3 )) < exp (O(?>) =0(1)

if n = O(k%3/c4/3). O

Remark 8.14. This construction matches the first two moments of (U, V). Can we match more? No.

Lemma 8.15. Let p be a probability measure supported on {0,z1,...,xx_1} C [0,00). Let v be
another probability measure supported on [0,00) such that

E, X" =E,[X™] forallm=20,1,...,2k — 1.

Then p = v.
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Proof.
0=E,[X(X —21)? (X —23-1)*] =B, [X(X —21)® - (X —25_1)%] > 0.

Hence supp(v) C {0, 21,...,2,_1}, which forces v = p. O

8.4 Example 2.2: /;-norm estimation

Let X ~ N (0, I,) with ||0]| < 1.

Target.

. loglogn
inf sup ]E@‘T— ||9H1‘ X =
T 6=t ogn

Proof of lower bound (idea). Test between Hy : ||6||; < po vs. Hy: ||0]|; > p1. Assign priors
0 ~ ug@" under Hy and 6 ~ p$™ under Hj.

Desired properties.
(1) x* (ko * N'(0,1) || 1 * N(0,1)) = O(1/n).
(2) pg™ (HS) + pi" (HF) = o(1).
(3) p1 —po = Q(n - REER),

We design (po, p1, 10, 141) for these properties separately.

(1) Moment matching controls x2. If ug, #1 match the first X moments, then

X* (1o * N'(0,1) || 1+ N(0,1)) < O(1)

- e

m!
m=K+1

(To make it O(1/n), choose K =< 101gofgogn')

(2) Choose thresholds using concentration. Choose
po=nE, 0| +w(vn),  p=nE, 0] —w(Vn).
Since under u$", ||6||; concentrates around nE,, |0] with fluctuations O(y/n), Chebyshev gives
pg " (HS), pf™ (HY) = o(1).
(3) Remaining optimization problem. It remains to solve

max Eul |0‘ - E,U»o ’0|
s.t. wo, u1 supported on [—1,1],
E,. [0"] =E,[0™] for0<m < K.

There is a duality result between moment matching and best polynomial approximation.
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8.4.1 Duality: moment matching vs. best polynomial approximation

Theorem 8.16. Let I C R be compact and f continuous on I. Define
V* = max {E“[f(X)] — B, [f(X)] : supp(p), supp(v) C I, E,[X™] = E,[X™] ¥m =0, ... K}

and

B = inf - P .
e S = P

Then V* = 2F*.

Proof. Step 1: V* < 2E*. Let P be any polynomial with deg(P) < K. If u, v match moments up
to degree K, then E,[P] = E,[P] and hence

Eulf] = Eu[f] = Eulf — P =Ey[f = P <E,[f - P|+E, [f - P| < 281éll)|f($) — P(z)].

Taking inf over P yields V* < 2FE*.
Step 2: V* > 2E*. Let F :=span{l,z,..., 2%, f(z)}. Define a linear functional L on F by

L™ =0 (m=0,...,K), L(f)=E".

We claim ||L|| = 1, where
L[| == sup | Lh|.
heF, (1Al Lo (1) <1
Let P*(x) be a best approximating polynomial of degree < K such that || f — P*||LO°(I) = FE*. Any
h € F can be written as h = ¢(f — P*) + P for some polynomial P of degree < K. By definition of
P* |kl gy = lel £7. Thus

Lh BT

1Pl WPl —

)

with equality for P = 0, hence ||L|| = 1.
By Hahn-Banach, extend L to C(I) with ||L|| = 1. By Riesz representation, there exists a signed
measure p on I such that
Lh = / hdp.
I

Let p = py — p— be the Jordan decomposition. Since L(1) = 0, we have pu4(I) = p—(I). Since
I|IL|| = 1, we have py(I)+ u—(I) = 1. Hence py(I) = p—(I) =1/2. Also, L(x2™) = 0 implies

/:Umd,qu:/xmdu forallm=0,..., K.
I I

Finally choose 1 = 24 and pg = 2p—. Then

. 1
E*=Lf= Eu+[f] - Euf[f] = i(Em[f] - Euo[f])7
so E,, [f] — E, [f] = 2E* and therefore V* > 2E*. Combining both steps gives V* = 2E*. O
Remark 8.17. By approximation theory, the uniform approximation error of || by span{1,0,...,0%}

is O(1/K). So we get
_ B loglogn
p1—po=Qn/K) = Q(” W)

and combining (1)—(3) yields the target lower bound.
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8.5 Special topic: dualizing Le Cam (Polyanskiy & Wu 2019)

8.5.1 Setting
Let 61,...,0, o and X | 0; ~ Py,. Equivalently,

X1,..., Xy "X By [Py) =: 7P

Target: estimate a linear functional 7'(7) and characterize

r* = inf sup B [(T(X1,...,X,) — T(m))?].
T well

Remark 8.18 (Related setting). If (01,...,0,) is an individual sequence and X; | 6; ~ Py,, then the
target is to estimate

T(mg) = %Z h(6;), where g = %Z do,,
i=1

which is linear in 7. This covers functional estimation such as £;-norm estimation in Example 2.2.

8.5.2 A modulus-of-continuity characterization

Definition 8.19 (x2-modulus of continuity). For ¢ > 0,

0y2(t) := sup{ ’T(ﬂ',) - T(ﬂ')’ XA’ P||nP) <t?, w7 € H}.

Theorem 8.20. If T is linear and 11 is convex, under reqularity conditions,
1 .
?5)(2(1/\/%)2 < rf < Se(1/vn)?

Remark 8.21. (1) 4,2 is the best separation constant subject to the x? indistinguishability constraint,
and the lower bound r* > 1§ 2(1/y/n)? follows from Le Cam’s two-point method.

(2) The upper bound shows that for linear T, Le Cam’s method can be dualized to obtain
statistical upper bounds.

8.5.3 Proof of the upper bound

Try an estimator of the form
~ 1
T(Xl,...,Xn):EZg(Xi) for some g : X — R.

By bias—variance analysis,

sup By (T~ T(m))?) = sup { [T(m) ~ 7Py + - Varzp(9) ),
mwell mell n

where 7P, := Ex.p[g(X)]. Thus it suffices to show

inf sup { |T(7) — mPy| +
9 well

\/15 Varﬂp(g)} < 2 (1/v/n). (8.1)
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Denote

L(m,g) = |T(7) — nP,;| + Var,p(g).

b
NG

To mitigate the non-concavity of the absolute value term in m, write

+ \}ﬁ\/Varﬂp(g)}
= sup {(T(TI’) - 7T.Pg) — (T(ﬂ'g) — Wng) + %\/Var,,p(g)},

ma€lla

Lmg) < sup sup {(T(m) —wFy) = &(T() = n'Fy)
1

where
o :={&r' :n' e, 0< ¢ <2}

The right-hand side is concave in (m,m2) (thanks to linearity of 7'). Therefore, by a minimax
theorem,

inf sup L(m,g9) <  sup inf{(T(ﬂ) — 7rPg) — (T(ﬂg) — 7r2Pg) + \}ﬁ Varﬂp(g)}

9 well n€ell, melly 9
1
= sup inf { (T(m) = T(x")) + (x' — 7) Py + —\/Varﬁp(g)}.
mr'ell 9 \/ﬁ

Recall the dual representation
(7' P || 7 P) = sup { (=" — 7T)Pg)2 : Varp(g) < 1}.

If x?(7'P || 7P) > 1/n, then there exists go with Var,p(go) < 1 and (7' —m)P,, < —1/4/n. Choosing
g = cgo and letting ¢ — oo gives

inf {(71’ — )Py +

0 Varﬂp(g)} = —o0.

1
Vn
On the other hand, if x?(7'P || 7P) < 1/n, then the infimum above is 0 (achieved by g = 0). Hence

inf sup L(m,g) < sup {T(x) = T(x') : \*(x'P || 7P) < 1/n} = d,2(1/v/n),
9 rell ! €l

which proves (8.1). O

8.5.4 Example: Fisher’s species problem

Let Xq,..., X, LLd- p where p is supported on N. Let m = nr, and hypothetically draw
Xi,..., X, L p. Aim to estimate

U:=|{X7,. ., X))\ {X1,..., X} (# of “new” species).

Question. Characterize

* s L = 2
r .—ul%f sgp Ep[n2(U U)]

Answer.
@(1/71), r < 17

*
2

"o {é(n‘m), r> 1.
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8.5.5 Proof of the upper bound (sketch)

First we make some simplifications.

(1) Poissonization. The histograms N, = > | 1(X; = z) ~ Poi(np,) and N, ~ Poi(mp,) are
independent Poisson r.v.s.

(2) Replace by expectation. One can show U ~ EU w.h.p., so it is equivalent to estimate

E[U] = E[Z 1(N, =0, N > 0)] =Y e (1 e,

x

(3) Support size. The support size of p is at most O(n). In this case, let 6, = np, and let
7 := Unif({6,}). Then 1E[U] is equivalent to

Egr[h(0)] = Egur [e ™ — e~ 1H9] 0 p() i= 70 — e~ (F70,
By the previous result (dualizing Le Cam), it suffices to show that for P = Poi,
2 (1/vm) = sup { [Bw RO - 2P| wP) < 1} 5 nminthris,
Let t = 1/y/n. Since x? < 2 implies TV < ¢, we have
so(t) < sup{ | [ A< 181py <1, 18PIy < 1}
where A := 7’ — 7 is a signed measure. To upper bound this quantity we use complex analysis.

8.5.6 Complex analysis bound

Let
fa(z) = / e? A(d6) (Laplace transform)
R+
and
fap(z Z 2™ AP(m (z-transform).
Then

/hdA = /R (e — e M0 A(df) = fa(—=1) — fa(—=1—7).

In addition,

parte)= 3o en [t o - [5G0 aa
— /e(z—l)ﬂ A(df) = fa(z —1).

Finally,
lfa(z)] < / |A](df) <2 for R(z) <0
R4
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Cx _ x
S(h(z) =0 R 55 R(w) = 1

el <Y bl <2
“1—rf fI<2t

Figure 8.1: Conformal map used in the complex-analysis argument (Lecture 8, p. 16).

1%

and

Uar() < 3 12 [AP(m) <2t for | <1

m=0
Consequently,
52 () < sup { 17 (1) = FaC-L =)< I lpguacoy €20 1a ooy < 2]

< s1}p{ P = S =) W oy € 20 1 ooty < 265 f holomorphic on {= : R(z) < 0},

where D —1:={z:|z+ 1] < 1}.
Case 1: r<1. Then —1—reD—1,so

[f(=1) = f(=1=r)| <4t
Case 2: r > 1. Consider the Mobius transformation

w:¢(z)::1+1+T, z:dfl(w):l—'—r.

z w—1

Define g(w) := f(¢~1(w)), i.e. f(2) = g(¢(z)). The map ¢ sends the imaginary axis R(z) = 0 to the
vertical line R(w) = 1, and it sends the circle [z + 1| = 1 to the vertical line R(w) = 15°; moreover
¢(—1 —r) = 0 (see Figure 8.1). Thus g is holomorphic on the strip {w : 5% < R(w) < 1} and

ol =) <2 19l o 15y < 28

By Hadamard’s three-line theorem (evaluated at %(w) = 0),

r—1 9

2 r—1
= =190 < gl g, 1r 19115 gy = OGT).

(Rw=
Therefore
|f(=1=7r) = D[ < [f(=1 =7+ [f(-1)| = O(t% +1) = O(t%), ast=1/yn <1

Combining both cases yields d,2(1/y/n) $n~ min{;, H%}, which gives the stated rates.



Lecture 9: Advanced Fano’s Method

9.1 Covering and packing

Let (X, d) be a metric space and let A C X’ be compact.
Definition 9.1 (Covering / net). A finite set {x1,...,2,} C X is an e-covering (or e-net) of A if
n
AC UB(wi;e), B(z;e) :={y e X :d(x,y) <e}.
i=1
Definition 9.2 (Packing). A finite set {ai1,...,an} C A is an e-packing of A if

min d(a;, a;) > €.
i#]

Definition 9.3 (Covering and packing numbers).

N(A,d,e) := min{n : I e-covering of A of size n}, M(A,d,e) == max{m : 3 e-packing of A of size m}.

9.1.1 Basic relationship

Lemma 9.4. For every e > 0,
M(A,d,2¢) < N(A,d,e) < M(A,d,e).

In other words, up to a multiplicative factor 2 on e, it is equivalent to consider covering or packing
numbers.

Proof. (1) M(A,d,2c) < N(A,d,¢e). Assume for contradiction that M(A,d,2¢) > N(A,d,e) + 1.
Take an e-covering {y1,...,yn} of A with N = N(A,d, ). Also take a (2¢)-packing {z1,...,xn11}
of A. By the pigeonhole principle, two points x, 2’ in this packing belong to the same ball B(y;e) of
the covering. Hence

d(z,2') < d(z,y) +d(@,y) < 2,
contradicting that the set is a (2¢)-packing.

(2) N(A,d,e) < M(A,d,e). Let {ay,...,an} be a maximal e-packing of A. We claim it is also
an e-covering of A. If not, then there exists a € A such that d(a,a;) > € for all i € [m]. But then
{ay,...,am,a} is a larger e-packing, contradicting maximality. O

109
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9.1.2 Bounding covering/packing numbers: a volume bound

Let ||-|| be any norm on R and let
B:={zcR?:|z| <1}
be its unit ball.

Lemma 9.5 (Volume bound). For every e > 0,

' d VO
(i) XZ;E;; < N(A || e) < M(A, || ,e) < (i) l(flv:):((;?)B).

Here A+ (¢/2)B:={a+ (¢/2)b:a € A, b€ B} is the Minkowski sum.

Proof. (Lower bound on N). Let {z1,...,2z,} be an e-covering of A. Then

U (r;;6) = wvol(A) < ZVOI(B(:U,-;E)) = nedvol(B).

=1
Hence
1\ ¢ vol(A)
n>\- .
~— \e/ vol(B)
Taking the minimum over all coverings gives the stated lower bound on N (A4, ||-]|,¢).

(Upper bound on M). Let {ai,...,an} be an e-packing of A. Then the balls B(a;;e/2) are
disjoint, and

" B(ai;e/2) C A+ (¢/2)B

i=1

Therefore
end
vol(A + (¢/2)B Zvol (a;;e/2)) = (5) vol(B),
S0)
d
< 2 VOl(A+(€/2)B).
A\ vol(B)

Taking the maximum over packings gives the claimed upper bound on M (A, ||-||,&). The middle
inequality N < M is from the basic relationship. ]

Example 1.1 (Unit ball). If A= B = {z:|z| <1} is the unit ball under the same norm, then

forall 0 <e <1,
¢ 2\¢  /3\¢
<> <SNA | ,e) < <1+ ) S() .
& &
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Example 1.2 (Gilbert—Varshamov bound). Let A = {0,1}¢ and let the Hamming distance be

d
dy(x,2') = Z {z; # x,}.
i=1
Then for 1 <r <d—1,
24 24
< MAdpr) € —
r d ’ ’ r
im0 (5) S ()

If r = pd and d — oo, then by Stirling approximation,

9d(1=h(p)+0(1)) < M({O,l}d,dH,pd) < 2d(1—h(p/2)+o(1))7
where h(p) = plogy(1/p) + (1 — p)logy(1/(1 — p)) is the binary entropy.

9.1.3 Sudakov minoration

Define the Gaussian width of a set A C RY by

w(A) :=Esup (a, Z), Z ~N(0,1y).
acA

Lemma 9.6 (Sudakov minoration). There exists a universal constant C > 0 such that

w(A) > Csupe \/logM(A, ]l 5 €)-
e>0

Two results used in the proof:

(1) Slepian’s lemma. Let X,Y be centered Gaussian random vectors in R%. If E[(Y; — Y;)?] <
E[(X; — X;)?] for all i, j € [d], then E[max; Y;] < E[max; X;].

(2) Maximum of Gaussians. If X1,..., X, LLd- N(0,1), then

E[max X;| = (14 o(1))y/2logn.

1<i<n

Proof of Sudakov minoration. Let {ai,...,an} be an optimal e-packing of A. Define

.. 2
Xii=(a,2) (Z~NOL)), Vi Yo RN (0,5).

Then for all ¢ # j,
E[(Yi - ¥))2) = €2 < [lai — ;|2 = E[(X; — X;)?].

By Slepian’s lemma and the definition of Gaussian width,

= > P > ;-
w(A) Ecsllelg (a,Z) > Elrgniz%);le > Elrgniz%);ll/;

Finally, using the “maximum of Gaussians” fact with standard deviation £/v/2,

g
E Y; = —(1+ o(1))y/2log m.
[max Y \/5( +0(1))y/2logm

Thus w(A) 2 ev/logm, and taking the supremum over € > 0 yields the result. O



112 Lecture 9: Advanced Fano’s Method

Example 1.3. When A = B; := {z € R?: ||z||; < 1}, then

w(A)=E sup (z,2)=E|Z]|,, < /2logd.

llll, <1

Hence Sudakov minoration implies

Iogd>.

log M (B, |1 .€) = 03

In fact, one has the (nearly) sharp upper bound

d\1+log 73/8)’ e <1/v/d (volume bound is tight),
log M (B, |||y, €) < 2
25 2) <~ Y 1+ log(e®d)

= , 1/vVd < e <1 (Sudakov nearly tight).

9.1.4 Maurey’s empirical method
Let (H, (-,-)) be an inner product space and let T'C H be a finite set.
Lemma 9.7 (Maurey’s empirical method). Let r := inf ey sup,cr || — y|| be the radius of T. Then
for every 0 <e <r,
IT| + [r?/e?] — 2
[r2/e2] — 1 '

Proof. Write T' = {t1,...,t;} and choose ¢ € H such that r = max;cpy, [[t; — c||. Fix any = €
conv(T), so x =Y ;" x;it; with 2; > 0 and ), 2; = 1. Let Z be an H-valued random variable with
P(Z =t;) = x;; then = E[Z]. Let Z1,...,Z, be ii.d. copies of Z and define

_ 1 n
7 = ( ) Z-).
n+1 C+i:1 !

N(conv(T), II]l ,5) < <

Then
= 2 1 2 2
E[Z -« :m<||0—$|| +nEHZ—$||)
1 2 2 7"2
< - E|Z — )< .
_(n—|—1)2<r +nE| el “n+1

(Here ||¢ — z||* < r2 by convexity, and E ||Z — z||* <E||Z — c\|2_§ r? since E[Z] = .
~ Consequently, if n = [r?/e?] —1, there exists a realization of Z such that ||z — Z|| < e. Moreover
Z always belongs to the finite set

1 m m
{ (c—i—Zniti) :n; >0, Zni:n},
n+1 i=1 i=1

whose cardinality is ( ) by stars-and-bars. Thus conv(7") can be e-covered by at most (
points, yielding the claimed bound. O

n+m—1 n+m— 1)
n n

Example 1.3 (continued). B; = conv{+ey,...,+eq} has radius 1. By Maurey’s empirical
method,

27 _ o 2
log V(B [15.6) < tox () 171 7%) —o(FHEED) Ve
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9.1.5 More results without proof
(1) For 0 <p <q<oo,let B, :={xeR?: [lz], <1}. Then

e w s (log(de wr) +1), dY/r<e<,

log N(Bp7 ||||q 75) =p,q {d<logdl/qll/p + 1) €< dl/Q*l/p
— e ) :

(2) Let N(A, B) be the smallest number of translates of B that cover A. There exist universal
constants «, 8 > 0 such that for any symmetric convex body A,

;logN(Bg, §A°> <log N(A,eBs) < flog N(Bg, aaAO),

where

A® = {y s sup (z,y) < 1}
€A
is the polar body of A.
(3) Let H® :={f € C*([0,1]) : Hf(s)Hoo < 1}. Then for any 1 < p < oo,
log N(#*, ||, .€) =p /%,
(4) Let Fp, :={f:1]0,1] — [0,1] : f is non-decreasing}. Then for any 1 < p < oo,

1
10gN(]:m7 ||'”p75) =p g

(5) Let Fe:={f:[0,1] — [0,1] : f is convex}. Then for any 1 < p < o0,

1
IOgN(]:Ca H'Hpag) =p \ﬁ

9.2 Global Fano’s method

9.2.1 Recall the steps of Fano
1. Find a pairwise separated set {fp,...,0,} C © such that for all i # 7,

min[L(6;,a) + L(0;,a)] > 4.

acA
2. Upper bound I(#; X) (or more often I(6; X™)) with 6 ~ Unif{6p,...,0,,} and X | 6 ~ Py.

3. If I(9; X) < 3 logm, then the minimax risk satisfies r* = Q(6).

9.2.2 Step 0: packing via a metric
If there is a metric d(6,6’) such that

min|[L(0,a) + L(¢',a)] > h(d(6,6"))

acA
for an increasing function h : Ry — R4, then a d-packing {6y, ..., 60,,} of © under d satisfies the
separation condition with

A = h(5).
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9.2.3 KL covering

Definition 9.8 (KL covering number). For a family P of distributions and € > 0, let Nxr,(P,¢) be
the smallest integer n such that there exist distributions @1, ... ,Qn (not necessarily in P) satisfying

sup min Dy, (P]|Q;) <
Pepi€[n]

(Note: Dgp, is not a metric; @; appears in the second argument.)

Theorem 9.9 (Entropic upper bound of I(6; X™)). Let 6 ~ m with supp(w) = ©Op, and let
X" |0~ Py". Then

I(0; X") < gg(ne? + logNKL((Pe)eeeo,s))-
Proof. Recall the “golden formula” (Lecture 7):
I(0; X") = min Bg-x [Dki(Py"|Qxn)].
XTL

Let Q1,...,Qn be an e-covering of (Py)geco, under KL, where N = Nx1,((Py)gco,, ). Choose
L X
Qxn =5 D Q"
i=1
Then for any 8 € Oy,

DKL (P®n

ZQ®n) = P®n

i=1

P ]
log —— 24—
N Din Q7"
P
min log Q®n + log N (since Z x; > maxx;)

< ]EP®7L

0 1E€[N]

Py
< min Een {log %} +log N
i

1€[N] 0

= min n Dkr,(P||Q;) + log N
1€[N]

< ne*+1logN.

Taking expectation over 6 ~ 7 and then infimum over € > 0 yields the result. O

9.2.4 A diagram: global Fano
For hyperparameters ©g C © and ¢,§ > 0:

(1) Find a metric d and a function h so that min,c 4[L(0,a) + L(6',a)] > h(d(0,6)), then take a
d-packing of ©¢ under d.

(2) Find an e-covering of (FPy)peco, under KL.

(3) Apply Fano to obtain

r* > @ 1— log NKL((P9)96607€) +ne? + log 2
- 2 IOg M(G(]: d7 5) '

Optimize over (Og, d, ).
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9.2.5 Example 2.1 (Gaussian location model)

Let Xq,...,X, R N (0, I;) with unknown 6 € RY,

Target.
di/r
R R 2 S p < 0,
infsupIEg[HG— 0H | Zp vn
6 0 P log d
y p=00

n

Proof of the lower bound. Choose Oy = {# € R?: ||d||, < r}. Then for any ¢,5 > 0, global
Fano gives

T*

Vv

51— log NKL({N(H,Id)}QEQO,E) +ne? + log 2
log M (O, [|-]l,,, 9)

5 (1 _ log N(Oy, [l v2¢) + ne? +log2>

log M (O, |||, , 9)

since D, (N (0, 1) [N (0, Iz)) = 2110 — ¢']]5.
Choice of . Choose ¢ = r/v/2, so that log N(Og, ||||5,v2¢) = log N(Oy, ||-||5,) = log1 = 0.
Choice of §/r. For p € (2,00) choose §/r = d*/P~1/2, so that log M(Oy, [, ,0) Z d. For
p = oo choose 6/r =< 1, so that log M (O, |||, ,0) 2 logd.
Choice of r. Now we have

? + log 2
- le/p-1/2<101m“02+d0g>, p € (2,00),
rR 1_C'1m“2—|—log2 B
" Cologd )’ p=0c

Thus choosing r = y/d/n for p € (2,00) and r = /(logd)/n for p = oo yields

d/r
= 2 <p<oo,
> Vn
~ logd
, p=o00.
n

9.2.6 Example 2.2 (Nonparametric density estimation)
Let Xq,...,X, R f on [0, 1] with Hf(s)Hoo <1 (i.e., the function space is H?).
Target. For p € [1,00),

ir{fsupEf[HfA—fH ] zn_ﬁ
f feF P
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Proof of the lower bound. Consider H§ C H*® with
o={feH:f>1/20n|0,1]}.

Then for f,g € Hj,
DxL(fll9) < X2(fllg) < 211f —gll5-

Hence

Nr(Hg ) < N(Hg |y ,e/vV2) < N(H [y .6/ V2).
By global Fano, for any €,§ > 0,

s 2
> 1_logNKL( 0,52+n5 + log 2
IOgM( 07”'||p75)

—1/s 2
> 1_6’15 +ne® +log?2 7
025—1/5

by the metric entropy bounds for H§. Choosing & = § < n™%/(2+1) gives r* = Q(n=%/(2s+1)).

9.2.7 Example 2.3 (Isotonic regression)
Let Xy,..., X, BN Px, where Py (known or unknown) has a bounded density on [0, 1]. Conditioned

on X", let V; % N'(£(X;),1) with f € Fpp = {f : [0,1] = [0,1] : f is increasing}.

Target. For all p € [1,00),

inf sup Ef[Hf— fH ] Zp n~1/3.
f feFm P

Proof of the lower bound. Since Px has a bounded density,

1
DxL(Prl|Py) = 5 [|F = £l 2egy = OO £ = 7'l

Therefore

Nt ((P)gerns€) < N (Fus s 575

By global Fano,

>501 = logN(]-'m, H-HQ,s/O(l)) + ne2 +log 2
< logM(fm’H.Hp’(;)

2
25<1_ c1/6+7;j5+10g2>,

using log N (F, [|-[l,, ,€) =p 1/e. Choosing e = n~1/3 and § = n~1/? yields r* = Q(n~1/3).

9.2.8 Example 2.4 (Convex regression)

Same setting as Example 2.3, but with F,,, replaced by

Fe:={f:]0,1] = [0,1] : f is convex}.
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Target. For p € [1,00),

inf sup By [||f - pr] Zpn 7P,

Proof sketch. Similar to Example 2.3, now with log N(F, |-, .€) =<, 1/v/&.

9.2.9 Example 2.5 (Sparse linear regression)

Let Y ~ N(X0,1I,) with fixed design X € R™*9, where all singular values of X are O(y/n). The
unknown parameter 6 € R? is sparse in the sense that

10, < R for some ¢ € (0,1).

Target. For small enough R < f(n,d),

p—qg
. 1 7
inf sup Eg[HQ—HH] 2. RA/P <0gd> "
0 |6ll,<R P n

Proof of the lower bound. 1. {,-packing of B,(R). Let B,(R) := {0 € R%: 10]], < R}. Then

Pq

log M (By(R), [Ill,.0) = <§>,,_q logd  if §> RdY/r1/a,

2. KL covering of P := {N(X0, 1) : ||0]|, < R}. For 0,0,

D (N (X6, L) V(X0 1)) = 1 | X6~ 0)][2 = O(m) 6~ ¢']}-
Hence

log Nk1,(P,¢e) < logN(Bq(R), (RIPY ﬁ)

N
5( . ) logd  if &> Ry/nd'/?7Y4.

Now choose

p—q
e =< i/ RY2(log d)>9/4  § = RUP (logd) ”
n

Then
log M (8) 2 Rin/?(log d)* /2, log Nk1,(e) < €2 < Rin%/?(log d)' ~/?,

and global Fano gives the stated lower bound.

9.3 Special topic: generalized Fano with y?-informativity

Since the proof of Fano is simply DPI, replacing KL. by other f-divergences also leads to meaningful
Bayes risk lower bounds.
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Theorem 9.10 (Generalized Fano with x2-informativity). For § ~ 7, it holds that

P(L(6,X) >0) >1—pg—/po L2(6; X),
where

po = sup7r(L(9, a) < 0) 18 the small-ball probability,

a

and
L2(0; X) == inf x*(Pyx || mp@Qx) = inf Egr [X2 (PX\QHQX)}
Qx Qx

is the x?-informativity.
Proof. Apply DPI to the mapping (0, X) — 1{L(0, X) > 0}:

Pox — 1{L(6,X) >0} and mpQx — 1{L(6,X) >0}
This yields Bernoulli distributions Bern(P(L(6, X) > 0)) and Bern(> 1 — pg). Hence

2(Pox | meQx) > X2 (Bern(IP’(L(H,X) > 0)) H Bern(> 1 — pg))

. (P(L(6,X) > 0) — (1 —po))’
- po(1 — po)

if P(L(6,X)>0) <1-—po.
Taking the infimum over () x and rearranging gives the stated inequality. O

Similarly, we have an entropic upper bound of I,2(¢; X) based on Y2-covering.

Theorem 9.11 (Entropic upper bound for y%-informativity). Let P = (Py)gco and suppose
supp(w) C ©. Then for § ~ ,

. . 2
Le(0;X)+1< g%(l—ks ) Ny2(P, ),
where
N 2(P,e):=min{n: min sup miny?(P i<52}.
(P min {ns min sup min (PIQ) <

Proof. Exercise. O

9.3.1 Example 3.1 (Gaussian model with uniform prior)

Let X ~ N(6,1;) with 6 ~ Unif(Bs2(R)) (denote this prior by ).

Target.
HHEJ > d if R=Q(Vd).

ry = inf ]ngﬂ[
0
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Failure of mutual information. For A € (0, R), the small-ball probability is

) AN?
PA = supﬂ'(HH —all; < A2) = <R) .

For mutual information, the entropic upper bound gives
1(6; X) < inf (log N(B2(R), |1}y €) + =2
e>
3R R
< f( log 2 2) ~ dlog —— .
_égodogg—i-s dog\/g, R>Vd

Therefore Fano gives

dlog &

dlog % + log 2
A>0

ri > sup AZ (1 -
Usually one matches

R R 1 p
dlog — = (1 — p)dlog x — A =d20-» R lfP, for some constant p > 0.

Vd

Thus
i = o(a5 RS — o(d@/R) ™),

which is weaker than Q(d).
Proof using x’-informativity. The entropic upper bound gives
La(6; X) +1 < inf (1+2%) N(Ba(R), |1l , VViog(1 + 7)),
£>

since Y2(N'(0, I;)|N'(0', 1)) = ell'=¢'lz — 1. Using the crude covering bound N(Bs(R), I-ly,m) <
(BR/m)?,

d
. 3R O)R
I200;X)+1<inf(l+¢e?) | ———=| =exp(dlo , R> CVd,
(6 X) + 1 < inf(1 + ) ( = +52>> p(dlog =)
by choosing 1 + &2 = e,
Therefore, generalized Fano gives

2 sup A2 |1- (2)d—\/<2>d-exp<dlog O%R)).

The underbraced term can be made < 1/2 by taking A = ¢v/d for a small constant ¢. Hence
ri = Q(d).

9.3.2 Example 3.2: ridge bandits
9.3.3 Setup and target

Model. ry ~ N (f((0%,a)),1) for 6* ~ Unif(S?~!). Here f: [-1,1] — R is a known increasing
link function with f(0) = 0. Define

9(x) := max{|f(z)],[f(=z)}.
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Target statement. Define a recursive sequence with a large constant C' > 0:

log(1/6 C
g1 = C g(d/ ), €§+1 = €t2 + Eg(é“t)Q.

Then for any interactive learner,

P(|<0*,as)] <eggsforall 1 <s< t> >1—t0.

Remarks.

(1) The sequence {e;} is a pointwise upper bound on the learning trajectory of any algorithm.

(2) The growth 7., — €7 increases with t: interactive learning becomes faster and faster.

9.3.4 Intuition: mutual information is not strong enough
Let I; = I(Hy; 0%) := I(at,r%;0*). Then
Ly — Iy = 1(0%;re | Hy, a441)
< E[ D (W(£((6%, as1)), DIN(O, )] (golden formula)

1 *
= §E[f(<9 aat+1>)2]'
We aim to upper bound this information gain. A key observation is that
(0% ap1) < (075 Hy) = I,

SO ay4+1 is “constrained” in information and we expect (0%, a;11) to be small.
The tempting (but false) intuition is:

I(6%;0) <ds® = |(#*,a)] <ewhp. (%)
If (%) were true, we would get the recursion by the correspondence I; < de?.
However, mutual information is not strong enough to ensure (x): Fano only gives

I(0*;a) + log 2

P(|<0,CL>‘§8)21— cde? )

which is not small enough to apply a union bound!

9.3.5 Proof using y2-informativity

Let
t

By = ({167, a5)] < e}

s=1

Define a slight variant of y2-informativity:
L2 (X;Y | E) = glf X* (Pxy el PxpQy).
Y

Then we can still get

P((0",a)| <e| B) > 1— e [La(0% 0| B) +1.

(For fixed a, P(|(6*,a)| < &) < e~0d=” )
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Key recursion. The crux is to establish:

eg(et)Q

e (0" Hy | B) +1< 5 (IX2(9*;Ht_1 | Epy) + 1). (+)

(Bt | Ei-1)?
If (*) holds, then

; t 89(55)2
L2(0";Hy | E 1< -
et B 1< L g 7oy

R (Zgw

s<t

Therefore

P(Ey1 | Ey) 21— C1€_C°d6?“\/lx2(9*;at+1 | Er) +1

>1 - cre~0%in \/ng(e*; H |E)+1 (DPI)

€1 2 1 2
> 1-— mexp (Cod8t+1 + 529(55) ) .

s<t
The recursion ensures that the exponent is < —code? < —c’log(1/5). Consequently,
P(Ei11) = P(Ey) P(Ew | Ey) > P(Ey) — 0.
Iterating yields P(E;) > 1 — t9.

Proof of (x).

Lo (0% Hy | Ey) +1
P(0*, H; | E;)?

= inf | — 21"V d46* dat drt
Qn, ) m(0*)Qu,(Hy)
< inf / [%Eﬁiﬁﬂ‘g*)ﬂizlps(% | Hoo1) plrs = 107, a:))]” do* da® drt
1 a" dr
T Qmuy_, 7(0%) Qu,_, (Hi—1) pe(az | Hi—1) o(ry)

pe(as | Hi—1) ef (07500 go* dat drt=1,

= inf

/ [%Eiﬁw(@*mi;i ps(as | Hy—1) o(rs — £((6%, as)))]?
7(0*) Qu,_, (Hi-1)

Here we used that the last-step likelihood ratio contributes a factor ef (<9*7at>)2, and on E; we have

F(0%,a))? < g(e)?. Also,
1(E¢—1) 1

Therefore

. e9(et)? .
La(0% Hy | B)+1< < (1X2(0 Hy 1 | Ery) + 1),

(Bt | Er1)?
which is (x).
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Lecture 10: Entropic upper bounds of density
estimation

10.1 Setup and overview

Last lecture: use covering/packing to prove statistical lower bounds via Fano.

This lecture: they can also prove upper bounds.

Density estimation. Let Xi,..., X, i P, where P € P is an unknown distribution. The

target is: for a divergence/distance D € {Dky,, TV, H?}, construct an estimator P= ]3(X ™) such
that

sup Exnpon [D(P, ]3)} is small.
pPepP

Overview of results

e KL (Yang—Barron). There exists P such that

~ |
sup Ep [ Dk, (P||P)] < inf (52 + = log NKL(P,5)>.
PcP e>0 n

e TV (Yatracos). There exists P such that

" 1
2 < 2 -
sup Ep[TVA(P, P)] < inf (e + nlogNTv(P,s)>.

e Hellinger (Le Cam—Birgé). There exists P such that

~ 1
sup Ep[H*(P,P)] < inf (52 + = logNH(P,e)>.
Pep e>0 n

Examples.

1. For finite-dimensional models P with d parameters, usually
1
log Np(P,e) ~ dlog — (volume bound).
€

In this case,

~ Y

1) < dlogn
n

~ d
inf sup Ep[D(P, P)] < inf e? + — log -
n

P PeP €>0 (

usually optimal up to a logn factor.

123
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2. For nonparametric classes P with
IOg ND(Pa 8) = Eida

we have

inf sup Ep [D(P, ﬁ)] < inf

1 2
CRRR
P PeP £>0

ned

10.2 Yang—Barron: progressive mixing / online-to-batch conver-
sion

10.2.1 An “online” guarantee

Similar to global Fano, let Py, ..., Py be an e-covering of P, i.e.
sup min Dk (P||P;) < &2, [N] ={1,2,...,N}.
Pep i€[N]

Let Qxn+1 be the average product distribution:
1 Z 1
QXTL+1 = N .P,L®(n+ )

Lemma 10.1.

sup D, (PP [ Qxner) < (n41)e% +log N.
€

Proof. Similar to global Fano: for any P € P,

P®(n+1)(Xn+1)
& S PP (X

_ P®(n+1)(Xn+1)
< Exnt1pomin Zfél[an} log P-®(n+1)(X”+1)
7

D, (p®(n+1) I an+1) = Eynt1,po(nry) llog

+10gN]

< min Diat (PEOD || PP L log N
1€

< (n+1)e* +log N.

O]

This is called an online guarantee as it concerns the density estimation performance for joint
distributions of X1i,..., X541 X p.

10.2.2 Online-to-batch conversion

Given @ xn+1, we can define

1

n
P(.%') = n+1 ZQXtJ,-l:I‘Xt'
t=0
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Note that P is a well-defined estimator and depends on X". Expanding out the definition of Q) xn+1
gives the progressive mizing form

N
~ 1 - % Zizl (Hsgt Pi(XS)> Pi()
P(z) = 1 Z T~ € conv(P).
n t=0 N Zizl Hsgt Pi(Xs)
The Yang—Barron result follows from the next lemma.
Lemma 10.2. .
Ep [DDKL (PHP)] < mDDKL (P@(n-i—l) H QXn+1) )

Proof.

Ep[Dpy (PIIP)] =Ep

1 n
Dpy,, <P H n4+1 ZQXTrFl'Xt)]
t=0

1 « ‘
< n-+1 ZEP [‘DDKL (P||QXTL+1|X75)] (convexity)
t=0
1
- mDDKL (P®(n+1) | Qxn1) (chain rule).

Remark 10.3.

1. This online-to-batch conversion provides a general paradigm for converting “redundancy”

bounds to prediction risk bounds, even beyond i.i.d. data (see more next lecture).

2. The Yang Barron estimator is often improper (i.e. P € conv(P) but often P ¢ P), and
computationally hard to obtain.

10.3 Yatracos: minimum distance estimator for TV

The TV density estimation result is a corollary of the following general result in the robust case.
Theorem 10.4. Let Xq,...,X, i P, and let Q1,...,Qn be arbitrary candidate distributions.
Then there exists an estimator P such that

log N >

TV(P,P) <3min TV(P,Q:) + &0,  with E[gg]:o( E

1E€[N]

10.3.1 Proof via a minimum-distance estimator

We prove the theorem using a minimum-distance estimator:

P = arg min W(Pn,Q),
Qe{Q1,--.QN}

where

1
Pn:nZ;(SXz
=
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is the empirical distribution, and TV is a pseudo-distance.

(What if TV = TV? If Q1,...,Qn are all continuous distributions, since P, is discrete,
TV(P,,Q;) = 1 for all 7, so it’s not useful.)

Let us defer the choice of TV and proceed to the analysis. Let

Q"= argmin TV(P,Q).
Qe{Q1,--.QN}

Then
TV(P,P) < TV(P,Q*) + TV(Q*, P)

LR, Q)+ TV(Q", P)

< TV(P,P,) + TV(P,, Q") + TV(Q*, P)

< QW(PR, Q%)+ TV(Q*, P) (definition of ﬁ)
< 2TV(P,, P) + 2TV(P,Q*) + TV(P, Q")

hope

=" 9TV (P, P) + 3TV(P,Q").

To make the analysis go through, we need:
1. TV(P,Q) < TV(P,Q) for all P,Q.
2. TV(Qi, Q;) = TV(Q;,Q;) for all 4, € [N].
3. E[TV(P,, P)?] is small.
Motivated by (1)+(2), define

TV(P,Q) = sup |P(4) — Q(A)],

where A = {A;; : 4,7 € [N]} with
Aij = {7 qi(x) = g;(2)}

Verification of (1)—(3).

1. (1) is immediate since TV (P, Q) = sup, |[P(A) — Q(A4)|.

2. (2) is also true since

TV(Qi, Q)) = |Qi(Ayj) — Qj(Ay)| < TV(Qi,Q;)-
3. (3) Note that |A| < (];[), and for fixed A,
P(|P(A) — Py(A)| > ¢) < 2exp(—2ne®)  (Hoeffding).
Therefore, a union bound over A gives

P(ﬁ(P, P,) > ¢) < 2N? exp(—2ne?).
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Consequently,
E[TV'(P, P,)] —/ P(TV'(P,P,) > ) dr
0
< / min{1, 2N%e~2""} dr
0

2 0o
S w +/ 2N26—27LT‘ dr
2n log(2N2)/(2n)

:O<1ogN)_

n

Remark 10.5.
1. The Yatracos estimator is proper, i.e. PepP.
2. The above proof also yields a high-probability guarantee on TV(I3, P).
3. It is known that the constant 3 is not improvable if the estimator is required to be proper.

4. There are some recent interests in computationally efficient versions of Yatracos.

10.4 Le Cam—Birgé: pairwise comparison

10.4.1 Composite hypothesis testing
e Hy: Xq,...,X,, ~P with P e7P.
e Hi: Xq,...,X, ~Q with Q € Q.

Test: T'=T(X") € {0,1}.

Type-I error: sup P*"(T = 1).
pPeP

Type-II error: sup Q¥"(T = 0).
QeQ

10.4.2 A testing lemma in terms of Hellinger distance

‘We use the convention

H(P,Q) = /(@—@2 du,  H(P.Q) = VEXP.Q).

so that HA(P,O) ) ;
1—2:1—2/(\/13_\/5) dﬂz/\/IquM-
Lemma 10.6.
in (}?é% PE(T = 1) + sup Q¥(T = 0)) < exp ( - %H2(conv(77), conv(g))>,
where
H?(conv(P),conv(Q)) =  inf inf  H*P,Q).

Peconv(P) Qeconv(Q)
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Proof. In Lecture 8 we know that
LHS = 1 — TV ( conv(P®"), conv(Q*")),

where P®" .= {P®" : P € P} and TV(P, Q) = infpep geo TV(P, Q). Moreover TV(P,Q) >
$H?(P,Q), hence

LHS <1- %H2(COHV(’P®H), conv(Q®"))
< (1 - %H2(conv(73), conv(Q)))n (next lemma)

< exp ( — gHQ(conv(P),conv(Q))).

Lemma 10.7.

1-— %H2<conv (éﬂ), conv (é Qz)> < ﬁ (1 - %HZ(CODV(Pi),COHV(Qi))).
i=1 i=1

i=1

Proof. Suffices to prove the case n = 2. Note that
Lo
1= H(P.Q)= [ Vpa.

Any Pxy € conv(P; ® Py) can be written as Pxy = Ey [PX|Z.Py|Z] with Py|z € P1 and Py|z € Pa.
Then

L= S (PrrQxr) = [ Vv
—/x\/pqu /ymqumx
= [ vixax (1= 5P Qo)
< /m\/m (1 - %HQ(conv(Pz),conv(Qz)))

since Ey|x[Py|z] € conv(Py)
< (1 — %HQ(conv(Pl),conv(Ql))) (1 - %HQ(conV(Pz),conv(Qg)))

since Ez[Px|z] € conv(P1).

This proves the n = 2 case; the general n follows by induction. O

Remark 10.8. The same proof holds for all Rényi divergences

1
Dy = log / gt
a—1
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10.4.3 A corollary for testing two Hellinger balls

This lemma will be applied in the following setting:
Hy: Xi,...,X,~P, PecBg(Pye):={P:H*PR) <},
le Xla"'aXTLNQu QGBH(Q07€)
Corollary 10.9. If H(Py, Qo) > 4e, then

inf ( sup PO"T=1)+ sup Q%(T = 0)) < exp ( - 215{2(130,@20)).
T \ peBy(Pye) QEBH(Qo.€)

Proof. Since (P,Q) — H?(P,Q) is jointly convex (Lecture 3), both balls By (P, ) and By (Qo,¢)
are convex. Therefore the previous lemma applies once we lower bound

H(By(F, B = inf inf H(P
(Bu(Po,€), Bi(Qo, ¢)) penp 0 oenon o (P,Q)

inf inf H(P, —H(P.P) — H
2 et (H(P0Qu) — H(P.R) — HQ.Qu)
H(P07 QO) — 2¢

H(P(Ja Q0)7

V

v

>

| =

where the last step uses H(FPy, Qo) > 4e. Plugging into the testing lemma yields the claimed
exponent i - (%H(Po, Qo))? = %HZ(P[), Qo). O

10.4.4 Le Cam—Birgé pairwise comparison estimator
Let Pi,..., Py be a maximal e-packing of P under H, i.e.

H(P, P >c,  Vi#].
Since a maximal e-packing is also an e-covering,

sup min H(P, P;) < e.
Pep i€[N]

For ¢ = 4¢ and H(P;, P;) > 0, construct a test T;; for
Hy: Pe BH(PZ‘,E) VS. Hy: Pe BH(PJ',&‘).

By the above corollary, there exists T;; (and Tj; .= 1 — Tj;) such that

sup  P(T;; =1) SGXP<— EH(P%PJV)'
PeBp(Pie) 8

Now define the following estimator.

e For i € [N], let
Vi =max {H(P,, Pj): T;; =1, H(P;, P;) > 6},

with the convention ; = 0 if no such j exists.

e Set P = P, where Q= arg min;enj ¢
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Theorem 10.10. If ne2 > max{log Ny (P,¢,), 1}, then the above estimator P with £ = £, satisfies

sup P(H (P, P) > dten) < Ce ™, Vi > 1.
PeP

Consequently,

sup IE[HQ(P, ﬁ)] = 0(2).
pPeP

Proof. Since {Pi,..., Py} is an e-covering, WLOG assume H (P, P;) <e. For § =4¢ and t > 1,
{H(P,Py) > 10} = {H(P;, Py) > t5}
C {maxfyy v} 218} = {1 218} (r <)
c U Anm=1n

jr H(Py,Pj)>t6
(One of %, and T} > must be 1.) By a union bound,

~

P(H(P, Py) > t6) < N exp ( = %(t5)2> — Np(P,e) e 21

Since ne? > max{1,log Ng(P,¢)}, this probability is at most O(e~*"). Finally,
P(H(P,P)>t) <P(H(P,P)>1t5—¢),
by the triangle inequality H (P, P) < H(P,P) + H(Py, P). O
Remark 10.11.
1. Pis proper, i.e. PeP.

2. A high-probability upper bound on H (]3, P) is established above.

10.5 Refinement via local entropy

It turns out that the global entropy log Ng(P,¢) can be improved to a local entropy log Nio(P, €),
with

Nipe(P,e) == sup supNH(BH(P,n)ﬂP, ﬂ)
PeP n>e 2

(In other words, we are using balls of radius 1/2 to cover balls of radius 7.)
Example. For many d-dimensional families P, we usually have
1
log N (P,e) ~ dlog o log Nioe(P, €) ~ d.

Therefore, using local entropy improves the Hellinger result from O(dlo%) to O(%).

Theorem 10.12. The same guarantee holds for the Le Cam—Birgé pairwise comparison estimator,
with Ny replaced by Nigc.
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Proof. Let 2¢ <t < 21, Decompose

{€[N]: HPL,P) >ty C | A, Ar={j €[N]: 2% < H(P,, Pj) < 2""'5}.
k>¢

By a union bound,
P(H(P,Py) > t6) < P(¢y > t6)
<) P(2F6 <4y < 2116)
k>¢

< Z Al exp (= 5(29)%).

To upper bound |Ag|, since {Py, ..., Py} is an e-packing,

Ayl < M({PeP:2"a < H(P,P) < 25}, <)
< M(By(P,2"78) NP, ¢)
< N(Bp(P,2"8) NP, /2)

< Nioe(P, )", (see lemma below).

Therefore,

P(H(P,Py) > t6) <) exp ((k +4)log Nige(P, €) — 2ne” 4'“) < e ) = ),
k>0

provided ne? > max{1,log Nioc(P, )} O
Lemma 10.13. Forn > ¢,

Ni(Bu(P,29) (P, g) < Nigo(P, )"+,

Proof. Induction on k. The base case k = 0 is the definition of Njo.(P,¢e). For the inductive step,
first cover By (P, 2¥n) NP using balls of radius 2717, then cover each such ball using balls of radius
n/2. Writing Ny := Ny (Bg(P,2Fn) NP, n/2), this gives

Ni, < Ng_1Ny < Nioe(P,€)F Nioe(P, €) = Nie(P, ).

O]

10.6 Special topic: High-probability density estimation under KL

Guest lecture by J. Qian on his recent work on high-probability density estimation under KL.
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Lecture 11: Universal Compression and Redun-
dancy

11.1 Motivation: compressing without knowing the source

In Lecture 1 we saw that for any distribution Px» on sequences " = (z1,...,x,), there exists a
uniquely-decodable code f whose expected length satisfies

Epn [((F(X™)] < H(Pxn) + 1 (bits).

The catch: the code depends on Pxn. In universal compression we want a single code (equivalently
a single distribution Qx») that performs well for every P in some class P.

11.1.1 Warm-up: a Bernoulli example
Suppose X1,...,X, B Ber(p), with unknown p € [0, 1], and alphabet X = {0,1}. Let

n
Ny = nl(Xn):Z]l{Xizl}, Ny = no(Xn):n—N1.
=1

A simple code:

(a) Encode the count Ny € {0,1,...,n} using log(n + 1) bits.

(b) Given Ny, the sequence X" is determined by the set of indices where X; = 1, of which there
are ( v ) possibilities; encode this using log ( ) bits.

Thus
((f(X™) =log(n+1)+log (an)

Taking expectation under Ber(p)®™ gives
N n
E[E(f(X"))] = log(n + 1) + E|log <N >}
1

< tog(n-+ 1)+ nE[f(Ber(vi /)| (1o () < n# (Ben(in) )

<log(n+1)+ nH(Ber(E Ni/n] ) (H(Ber(-)) is concave)
=log(n + 1) + n H (Ber(p)),
where H(Ber(q)) = —qlogq — (1 — q)log(1 — q). So we get a universal overhead of about logn bits.

133
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11.2 Minimax redundancy and sequential estimators

Any uniquely-decodable code induces a sub-probability distribution Q) x» via Kraft:
Qxn(a™) =2V N Qxn (™) < 1.

Then for any distribution Pxn,

n 1
Epgn [((f(X™))] = Epgn [10% m}
The “overhead” relative to the entropy is
1 B Pxn(X")7

Definition 11.1 (Minimax redundancy). For a model class P of distributions over X™, the (expected)
minimax redundancy is

Red(P) = inf supp Dy, (PX“ | QX")'

Qxn Pxne

In many cases Red(P) = o(n) and is often on the order of logn.

11.2.1 Bernoulli model via Laplace and Krichevsky—Trofimov

Let
P = {Ber(p)®" :pe€[0,1]}.

We construct Qxn» sequentially. For a prefix 2! = (z1,...,7;) define
t

ny(z') = Z 1{x; =1}, no(x') ==t —ny(a).

=1

Laplace (add-1) estimator. Define for ¢t > 0,

ny(zt) +1
QXmIXf(1 | xt) = T i12 thmxt(o \ mt) =

(For t = 0 this gives Qx, (1) = Qx,(0) = 1/2.) Then

no(zt) +1
t+2

n—1
Qxn(z") = H Qx,axt (w11 | 2h)
=0

(1-2---ng(x™)(1-2---np(x™))  ny(z™)no(z™)!

2:3---(n+1)  (n+1)!

On the other hand, for any p € [0, 1],

Pxn(z") = p™ @) (1 — p)mol™) < (nl(x”)>n1<x"> (m)(xn))no(xn).

n n
Therefore
Pxn(z™) ny(z™)\m (") rng(z™)\nole") n! .
== < 1 _ = ling).
Qxn(xn) — (n+ )( n > ( n ) ny (z™)! ng(an)! o), (by Stirling)
This implies
Pxn (X"
Red(Qxn;P) = sup Dki(Px»||Qx»)= sup Ep,, [logLn) <logn+ O(1).
PxneP PxneP Qxn(X")
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Krichevsky—Trofimov (add-1) estimator. Now define

nl(xt) + %
t+1
This is the add-3 / Krichevsky-Trofimov estimator. In this case

no(xt) + %

t
QXt+1|Xt(1 |l’): t"‘l

) QXt+1‘Xt (O ‘ xt) =

n—1
Qxn(z H QXt+1|Xt Tepr | @ )
1 1 3 1 3
:7(5'2 (2" %)(5 3 o(x")—%)>
_ (@m@") = D! (2ng(x") — DI
a 2" n)
Moreover,
Pxn(z™) _ 2"n! (m(x”))m(wn)(no(g;”))“O(x") - N
Qxn(27) = 17 2y (@) — DI 2ng(am) — DI O(v/n),  (Stirling).
Therefore

1
Red(Qxn;P) < log(Cv/n) = flogn—i-O( ).
This constant 1/2 turns out to be tight:

Red(P) = % logn + O(1).

11.3 Worst-case / pointwise redundancy and Shtarkov’s theorem

In the previous examples we implicitly used the fact that Red(P) < R*(P), where R*(P) is a
worst-case (pointwise) analogue.

Definition 11.2 (Worst-case / pointwise redundancy).

n
R*(P) = inf sup sup log Pen (@) )
Qxn PynePanexr  Qxn(z™)
Remark 11.3 (Connection to log-loss regret). It is clear that Red(P) < R*(P). Also, R*(P) treats
z" as an individual sequence rather than a random draw.
Let Qxn» = [[}L; Qx,|xt-—1 be a sequential predictor and define log-loss f1og(q, 2) = log -1 e
Then for any individual sequence z™,

logm Zglog QXtXf 1( ’ t_l)vmt)-
Similarly, for any P € P,
1
log ———— liog (P =1 ).
gPXn( ; lg Xi| Xt (- [2") t)
Hence
R*(P) :énf sup{ZElog Qx,xt—1(- | 2'71), xy) —I;Ielgjszg(th\thl(- | xt_l),xt)}.
xmozn t—1

So R*(P) is the minimax regret under log-loss.
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Unlike Red(P), which can be hard to characterize, R*(P) has a clean combinatorial expression.

Theorem 11.4 (Shtarkov sum / normalized maximum likelihood).

* =1 n(z™)).
R*(P) 0g<ﬂ;{ﬂ P Pxn(x ))

The quantity . suppep P(z™) is called the Shtarkov sum.
Proof. (Upper bound.) Let

. 1
Z = Z sup Pxn(2"), Qxn(a") = - Sup Pxn (™).
x'rLeXnPX"EP Pan’P

This Q* is the normalized maximum likelihood (NML) distribution. Then

xn (™)
sup suplog ——= =log Z,
PxneP x™ QX”( )
so R*(P) <log Z.
(Lower bound.) For any @Qxn,
Pxn(a") xn (@) o (2")
sup sup log = sup sup (log )
Pep an Qxn(z")  pep an an( ") an( ")
5 (2")
= log Z + sup log Xi
‘T’ﬂ QXTL (;En)
QXn( ")
>log Z + Q%n (™) lo
=log Z 4+ Dkr.(Q%||Q@xn») > log Z.
Taking the infimum over Qxn gives R*(P) > log Z. O

11.3.1 Example: time-homogeneous Markov chains
This combinatorial nature of R*(P) makes it easy to upper bound Red(P) for non-i.i.d. families.

Example 11.5 (First-order Markov chains). Let

n—1
P ={Pen = plar) [] Maer | 20)}

t=1
be the class of all time-homogeneous (first-order) Markov chains on state space [k] = {1,...,k}.
Claim 11.6. Wk 1

Red(P) < kk = 1) logn + Og(1).
Proof. Apply the add-% estimator to each row of the transition matrix. Define, for 2t = (z1,..., 1),
t—1 t—1

njsie') =Y Has=j, zen =i}, ni(ah) =) Ha,=j}.

s=1 s=1
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If 2y = j, set
. n‘—>z‘(517t) + %
Q (i oty = L2 L2
Xt+1‘X ( | ) n](xt) +%
Then for any 2™ € [k]",

PXn .'L'n

$1 M (441 ] 7)
Oxn(a H 11

= -1y Qx| xt(Teg1 | 2t)

It_]

For each fixed j, the inner product behaves like a k-ary i.i.d. model and contributes a factor
O(y/n)*~1 by the i.i.d. analysis. Hence

PXn (l’n)
Qxn(z")

Taking logs and using Red(P) < R*(P) yields

Red(P) < B*(P) < log (k(C/m)ks-1) = ME—1)

logn + O(k?).
O

The same approach can be extended to other processes such as hidden Markov models (see, e.g.,
Gassiat (2018)).

11.4 Redundancy bounds for i.i.d. families
11.4.1 Entropic upper bound
By the global Fano proof (Lecture 9), we have the following entropy/covering-number upper bound.

Theorem 11.7 (Entropic upper bound).
Red(P®") < inf (ne? + log Nict, (P ) ).

Example 11.8 (Parametric families). If P = (Py)gcpa is a d-parameter family, typically log Nk1,(P,€) <
dlog(1/¢e). Choosing ¢ < \/d/n yields

Red (P¥") < glogg +0(d).

11.4.2 A variational formula: redundancy—capacity theorem

We begin with a variational representation of Red(P).

Theorem 11.9 (Redundancy-capacity theorem). Let P = (Py)pco. Then

Red(P) = sup I(6;X), where 0 ~ p, X | 0 ~ Py.
pEA(O)

The quantity sup, 1(0; X) is the capacity of the “channel” 0 — X with law Py.
p
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Proof. The “golden formula” for mutual information (Lecture 7) states
I1(0; X) = gle9~p [DkL(Pl|Qx)]-
X

Therefore

sup 1(9; X) = sup glf EQNP[DKL(PQHQ)()]
X

p P
= inf sup Eg.,[ Dk, (FPs]| @ x)] (minimax theorem)
X p
= inf sup Dk, (P @x) = Red(P).
@x geo

11.4.3 Rissanen’s lower bound

Rissanen’s program: find an estimator é(X ") such that

sup By [[|0 — 6(X™)|1°] < 2.
SC)

Theorem 11.10 (Rissanen). Let © C R? have non-empty interior. Then

2

Red (P®™) > log Voly(©) — glog<2ﬂzgn).

Proof. Let 6 ~ p = Unif(©), and let h(-) denote differential entropy on R?. Then
I(0; X™) = h(0) — h(0 | X™) =1log Voly(©) — h(0 | X™).

Moreover,

RO | X™) =h(6—0(X™) | X™) < h(6—0(X™)) (conditioning reduces entropy)

1 A R
log(2me) + B log det (E (0 —6)(6— H)TD (Gaussian maximizes entropy for fixed covariance)

h
d
2
d d, (E[6—6(X™)|> LT o (A
< 5 log(2me) + ilog(f> (det(A) = ]_:[)\Z < (T) )
d
2

By the redundancy—capacity theorem, Red(P®") > sup, I(0; X™), so the claim follows. O

Example 11.11. In parametric families, typically Vols(©) = Q((l/n)d/2) and €2 = O(d/n).
Therefore Rissanen’s bound gives

d n
®n e o
Red (P®") > 2log 7 O(d).
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11.4.4 Haussler—Opper lower bound
The argument of Haussler & Opper (1997) chooses p to be a uniform mixture p = ﬁ Zf\i 100

Lemma 11.12. For X | ~ Py and 0 < X\ <1,

Py (X )\
I1(0; X) > —Ep x [logE0/<P09((X))) }7
where 0" is an independent copy of 6 (so ¢ 1L (0,X)).
Proof. Let
Py (X)\*
FON = —Egx [1ogE9,(]j€((X))) }

Then f(1) = I(0;X). Since cumulant generating functions are convex, f is concave in \. A
calculation gives

J'(N) = Eg x[log Py(X)] — Eg,x Eor [Py (X)*]

Ey [Py (X)* log Py (X)] ]

At A =1,
E E@/ [PQI(X) log Pgl (X)} . E fp(@’)ng (X) log Pgl (X) dH’
U EB@] ] Te@) R (X)de
// z)log Py(x) df df’ dz: = Eg x[log Py(X)],
so f'(1) = 0. By concavity of f, for A < 1 we have f’(\) > 0, hence f(A\) < f(1) = I(0; X). O

Theorem 11.13 (Haussler-Opper).
ne?
Red(P®”) > sup mm{ , log My (P, 5)} —log 2,
e>0

where My (P, €) is the e-packing number of P under Hellinger distance.

Proof. Let Py, , ..., Py, be an e-packing of P under Hellinger distance, and take p = % Zf\i 196
Apply Lemma 11.12 with A = £ to (X" | 0) ~ PS™:

Qn( xn
I(0; X™) > — Al/[i:Ep@n log<M g(imi n;>1/2)]
M ®n
> —]\:E[Z (MZEP(;@TLK;HE;(;)UQ}) (x — —logx convex).

=1

The inner expectation is the Hellinger affinity:

Epgn[(;n 1/2 /,/dP®“dP®” /1/dP9 dPg ( (P(;Pe’))"
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Since the family is an e-packing, H?(Py,, Py,) > 2 for i # j, hence

Therefore
n 1 —ne2/2 : n€2
I(0; X") > —log( — + ¢ >2m1n{10gM, 7}—log2,

using the elementary inequality % + 7 < —= 2a’b}. Finally, by redundancy—capacity, Red(P®") >

sup, I(0; X™). O

E
=]
—~|

Example 11.14 (Parametric families). If typically log My (P,e) < dlog(1/e), then the Haussler—

Opper bound gives
n

d
p@n > _
Red(P™) 2 2 log Cdlogn’

11.5 Redundancy and prediction risk

Definition 11.15 (Prediction risk). The (next-symbol) prediction risk under KL is

RISkn(P) = inf sup prn [DKL (PXn-H\X" H QXn+1|X")] .
an+llxn PXn+1 eP
11.5.1 Mutual-information representation

IfP= (Pg)geg, then

Risk,(P) = sup I(0; Xp+1 | X™), 0~p, X|60~ Py
pEA(O)

Proof.

RlSkn (P) == 1nf sup ]E@Np [DKL (PXn+1|X",9||QXn+1\X”)]

Qxppnxn

=sup inf Eg,[Dky (PXn+1|Xn79||QXn+1‘Xn)j| (minimax theorem)
p Qxpyiqlxn

=sup (6 Xn41 | X").
p

11.5.2 Redundancy-risk inequality

Let Red,,(P) denote the minimax redundancy for sequences of length n. Then
n—1
Red,(P) <) Risk(P).
t=0

Proof. By the chain rule for mutual information,

n—1

1(0; X") = ZI(QS Xe1 | XP).
=0



11.5. REDUNDANCY AND PREDICTION RISK 141

Taking sup,, of both sides gives

|
—

n
sup I(0; X™) <
P t

Using redundancy—capacity, Red,(P) = sup, I(6; X"). O

n—1
sup 1(0; X¢y1 | X') = ZRiskt(P).
P t=0

i
o

Remark 11.16 (Tightness for i.i.d. parametric models). For i.i.d. P®" with © c RY, the MLE 6,
based on X! typically satisfies

d
Eg [ DL (Pl Fy,)] ~ %

so Risk; ~ d/(2t) and Red,, ~ (d/2)logn ~ ;" ; Risk;.

(Wilks’ theorem),

11.5.3 Online-to-batch conversion for stationary processes
Assume each Pxn+1 € P is stationary, i.e.

Pth,m,th = PXt1+t0:--~7th+tO for all £g > 0.

Then )
Risk, (P) < ERed(P) + Mem(P),

where the memory term is

1 n
Mem(P) := sup — ZI(X,,LH;X”_t | X0 1)
Pynt1€P M
Proof. Let Qxnt1 = H?;rll Qx,|xt—1 attain the minimax redundancy Red(7). Choose a Yang-Barron

type predictor

~ 1 <&
an-ﬁ—l‘X"(' ’ Xn) = E ZQXt+1‘Xt(' ‘ Xﬁ*tﬁ*l)
t=1
Then, by convexity of KL,

Py, yjxn (Xng1 | X™)
QXt+1|Xt (Xn+1 ’ X;Ll*t+1)

~ 1 &
Epyn [DKL (Px,oqpxn |l QX,,L+1|Xn)] < - ZEPXn+1 [log
=1

Split the logarithm:

Px, o xn(Xpg1 | X7) B Pxn+1|Xg_t+1(Xn+1 | X ti1) P, ixn (Xpg1 | X7)

log + log

Taking expectation, the second term becomes I(Xy11; X" " | X7, ;) (by stationarity). Hence
~ 1 &
Epyn DKL(PXn+1|X" HQXn+1|X”)] < n ZEPX” [DKL(PXt+1|Xt HQXt-»-l\Xt)] + Mem(P)
t=1

1
< — D1, (Pxn+1||@Qxn+1) + Mem(P) (chain rule)
n

IN

%Red(?) + Mem(P).

Finally take suppcp and infg to match the definition of Risk, (P). O

QXt+1\Xf (Xn+1 | Xg—t-i-l) B QXt+1|Xt(Xn+1 ‘ X;;L—t-i-l) PXn+1|X:{_t+1 (Xn—i-l ‘ Xg—t+1)'
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Example 11.17 (Markov chain prediction). Let P be the class of stationary Markov chains on [k]
of length n 4+ 1. Then

Red(P) = O(k*logn), Mem(P) = sup lI(XnJrl;X") < Ing,
pPep N n
S0 121
. B ogn
Risk, (P) = 0( = )

A surprising feature is that this upper bound does not depend on the mixing property of the Markov
chain. A purely statistical proof of this upper bound is unknown without mixing conditions. This
bound is tight for 3 < k < y/n.

11.6 Special topic: characterizing R* in Gaussian models (Mour-
tada, 2023)

Consider the Gaussian shift family
Pa={N(0,I;): 0 A}, AcCR

We use the facts

Dt (N O 1) | N 1) = 516~ '3, [ VaNTO, 1) aN(O" T = exp(~ 0 - ).
By the entropic upper bound and Haussler—-Opper lower bound, one obtains the characterization
Red(Pa) < Tigg(log N(A, [ |l2,7) +7%).
The main result of this section is an analogous characterization of R*(P4):
RE(Pa) = inf (log N(A, | l2,7) + wa(r)),
where w4 (r) is the local Gaussian width

wa(r) =supw(ANB(0,r)) = supE{ sup <w,Z>}, Z ~N(0,1y).

fcA 0cA  ‘weAnB(6,r)
Remark 11.18 (Alternative representation). Let
rn =sup{r > 0:1og N(A,| - [l2,r) > r2}, rw = sup{r > 0:wa(r) > rz}.

Then
Red(Pa) < 1%,  R*(Pa)=<ri +715.

11.6.1 Example: ellipsoids
If

R

Ny
A:{OeRd:Za: 31},
=1

N

then

Red(Py) = g)( S log% + 7«2), R (Pa) = inf (Zd; 1og(1 + Zi) + r2).

iia;>2r
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11.6.2 A key lemma relating R* and Gaussian width

The proof hinges on the following lemma.

Lemma 11.19. Let w(A) = E[sup,c4(u, Z)] denote the Gaussian width. Then

11.6.3 How the lemma implies the covering/width characterization

Upper bound on R*. First observe the simple inequality: for families Py,..., Py,

N
R* <L:J1 Pi> < max R'(P,) + log .

Indeed, if Q; attains R*(P;), then Q = % Zi\il @; attains the stated upper bound.
Now take an r-covering 61, ...,0x of A under || - ||2. Then

R'(Pa) < max B (Panse,n) +log N

< m%w(/l NB(b;,r)) +log N (by Lemma 11.19)
1€
< wa(r) +log N.

Lower bound on R*. First, R*(P4) > Red(Pa) > r% (by the Haussler—Opper lower bound).
Second, for r = r,, and any 6 € A,

2
R*(Pa) > R*(Panpo,)) = w(ANB(O,7)) — % (Lemma 11.19 and translation invariance).

Hence R*(Pa) > wa(r)—r?/2 > r?/2 at r = r,,. Combining these bounds leads to R*(P4) =< r3,+7r2,.

11.6.4 Proof of Lemma 11.19
We first write out the Shtarkov sum.

Lemma 11.20 (Shtarkov sum for the Gaussian shift family).

* _ 1 1 2 3
R*(Py) = log/Rd Wexp<—2d(x,A) >dac, d(z, A) = ylgfl |z — yllo.

Proof. This follows directly from Theorem 11.4 by computing supyc 4 @a(z — 6), where pg(u) =
(277)_‘1/26_”““5/2 is the N(0, I;) density. The supremum over # occurs at the closest point in A,
producing the distance term. O

Using an auxiliary Z ~ N(0, 1),
1 1 2 o 1 2 i 2
/Rd @n)ir exp(—fd(m, A) ) dr =FE _exp<2(||Z||2 dist(Z, A) ))}

2
- 7 2 7 — 2
_ exp(Sup<|| 15| ngm
L weAN 2 2

— E|exp(sup((w, 2) — $[wl3))].

wEA
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Denote
f(2) = sup ((w, 2) = §lwl3), v =N(0,1a).

wEA

Then Lemma 11.20 becomes R*(P4) = log Ez.,[e/?)].

Lower bound.
logE[e/(?)] = logE[exp(Sup((w, Z) - %H’wH%))}
weA

1
> log E |exp(sup (w, 2)) | = 5 sup [[w3
weEA weEA

1
> E[sup(w, Z>} — — sup ||wl||3 (Jensen)
wEA 2 weA

1
= w(A) — > sup [[wlf3.
2 weA

Upper bound. By Gibbs’ variational principle,

108 Eufe! 7)) = sup{ Bzl (2)] ~ Dic () |

Using Talagrand’s Ty inequality for v = N(0, 1), W3 (i, v) < 2Dkp(ul|v), we get
1
log Bz~ [/ ?)] < sup{ Bz, [(2)] — S Wa(u,v)}.
m

By Kantorovich duality for quadratic cost, W3 (p, v) = sup,{E,g+E, g}, where g°(2) = inf, {1||z—
z||3 — g(z)}. Thus

log Bz, lef (9] < sup{EM[f(Z)] —sup(E,g + E,,gc)}
w g

< Bz [sup(f(2) — Sz = Z1)].
On the other hand,

1 1 1
sup( () = 5 llz = 2I13) = sup sup ((w,z) — = Jwll§ — - |l — =I13)
T 2 Tz weA 2 2

= sup(w, z).
weA

Therefore

log Bz [ef @] < E[sup (w, Z)] — w(A).
wEA

Combining the lower and upper bounds proves Lemma 11.19.

11.6.5 Alternative proof of the upper bound via convex geometry (Mourtada,
2023)

(An alternative proof in (Mourtada, 2023), using convex geometry.)
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Definition 11.21 (Mixed volume). Let K7, ..., K, be convex bodies in RY. Write

Volg(M K7 + - + M K;) Z V(K KNy Ny
.717 7.]d 1

The quantity V (K, ..., Kj,) is called the mized volume.

Definition 11.22 (Intrinsic volume). Let B C R? be the unit Euclidean ball. For j € {0,1,...,d},

define
V(K,...,K,B,...,B)

= (£

J Kd—j

where k,, ‘= #2/11) is the volume of the unit ball in R™.

Theorem 11.23 (Steiner formula).
Volg(K +tB) = Zvd ;

Theorem 11.24 (Alexandrov—Fenchel). For convez bodies K1, ..., K,
V(K1, Ko, Ks, ..., Kd)2 > V(K1 K1, Ks,...,Kq) V(K2 Ko, K3, ...,Ky).

Remark 11.25 (A corollary). By choosing (Ki,...,Ky) = (K,B,K,...,K,B,...,B), we get
i—1 d—j—1
J- —j—

FViI(K)? > (j+1) Vi1 (K) Vi1 (K).

In particular,

Back to the proof of the upper bound. Since R*(P4) < R*(Peonv(4)) and w(A) = w(conv(A)),
we may assume without loss of generality that A = K is convex. Then

/ exp(—%d(x,K)Q) dr = /OO V01d<{x eR?: 6_%d(x’K)2 > t}) dt

0

/ Vol ({z € R : d(z, K) < r}) re 12 dr
0

Volg(K + rB)re™""/% dr

o d
ZVd j m]rjre /2 gy
Jj=0

S— S—

Vaj(K) (2m)/2,

Il
.M&

<
Il
o

where we used [;° 1/t e /2 g = 2]/2F(% 1) so that ; [;° ritle=m?/2 gr = (27)i/2.
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Therefore,
R*(Pk) = log/Rd (2m) 172 exp<—2d(x,K) )dx
d d K
=log Y V;(K)(2mr)/? =1 Vi(—=).
5 D Vi(K) (2m) 9 = log Vi ()
7=0 7=0
The last quantity is called the Wills functional. Using the corollary above,

Vl(Ké@ < logexp(Vl(K/\/%)) = VZL(K/\/%) = w(K).

d
R*(Pg) <log»
§=0

This recovers the upper bound in Lemma 11.19.



Lecture 12: Strong Data Processing Inequali-
ties

12.1 Recall: DPI and SDPI

We recall the standard data processing inequality (DPI) and its “strong” variant.
Consider a channel Py |x, and two possible input distributions Px and Qx. Let the induced
output distributions be

Py = Px Py x, Qy = QxPy|x.

Px ~ Py|x > Py

T

Qx Qy

The (relative-entropy) DPI states

Dk (Qy || Py) < Dki(Qx || Px).

A strong data processing inequality (SDPI) is a contraction version:

Dk (Qy || Py) < n(Pyx) DxL(@x || Px)  for some n(Pyx) < 1.

12.2 Input-independent SDPI

12.2.1 Definition

Definition 12.1 (Input-independent SDPI constant). Given a channel Py|x, define

Dx, (QY | PY)
Pyix) = '
n(Py|x) Pyr0x Dri(Qx | Px)

12.2.2 Mutual-information characterization

Proposition 12.2. For any channel Py x,

(Pyix) I(U;Y)
= su ey ————
K YlX U_XIin(U;X)

147
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Proof. We prove both directions.
(>) Fix any Markov chain U — X — Y. Recall the identity

1(U3Y) = By | Dt (Pyw | )

By the definition of 5(Pyx), for each u we have
Dxr (Pyw=u | Pr) < n(Pyx) DL (Pxjv=ull Px),
and therefore
I(U;Y) =Ey [DKL(PY\U [ PY)} <Ey [W(PY|X) Dxr (Px || PX)} =n(Pyx) I(U; X).

Hence I(U;Y)/1(U; X) < n(Py|x), and taking the supremum over U—X—Y yields sup;y_x_y I(U;Y)/I1(U; X) <
n(Pyx)-
(<) Choose U ~ Bern(p) and two (fixed) distributions Py, Qx. Set
Pxjy—1=Px,  Pxy—o=Qx, Px=pPx+(1-p)Qx.
Then
I(U; X) = Ey [DKL (Px | PX)}
= pDKL(IBX | pPx + (1 — P)@X) + (1 —p) DkL (@X | pPx + (1 —p)éx)-

Differentiate at p = 0 (this is the step shown in the notes):

L1wix)| = DByl Gx) + Es, [PX@_QX} = Dk (Px || @x)-
X

dp

p=0
Hence - ~
I(U;X) :pDKL(PX || QX) + 0(p)'

Let ]3y, @y be the corresponding output distributions induced by ﬁx, é x through Py |x. By the
same reasoning,

1(U:Y) = p Dxr(Py || Qy) + o(p).

Therefore,
I(U;Y) R DKL(ﬁY | Cjy)
I(U:X)  Dxu(Px | Qx)

Taking a supremum over Py, Qx gives n(Pyx) <supy_x_y I(U; Y) /I(U; X). O

asp — 0.

12.2.3 Binary reduction
Proposition 12.3.

Dy (Qy || Py
n(Pyix) = sup ( ),
Px.Qx binary Dxr(Qx || Px)

where “binary” means Px and Qx are supported on at most two points of X.
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Proof. 1t suffices to show that for any v > 0 and any pair (Px,Qx), defining
f(Px,Qx) = Dkr(Qy || Py) — v Dx1(Qx || Px),

we can always find binary distributions (Px, Qx) such that f(Px,Qx) < f(Px,Qx).
To prove it, consider the map

PHf<P QfXP) ZDKL(PY|X'Q7Xﬁ||PY\X'13) *'YDKL(QixﬁHﬁ)'
PX PX

This map is convex over the set

{ Z ;” _1,%:13(33):1}.

When P = Px, its value is f(Px,®@x). A maximizer P* of a convex function over this polytope
must lie at an extreme point. Extreme points here correspond to distributions supported on at most
two atoms (hence binary). Letting Q X = QX PX gives the desired binary pair. O

12.2.4 Characterization via Le Cam divergence and Hellinger diameter

Proposition 12.4.

n(Pyix) = sup LCuax(Py|x=s> Py|x=s)
z,x'eX

where

3 (r—q)°
LCmax(P7 Q) T oilﬁllzlﬁ(l N 6) / m ¢ ’

and p,q are densities of P,Q with respect to a common dominating measure . In particular, if

diam?; (Py|x) = sup H*(Py|x—s, Py|x=o),
r,x'eX

then .
1. . diamy; (Pyx)
§dlam12ﬁI(PY|X) < n(Py|x) < diam¥ (Py|x) — 1 oty

Proof. The first claim (the Le Cam characterization) follows from the binary reduction above and
explicit computations for binary input distributions; see the textbook for details. We prove the
stated Hellinger bounds.

Lower bound. Fix two distributions P, Q (with densities p, q). For = 1/2,

1 f(p—q? , 1 [(p—0q)?
LCmax(P, Q) > 4/(p+q)d,u,—2/p+qd,u.

Now note that (p — ¢)* = (/b — V@) (vP + vO)* > (VP — V2)*(p + q). Hence

2
5 [ ez g [ va? an = 3P.Q).

P+q

Taking the supremum over z,z’ yields n(Py|x) > %diam%{(Py‘ X)-
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Upper bound. For any 0 < 8 < 1, one can check the identity

TR B R’ M W N .
t-ha ﬂ)/(l—ﬁ)wﬁqd”_/(l—ﬁ)erﬂqd”'

Using Cauchy—Schwarz,

L I

B)p+ Bq B)p + Baq J((X=B)p+Bqg) d
Therefore ( 2
_ _Ww—9

50-5) | -y v <1 </\ﬁd"’>'

Since H*(P,Q) = [(P — va)*dp =2 —2 [ \/pq du, we have [ \/pg dp=1— H?*(P,Q)/2. Thus
LCu(P.Q) <1 (1= DY ppep gy - D)
2 4

Taking the supremum over z,z’ yields the desired upper bound for n(Py|x). O

12.2.5 Examples and tensorization

Example 12.5 (Erasure channel). Let ECys be the erasure channel with erasure probability 4, i.e.

Y=X, wp. 1-09,
Py x =
Y =" w.p. 4

Then (as shown in HW1) for al U — X - Y,
I(U;Y) = (1= 8) I(U; X).
Therefore, n(ECs) =1 — 9.

Example 12.6 (Binary symmetric channel). Let BSCs be the binary symmetric channel with
crossover probability §: X € {0,1} and ¥ = X & Bern(6). In this case,

_ (1 —26)? (1 —26)?
LCmax(Prix=o: Prix=) = sup S(1-F) ((1 “A) -6+ (1-B)s+ B 5))
= (1—26)* sup AU~ F)

se(,1) (1= B)(1—0)+B6)((1—B)d+B(1—9))

Let A=(1-p5)1-6)+p6, B=(1—-p)d+ B(1—-6). Then A+ B =1 and one can compute
AB =§(1—-6)+ (1 — B)(1 — 26)%. Hence

AB — (1 - B) = 8(1 - 8)(1 - 48(1 - 8)) >0,
so B(1 —B)/(AB) < 1, with equality at § = 1/2. Therefore
n(BSCs) = (1 — 26).
Example 12.7 (Tensorization bound). For the n-fold product channel, one has

(P;?&) <1-(1- U(PY|X))H-
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Proof. Let U — X" —Y™. Write Y™ = (Y1,Y5"). Then

(U Y") = 1(U;Yy') + I(U; Y1 | Yy')
(U YZ) Py|X) (U, X1 ’ an)
= (1 —n(Pyx) I(U;Y3") +n(Pyx) I(U; X1,Y3")

(1= n(Pyx)) I(U;Y3") +n(Pyix) I(U; X™).

\ /\

IN

Iterating this decomposition gives

|
—

w <n(Pyix) ) (1 =n(Pyix))" =1 — (1 —n(Pyix))"

-
Il
o

Taking the supremum over U — X™ — Y™ proves the claim. ]

Remark 12.8. (A general result recorded in the notes.) In a Bayesian network, suppose each vertex
v is declared “open” with probability n(PXU|pa(v)). Then for S a set of vertices,

n(Pxg¢|x,) < P(there exists an open path from 0 to some vertex in ),

which is a “percolation” probability from 0 to S.

12.3 Input-dependent SDPI

12.3.1 Definition

Definition 12.9 (Input-dependent SDPI constant). Given a channel Py |x and an input distribution
Py, define

Dk (Qy || Py)
Px, P =
n(Px, Y\X) Sélx DKL(QX ||PX)

12.3.2 Properties
Proposition 12.10. (1)

(Py. Pyix) = I(U;Y)
, sup  ———=-.
nx, Fy|x nyf(UX)
(2) (Tensorization)

n(Pg, P;@&) =n(Px, Py|x)-

Proof. The mutual-information characterization is analogous to the input-independent case. We
prove the tensorization statement.

By induction, it suffices to prove the case n = 2. Let U — (X1, X2) — (Y7, Y2) under the product
channel. Then

I(U;Y1,Y2) = I(U; Y1) + 1(U; Yo | Y1)
<n(I(U; X1) +I(U; X3 | V1)),
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where 1 = n(Px, Py|x) and the second inequality uses that (U, Y1) — Xo—Y5 and Px,y; = Px, = Px.
Now expand

IU; X2 | Y1) =1(U; X | X1,Y1) +I(X1; X2 | V1) — I(X1; X2 | Y1,0)

IU; X5 | X1)+0—-1(X1;Xs | Y1,0)
SI(UyXQ | Xl)a

where (X 1; Xo | Yl) = 0 because X is independent of (X7, Y7) under the product input. Therefore,
I({U;Y1,Y2) <n(I(U; X1) + I(U; Xo | X1)) =n1(U; X1, Xa).

Taking the supremum over U — (X1, Xa) — (V1, Yz) yields n(Pg?, Pf}’lQX) < n(Px, Py|x)- The reverse

inequality is immediate by restricting to product auxiliaries, hence equality holds. ]

Remark 12.11. Unlike n(Py|x ), the input-dependent SDPT constant n(Px, Py|x) can be much more
challenging to characterize. An example is when Py |x is the transition matrix of a Markov chain
and Py = 7 is its stationary distribution. Then SDPI implies (for all initial distributions )

Dy, (7‘(’0Pn I 7'[') = Dk (TrOP" I WP”) < n(m, P)" Dk, (7r0 I 77).

This is called the modified log-Sobolev inequality and leads to upper bounds on mixing times; both
tasks can be challenging for general Markov chains.

12.3.3 Example: jointly Gaussian pair

Let (X,Y) be jointly Gaussian with zero mean and covariance

(1)

n(Px, Py|x) = n(Py, Px)y) = p*.

Proof. We only prove the upper bound n(Px, Py|x) < p?; the notes indicate a matching lower
bound is obtained later.

Claim 12.12.

Step 1: scaling. By scaling, we may assume

Y =X+7Z, Z~N(0,p2—1), X ~ N(0,1), Y ~ N(0,p72).

Step 2: relate KL to entropy and second moment. For any random variable XandY = X+2Z2 ,

VIT P
Dic.(Py || Py) = —h(¥) +log *= + - B[V

V2 2
T PRy,
p 2

1 ~
< D) log (27‘(’6(,0_2 -1+ th(X)> + log
where the inequality is the entropy power inequality (EPI) applied to Y =X+ Z. Also

~ 1. ~
Dxr,(Pg || Px) = —h(X) +log V27 + §IE[X2].
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Step 3: rearrange. Using h(X) = log V27 + %E[)ZQ] — Dk (Pg || Px), we have

th(X) = 27 exp (]E[)N(Z] — 2DKL(P)Z ” PX))

Substitute this into the previous bound, and use E[Y?2] = E[X2] + (p~2 — 1). After simplifying (this
is the algebra shown in the notes), we obtain

1 ~ 2
D (Py || Py) < =5 log (1= p? + p? exp (E[X?] — 2Dicr. (Pg || Px) — 1)) + 5 (ELX?) - 1).

Step 4: concavity of log. Using concavity of log, for x > 0,
log(1 — p? + pz) > p*logx (equivalently, log(1 — p + px) > plogx).

Apply this with z = exp(E[X?] — 2Dk, (Pg |l Px) —1):

Dii(Py || Py) < —%(E[f(z] — 2Dk (Py || Px) — 1) + %(E[f(?] —1)

= p2 DKL(P)? H Px)
This shows the KL contraction factor is at most p?, i.e. n(Px, Pyx) < P2

Lower bound via another SDPI constant. The notes introduce the y2-based SDPI constant

2
X (Qy || Py)
Ny2(Px, P, =Sup 50—,
e (P Bri) = s oo 1Px)

with the following properties:
(1) ny2 < n (KL dominates x? in this SDPI sense).

(2) ny2 = 02(M)?, where o1(M) > g2(M) > --- > 0 are the singular values of

PX,Y(xa y)

My, = ——X 08
7V Px(z)Py(y)

(3) /M2 equals the maximal correlation between X and Y

sup corr = su Cov(g1(X), g2(Y))
91,gp2 (91050, 2(Y) 9179p2 \/Var(gl(X))Var(gg(Y))'

(4) In Markov chains,
X2 (moP™ [|m) < nya(m, P)" x*(mo [|m),

which is Poincaré’s inequality.

By (1) and (3), for a jointly Gaussian pair (X,Y), n > 7,2 = (maximal correlation)? = p?. Combined
with the upper bound, this yields n = p. O
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12.4 Applications of SDPI

12.4.1 Example 1: noisy gates

Suppose a noisy gate is an {AND, OR,NOT} gate with output corrupted by a Bern(d) noise. A
natural question is:

Question. For every § < 1/2, can we still reliably compute all Boolean functions {0,1}" — {0,1}?

Claim 12.13. For each input bit X;,
I(X5Y) < (201 —26)%)%,
where d; is the minimum (graph) distance from X; to the output Y.

Answer to the question (as in the notes): No. Suppose we’d like to compute
XOR(X1,..., Xp) =Y X; mod 2.
i=1

Then there exists i € [n] with d; > logy n. For this 4, if

11
5> — —— ~0.15,

2 2V2
then 2(1 — 26)2 < 1 and
I(X5Y) < (201-28)%)2" 50 (n— o).
Since XOR(X7, ..., X,,) is sensitive to every X;, its computation is impossible in this noise regime.
Proof of the claim. As written in the notes,
I(X;Y) < n(Pyx,) H(X:) < n(Py|x,)-

Using the percolation interpretation of i for Bayesian networks,

n(Py|x,) < (percolation probability from X; to Y) = Z (1 — 26)2length(path)
paths X;—Y
When length(path) > d; and 2(1 — 26)? < 1, this sum is bounded by (2(1 — 25)2)di. O

12.4.2 Example 2: broadcast on trees

Let (7, Px/|x) be a reversible Markov chain. Consider the broadcasting problem on an infinite b-ary
tree. The root is Xo ~ 7, and each edge transmits the parent state through the same channel Px/|x.

Question. Given all variables on level D (denote the set of vertices at level D by Lp), as D — oo,
can you recover Xg reliably?

Claim 12.14. No if
bn(W,le‘X) < 1.
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Proof. Let X1, = (Xy)ver,- The notes argue

I(Xo; Xpp) < Z I(X0; X1pw), Lpy:={u € Lp : v is an ancestor of u}
vEL]
< n(m, Pxx) Z I(X”U;XLDW) (X100 = Xy = Xo, and reversibility)
veEL]
= bn(m, Pxix)I(Xo; XL, ,)-

Iterating gives
D
I(X0; X1,,) < (bn(m, Pxx)) H(Xo) =0 (D — 00)

whenever bn(r, Py/x) < 1. O

12.4.3 Application: stochastic block model

In the 2-SBM(a/n,b/n), a label vector X ~ Unif({£1}") is drawn and edges are generated
conditionally independently as
4 X;X;=1 (same community),

P((i,j) is connected | X) _ {Z, o,
b X

—1 (different community).

Question. When can we recover X, Xo € {£1} with nontrivial probability as n — co?
Claim 12.15. We cannot if

(a—b)?
2(a+0b)

Proof. As written in the notes: since all edge probabilities are of order ©(1/n), with high probability
the neighborhood of a vertex out to distance d is a tree (no cycles) for some d = d,, — oo. Moreover,

the number of children is approximately Poi((a 4 b)/2), and the label flipping probability along an

edge is aLer. With high probability, vertex 2 does not belong to the local neighborhood of vertex 1,

<1 (Kesten—Stigum threshold).

SO

I(X1; X5 | G) < I(X1;(Xs)ier, | G)
a—l—b(

d
1-— 26%12)2> (see HW3 for details)

IN
—
[\

(a— b2\ (=)’
:< ) —0 1f2(a—|—b)<1'

12.4.4 Example 3: spiked Wigner model
Let X ~ Unif({£1}") be unknown. Observe a noisy rank-one matrix

A T ..
Claim 12.16. If A < 1, then
I(X1;X2 | Y) =0(1),

i.e. weak recovery of X is impossible. (The threshold A\ < 1 is the BBP transition.)
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Proof. The idea is that Yj; is determined by X;X; through

Yij | (XiX;) \/>XX],1

Let 0;; € {£1} denote X;X;. For the Gaussian binary-input channel P = {N(\/A/n,1), N(—y/A/n,1)},
one can show

ni=n(P) = L (N(VATm, 1), N(—/ATm, 1)) = (14 (1)),

Next, replace Y;; by an erasure variable Z;; defined by

0;i, wW.p.mn, .
Zij | 0;; = {?” o 717_77 i.e. EC(1— 7).

Then for any U — 0;; — (Yij, Zij),
I(U;Yy5) <nI(U;0i5) = I(U; Zij).

We claim that
I(Xl;Y ’ X2) S I(Xl,Z ’ X2) (*)

Assuming (x),

I(X1;X5 | Y) =1(X1;X,,Y) (I(X1;Y) =0)
=I(X1;;Y | X))  (I(X1;X2) =0)
<I(X1;Z | Xo) (by (¥))
=1(X;;Xs | Z)

< P(1 and 2 are connected in the graph induced by Z),

where the induced graph has an edge (7, j) iff Z;; #7. Since this graph is Erdés-Rényi with edge
probability n = %(1 + 0(1)), it is known that when A < 1, the largest connected component has size
O(logn). Therefore P(1 and 2 connected) — 0, giving the claim.

Proof of (x). Write Y = (Y1, Y2) where Y] corresponds to some subset of entries and Y3 to the
remaining ones. Then

I(X1;Y | Xy) (X1;Y1 | Xo) +I(X1;Y2 | X, V1)
(X171 | Xo) +nI(X1362 | X2, 171)
(XY | Xo) +I(X15 722 | X9, 11)

(X1;Y1,22 | X3).

IN

1
1
1
1

Proceeding with the same argument entry-by-entry replaces all Y coordinates by their erasure
counterparts, yielding I(Xl;Y | XQ) < I(Xl;Z \ XQ). O
12.5 Example 4: proximal sampling

Suppose we would like to sample from

m(z) o e f @), f:RY S R.
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A proximal sampler aims to sample from the joint density

(a.9) o exp (= f(o) = - llo = o)

via an iterative procedure. Given initialization Xy ~ Px,, for each t =0,1,...:
e Given Xy, sample Y; | X; ~ N (X, nI).
e Given Y;, sample Xy41 | Vi ~ 7117|y(- | Y2).

(For convex f, the conditional 7®¥(- | y) is n-strongly log-concave.)

Claim 12.17. If 7 satisfies an a-log-Sobolev inequality (LSI), i.e.

1 1
D (pll7) < 5= Flp|7) = —Ep[[Vieg(p/m)II],  Vp,

2a
then ( H )
DKL PXo ™
Dk (P < — 07
kL(Px, | 7) < 1+ an)
Proof. We show the two one-step contractions written in the notes:
Dku(Px, || 7)
Dy, (P < — "7 1
kL (Py, || ) < I+ an (1)
Dy (Py, || m)
Dxr (Px,,, [|m) < W (2)

where m, = 7w N(0,nI). Iterating (1) and (2) yields the claimed rate. The notes explain these are
equivalent to input-dependent SDPI bounds 7(m, N (-, nI)) < 1/(1 + an) and n(m,, 7*¥(- | y)) <
1/(1+ an).

Forward step. Let p, = Px, and m; = 7. Consider the heat flow
1 1
Opr = iApt’ Opmy = §A7Tt-
Then p, = Py, and m, = 7« N(0,nI). Now compute (as in the notes):
Pt
Dk, (pt || me) = O /pt log =
t
1 1
2 Tt 2 ¢
1 1
:—/th-VIngt—i-/VWt-th
2 Tt 2 Tt
1 1
=—-E,, [V log p: - Vlog &} + -E,, [V log 7 - Vlog b
2 T 2 T

1
= —5 Fl(pi |m).

Since 7 is a-LSI, one can show that m = 7« N(0,¢I) is (2 + )~!-LSI. Therefore

1 1
Dk, (pe || m) = *§F1(pt |me) < T Dk (pt || ).

«
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Integrating from t = 0 to t = 7 yields

Dy (py || 7y) < exp ( _ /n
Dxr(pollm) ~ 0

T+t

«
which is (1).

Backward step. Let p, = Py, and 7, = m,. Consider the reverse-time evolution written in the
notes:

_ . _ 1. . _ . 1,
Op; = —div(p, Vlegn, ) + §Apt = d1v<pt V log p%> — iApt ,
T

1 1
Oy, = —div(m, Vg, ) + §A7r[ = —§A7r[.

rF'hen p, = Px,,, and w7 = 7 (“by the reverse process of diffusion model”). A similar computation
gives

oDk (p; |7 ) = &:/Pt_ logi—t_
t

:/<diV(pt_V10gff)—;Apt_)(logi{+1) —/(—;Awt‘)ig

t

_ Dy p; 1 -
—— [prViog - Viog e 4 ] P17 1)
T T

1 o
= S Fl(p; |m7).

Since m, = m,_¢ is (é +n—t)"L-LSI,
1
Lyn—t

[0}

O Dxr(p; |m) < — Dy (py || 7).

Integrating from t = 0 to t = 7 yields

—DKL(p; ”W;) <exp<—/77 N dt) = !
Dxr(py ||m5) ~ 0 T4n—t

which is (2). O

12.6 Special topic: SDPIs

Guest lecture by Y. Gu on SDPIs.
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