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Abstract

In this errata we point out an error in the paper [HÖW18] and its short version [HMÖW18]
in handling sequential and blackboard protocols, and present a modifcation of the proof to
fix this error.

This errata is devoted to handling one technical error in [HÖW18] when proving lower bounds
for interactive (including sequential and blackboard) communication protocols. Specifically, the
following upper bound of mutual information is shown in [HÖW18, Equation 6]:

I(U ;Y ) ≤ EU
n∑
i=1

∑
y∈{0,1}nk

∏
j 6=i

EPU
[pj,y(Xj)]

 · (EPU
[pi,y(Xi)]− EP0 [pi,y(Xi)])

2

EP0 [pi,y(Xi)]
. (1)

Based on (1), the subsequent analysis made the error that [HÖW18, Lemma 12] reduced to the
upper bound of the quantities

EU
(EPU

[pi,y(Xi)]− EP0 [pi,y(Xi)])
2

EP0 [pi,y(Xi)]

with weights wi,y summing into 2k. However, this step is not feasible as the probability measure
PU in (1), marked in blue, actually depends on U . Note that if PU is replaced by any probability
measure independent of U , or the simultaneous communication protocol is assumed, this reduction
becomes valid again. A similar error also occurs in [HMÖW18] (above Equation 6) for interactive
protocols.

We present two approaches to fix the above error. The first approach is to consider a contin-
uous prior on U and invoke the van-trees inequality (instead of a discrete prior in the Fano-type
arguments in (1)); the details of this approach are referred to the subsequent work [BHÖ19]. The
second approach is to use Assouad’s lemma instead of Fano’s inequality to carry out the lower
bound arguments, which is detailed below.

We first recall the problem setup and define some notations. Let θ = (θ1, · · · , θd) ∈ Θ be the
d-dimensional unknown parameter, i.i.d. samples X1, · · · , Xn ∼ Pθ be drawn from the statistical
model Pθ where each node has one observation, and Y ∈ {0, 1}nk be the transcript outputted by
the blackboard communication protocol with k bits of communication constraint. To construct
the hypotheses required for the lower bound, we choose an interior point θ0 ∈ Θ, and some scalar
accuracy parameter δ > 0 to be specified later. Let U ∼ Unif({±1}d), and PU be the shorthand
of the distribution Pθ0+δU , QU be the distribution of the transcript Y given PU . The above setup
is the same as [HÖW18, Section 3].
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We shall need an additional notation and assumption. For each binary vector u ∈ {±1}d and
j ∈ [d], let u⊕j ∈ {±1}d be the binary vector obtained by flipping the j-th coordinate of u. The
following assumption assumes a bounded likelihood ratio between neighboring distributions.

Assumption 1. For each u ∈ {±1}d and j ∈ [d], it holds that dPu⊕j/dPu ≥ 1/2 almost surely.

We remark that Assumption 1 is not very restrictive as the parameters θ0 + δu and θ0 + δu⊕j

only differ in the j-th coordinate. Later we will see that this assumption holds in the discrete
distribution estimation model, and a slight modification of Pu makes the assumption work in the
Gaussian location model as well.

Now for any estimator θ̂(Y ) of θ based on the final transcript Y , one version of the Assouad’s
lemma [Ass83] states that

EUEQU
‖θ̂(Y )− θU‖22 ≥

dδ2

2

1− 1

d

d∑
j=1

EU‖QU −QU⊕j‖TV

 . (2)

Furthermore, by Pinsker’s inequality ‖QU − QU⊕j‖TV ≤
√
DKL(QU‖QU⊕j )/2 and Jensen’s in-

equality applied to the convex function x 7→ −
√
x, the inequality (2) implies

EUEQU
‖θ̂(Y )− θU‖22 ≥

dδ2

2

1−

√√√√1

d

d∑
j=1

EU [DKL(QU‖QU⊕j )]

 . (3)

The usage of the inequality (3) is partially motivated by [ACL+20].
To proceed, we recall the following representation of the distribution QU in [HÖW18, Lemma

9]: for each transcript y ∈ {0, 1}nk, there exists non-negative functions pi,y(x) such that

QU (y) =

n∏
i=1

EXi∼PU
[pi,y(Xi)]. (4)

Consequently,

DKL(QU‖QU⊕j ) =
n∑
i=1

∑
y∈{0,1}nk

(
n∏
s=1

EXs∼PU
[ps,y(Xs)]

)
· log

EXi∼PU
[pi,y(Xi)]

EXi∼PU⊕j [pi,y(Xi)]

(a)

≤
n∑
i=1

∑
y∈{0,1}nk

(
n∏
s=1

EXs∼PU
[ps,y(Xs)]

)
·

(
EXi∼PU

[pi,y(Xi)]

EXi∼PU⊕j [pi,y(Xi)]
− 1

)

(b)
=

n∑
i=1

∑
y∈{0,1}nk

∏
s 6=i

EXs∼PU
[ps,y(Xs)]

 ·((EXi∼PU
[pi,y(Xi)]− EXi∼PU⊕j [pi,y(Xi)])

2

EXi∼PU⊕j [pi,y(Xi)]

)

(c)

≤ 2

n∑
i=1

∑
y∈{0,1}nk

∏
s6=i

EXs∼PU
[ps,y(Xs)]

 ·((EXi∼PU
[pi,y(Xi)]− EXi∼PU⊕j [pi,y(Xi)])

2

EXi∼PU
[pi,y(Xi)]

)

(d)
= 2

n∑
i=1

∑
y∈{0,1}nk

∏
s6=i

EXs∼PU
[ps,y(Xs)]

 · (EXi∼PU
[pi,y(Xi)(1− dPU⊕j/dPU (Xi))])

2

EXi∼PU
[pi,y(Xi)]
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where (a) is due to the inequality log x ≤ x− 1, (b) follows from the identity

∑
y∈{0,1}nk

n∏
s=1

EXs∼PU
[ps,y(Xs)] =

∑
y∈{0,1}nk

EXi∼PU⊕j [pi,y(Xi)] ·
∏
s 6=i

EXs∼PU
[ps,y(Xs)] = 1

given by [HÖW18, Lemma 10], (c) is due to Assumption 1, and (d) follows from a simple change
of measure. Consequently, for each realization of U we have

1

d

d∑
j=1

DKL(QU‖QU⊕j ) ≤
2

d

n∑
i=1

∑
y∈{0,1}nk

∏
s 6=i

EXs∼PU
[ps,y(Xs)]

 · ‖EXi∼PU
[pi,y(Xi)sU (Xi)]‖22

EXi∼PU
[pi,y(Xi)]

,

(5)

where sU (x) is a d-dimensional vector of likelihood ratios:

sU (x) ,

(
1− dPU⊕1

dPU
(x), · · · , 1− dPU⊕d

dPU
(x)

)
.

Note that in typical scenarios where each PU is a product distribution, the random vector sU (X)
with X ∼ PU will have independent components, and we essentially reduce to the results involving
score functions. Therefore, the final step is to apply the arguments of [HÖW18, Lemma 12] and
the geometric inequalities to obtain an upper bound of (5) for each U , which are referred to the
rest of the paper [HÖW18].

Finally we briefly discuss the validity of Assumption 1. In the discrete distribution estimation,
we finally choose θ0 = (1/d, · · · , 1/d) and δ = O(1/

√
n2k). Since it is assumed that n2k ≥ d2, we

have δ = O(1/d), and Assumption 1 clearly holds upon choosing a small hidden constant. For the
Gaussian location model, we finally choose θ0 = (0, · · · , 0) and δ = O(σ

√
d/(nk)). Although the

likelihood ratio between Gaussian distributions is unbounded, we could consider a modification
P̃u of Pu which is the restriction of Pu to the `∞ cube {θ : ‖θ‖∞ ≤ cσ

√
log d}. Note that for a

large constant c > 0, we have ‖Pu− P̃u‖TV = O(d−10) for each u ∈ {±1}d, therefore by the union
bound, replacing Pu by P̃u results in an additional estimation error at most O(n/d10), which is
negligible for moderate ranges of d. After the restriction, straightforward algebra shows that the
likelihood ratio is at least exp(−O(δ

√
log d/σ + δ2/σ2)), which is at least 1/2 by the choice of δ

and the assumption nk ≥ d2.
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