

Problem Formulation

Entropy of a random vector $X^n \in \mathcal{X}^n$:

 $H(X^n) \triangleq \sum_{x^n \in \mathcal{X}^n} p_{X^n}(x)$

Entropy rate of a stationary process $\{X_n\}_{n=1}^{\infty}$:

 $\bar{H} \triangleq \lim$

Entropy rate serves as the fundamental limit of:

• the expected logarithmic loss when predicting the next symbol given all past symbols • data compressing for stationary stochastic processes

Target: given a length-*n* trajectory $\{X_t\}_{t=1}^n$ from the stationary process, estimate \overline{H} .

Assumptions and Estimators

Assumption: The data-generating process $\{X_t\}_{t=1}^n$ is a reversible first-order Markov chain with relaxation time τ_{rel}

• Relaxation time $\tau_{\rm rel} = ({
m spectral gap})^{-1}$ characterizes the mixing time of the Markov chain • High-dimensional setting: state space $S = |\mathcal{X}|$ is large and may scale with n Estimators:

- Notation: $\hat{\pi}_i$ denotes the empirical frequency consists of sample states following state *i*.
- Empirical estimator: $\bar{H}_{emp} = \sum_{i=1}^{S} \hat{\pi}_i \hat{H}_{emp}(\mathbf{X}^{(i)})$, where $\hat{H}_{emp}(\cdot)$ is the empirical entropy estimator for i.i.d. data.
- Proposed estimator: $\bar{H}_{opt} = \sum_{i=1}^{S} \hat{\pi}_i \hat{H}_{opt}(\mathbf{X}^{(i)})$, where $\hat{H}_{opt}(\cdot)$ is any minimax rate-optimal entropy estimator for i.i.d. data [1, 2].

Performance of Empirical Estimator

Theorem:

- If $\tau_{\rm rel} = O(\frac{S}{\log^3 S})$, the empirical entropy rate $\bar{H}_{\rm emp}$ is consistent in estimating \bar{H} if $n = \omega(S^2);$
- For general $\tau_{\rm rel} \ge 1$, the empirical entropy rate $\overline{H}_{\rm emp}$ is not consistent in estimating \overline{H} if $n = O(S^2).$

Corollary: For a wide range of relaxation time, the sample complexity of the empirical estimator is $n \simeq S^2$.

Entropy Rate Estimation for Markov Chains with Large State Space

Yanjun Han*, Jiantao Jiao[†], Chuan–Zheng Lee*, Tsachy Weissman*, Yihong Wu[‡], Tiancheng Yu[§] * Department of Electrical Engineering, Stanford University. Email: {yjhan, czlee, tsachy}@stanford.edu [†] Department of Electrical Engineering and Computer Sciences, University of California, Berkeley. Email: jiantao@berkeley.edu [‡] Department of Statistics and Data Science, Yale University. Email: yihong.wu@yale.edu [§] Department of Electronic Engineering, Tsinghua University. Email: thueeyutc14@foxmail.com

$$(x^n)\lograc{1}{p_{X^n}(x^n)}.$$

$$\frac{d(X^n)}{n}$$
.

of state *i*, and
$$\mathbf{X}^{(i)} = \{X_j : X_{j-1} = i\}$$

The authors are sorry to be absent due to visa reasons. If you have any questions and comments, feel free to email the authors.

Minimax Estimation

Theorem:

If $\tau_{rel} = O(\frac{S}{\log^3 S})$, the proposed estimator \overline{H}_{opt} is consistent in estimating \overline{H} if $n = \omega(\frac{S^2}{\log S})$; If $\tau_{\rm rel} \ge 1 + \Omega(\frac{\log^2 S}{\sqrt{S}})$, no estimator can be consistent in estimating \overline{H} if $n = O(\frac{S^2}{\log S})$. ollary (dependence of optimal sample complexity on relaxation time): If $\tau_{rel} = 1$: sample complexity is $n \simeq \frac{S}{\log S}$;

If $1 \le \tau_{rel} \le 1 + \Omega(\frac{\log^2 S}{\sqrt{S}})$: sample complexity is $O(\frac{S^2}{\log S})$ with unknown lower bound; If $1 + \Omega(\frac{\log^2 S}{\sqrt{S}}) \le \tau_{\text{rel}} \le \frac{S}{\log^3 S}$: sample complexity is $n \asymp \frac{S^2}{\log S}$; If $\tau_{\rm rel} \gg \frac{S}{\log^3 S}$: sample complexity is $\Omega(\frac{S^2}{\log S})$ with unknown upper bound.

olication: Fundamental Limits of Language Modeling

aspects of language modeling:

- Achieving fundamental limit: train some language model which achieves a low cross-entropy rate (i.e., high efficacy) Estimating fundamental limit: provide an estimate of the entropy rate of the language (i.e., the optimal cross-entropy rate for any language model)
- aset: Penn Treebank (PTB) and Googles Billion Words (1BW) benchmarks

itact

erences

[1] Jiantao Jiao, Kartik Venkat, Yanjun Han, and Tsachy Weissman. *Minimax estimation of functionals of* discrete distributions. IEEE Transactions on Information Theory, 61(5):2835-2885, 2015.

[2] Yihong Wu and Pengkun Yang. Minimax rates of entropy estimation on large alphabets via best polynomial approximation. IEEE Transactions on Information Theory, 62(6):3702–3720, 2016.

Figure: Estimated and achieved fundamental limits of language modeling

