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Problem Formulation

Entropy of a random vector X n ∈ X n:

H(X n) ,
∑
xn∈X n

pX n(xn) log
1

pX n(xn)
.

Entropy rate of a stationary process {Xn}∞n=1:

H̄ , lim
n→∞

H(X n)

n
.

Entropy rate serves as the fundamental limit of:

the expected logarithmic loss when predicting the next symbol given all past symbols

data compressing for stationary stochastic processes

Target: given a length-n trajectory {Xt}nt=1 from the stationary process, estimate H̄ .

Assumptions and Estimators

Assumption: The data-generating process {Xt}nt=1 is a reversible first-order Markov chain
with relaxation time τrel

Relaxation time τrel = (spectral gap)−1 characterizes the mixing time of the Markov chain

High-dimensional setting: state space S = |X | is large and may scale with n

Estimators:

Notation: π̂i denotes the empirical frequency of state i , and X(i) = {Xj : Xj−1 = i}
consists of sample states following state i .

Empirical estimator: H̄emp =
∑S

i=1 π̂iĤemp(X(i)), where Ĥemp(·) is the empirical entropy
estimator for i.i.d. data.

Proposed estimator: H̄opt =
∑S

i=1 π̂iĤopt(X(i)), where Ĥopt(·) is any minimax rate-optimal
entropy estimator for i.i.d. data [1, 2].

Performance of Empirical Estimator

Theorem:

If τrel = O( S
log3 S

), the empirical entropy rate H̄emp is consistent in estimating H̄ if

n = ω(S2);

For general τrel ≥ 1, the empirical entropy rate H̄emp is not consistent in estimating H̄ if
n = O(S2).

Corollary: For a wide range of relaxation time, the sample complexity of the empirical
estimator is n � S2.

Minimax Estimation

Theorem:

If τrel = O( S
log3 S

), the proposed estimator H̄opt is consistent in estimating H̄ if n = ω( S2

log S);

If τrel ≥ 1 + Ω(log2 S√
S

), no estimator can be consistent in estimating H̄ if n = O( S2

log S).

Corollary (dependence of optimal sample complexity on relaxation time):

If τrel = 1: sample complexity is n � S
log S ;

If 1 ≤ τrel ≤ 1 + Ω(log2 S√
S

): sample complexity is O( S2

log S) with unknown lower bound;

If 1 + Ω(log2 S√
S

) ≤ τrel . S
log3 S

: sample complexity is n � S2

log S ;

If τrel � S
log3 S

: sample complexity is Ω( S2

log S) with unknown upper bound.

Application: Fundamental Limits of Language Modeling

Two aspects of language modeling:

Achieving fundamental limit: train some
language model which achieves a low
cross-entropy rate (i.e., high efficacy)

Estimating fundamental limit: provide
an estimate of the entropy rate of the
language (i.e., the optimal cross-entropy
rate for any language model)

Dataset: Penn Treebank (PTB) and Googles
One Billion Words (1BW) benchmarks
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Figure 1: Estimates of conditional entropy based on linguistic corpora
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Figure: Estimated and achieved fundamental
limits of language modeling

Contact

The authors are sorry to be absent due to visa reasons. If you have any questions and
comments, feel free to email the authors.

References

[1] Jiantao Jiao, Kartik Venkat, Yanjun Han, and Tsachy Weissman. Minimax estimation of functionals of
discrete distributions. IEEE Transactions on Information Theory, 61(5):2835–2885, 2015.

[2] Yihong Wu and Pengkun Yang. Minimax rates of entropy estimation on large alphabets via best polynomial
approximation. IEEE Transactions on Information Theory, 62(6):3702–3720, 2016.


