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Introduction

Stochastic multi-armed bandits problem:

I Arms of a stochastic bandit I = {1, 2, · · · ,K}, K ≥ 2.

I Reward of pulling arm i at time t: rt,i
i.i.d.∼ N (µ(i), 1).

I Time horizon T .

I A predictable process π = (πt)
T
t=1 with regard to the

filtration Ft = {A1,A2, · · · ,At, r1,A1
, r2,A2

, · · · , rt,At
}.

Batch constraints:

I Grid of M batches, 1 ≤ t1 < t2 < · · · < tM = T .

I For tj < t ≤ tj+1, πt is Ftj measurable.

Two types of grid:

I Static grid: Fix the grid beforehand.

I Adaptive grid: Determine tj+1 based on Ftj.

Target: Minimize regret

RT(π) ,
T∑
t=1

(
µ? − µ(πt)

)
= Tµ? −

T∑
t=1

µ(πt),

under batched constraints, where µ? = maxi∈[K ] µ
(i).

Two Types of Regrets

We aim to characterize the following minimax regret and
problem-dependent regret under the batched setting:

R?
min-max(K ,M ,T ) , inf

π∈ΠM ,T

sup
{µ(i)}Ki=1:∆i≤

√
K

E[RT(π)],

R?
pro-dep(K ,M ,T ) ,

inf
π∈ΠM ,T

sup
∆>0

∆ · sup
{µ(i)}Ki=1:∆i∈{0}∪[∆,

√
K ]

E[RT(π)].

where ΠM ,T is the set of policies with M batches and
horizon T , and ∆i = µ? − µ(i).

Related Works

Without batch constraint [1, 2]:

R?
min-max(K ,T ,T ) = Θ(

√
KT ),

R?
pro-dep(K ,T ,T ) = Θ(K logT ).

Required number of batches [3]:

R?
min-max(K , log logT ,T ) = Θ̃(

√
KT ).

Two-armed bandit with static grid [4]:

R?
min-max(2,M ,T ) = Θ̃(T 1/(2−21−M)),

R?
pro-dep(2,M ,T ) = Θ̃(T 1/M).

Main Results

Theorem 1 (Upper Bound): There exist policies π1, π2 such that

E[R(π1)] ≤ polylog(K ,T ) ·
√
KT

1

2−21−M ,

E[R(π2)] ≤ polylog(K ,T ) · KT
1
M

mini 6=? ∆i
.

Theorem 2 (Static Lower Bound): Under any static grid,

Rmin-max(K ,M ,T ) = Ω(
√
KT

1

2−21−M),

Rpro-dep(K ,M ,T ) = Ω(KT
1
M).

Theorem 3 (Adaptive Lower Bound): Under any adaptive grid,

Rmin-max(K ,M ,T ) = Ω(M−2 ·
√
KT

1

2−21−M),

Rpro-dep(K ,M ,T ) = Ω(M−2 · KT
1
M).

Remark:

I It is sufficient to have M = O(log logT ) batches to achieve the optimal minimax regret
Θ(
√
KT ), and M = O (logT ) to achieve the optimal problem-dependent regret Θ(K logT ).

I With either static or adaptive grids, it is necessary to have M = Ω(log logT ) batches to
achieve the optimal minimax regret Θ(

√
KT ), and M = Ω (logT/ log logT ) to achieve the

optimal problem-dependent regret Θ(K logT ).

I It is an open problem to remove the M−2 factor in the adaptive lower bound.

BaSE Policy

Key Idea: Sequentially drop the arms which are “significantly” worse than the “best” one.

BaSE (Batched Successive Elimination)
Input: number of arms K , number of batches M , time horizon T , time grid T , tuning parameter
γ > 0
Output: policy π
initialize the set of active arms A ← [K ];
for m = 1 to M do

pull all active arms for same number of times in m-th batch;
for i ∈ A do

compute the mean reward r̄i for arm i ;
end for
compute the maximum mean reward rmax = maxi∈A r̄i and the number of pullings τm for each
active arm;
eliminate all active arms with rmax − r̄i ≥

√
γ log(TK )/τm from A;

end for

Optimal Grid Design

Minimax grid: t1 = a, tm = ba√tm−1c, where a = Θ
(
T 1/(2−21−M)

)
.

Geometric grid: t ′1 = b, t ′m = bat ′m−1c, where b = Θ
(
T 1/M

)
.

Numerical Experiments

Setting:

I Parameters: T = 5× 104,K = 3,M = 3 and γ = 1.

I Mean reward: µ? = 0.6 for the optimal arm and
µ = 0.5 for all other arms.

I Implement minimax grid, geometric grid and the
arithmetic grid with tj = jT/M for j ∈ [M ].

I Baseline: UCB1 algorithm [5] without any batch
constraints.

Experimental results:

Observations:

I The minimax grid typically results in a smallest regret
among all grids.

I M = 4 batches appear to be sufficient for the BaSE
performance to approach the centralized performance.
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