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Introduction

Main Results

Stochastic multi-armed bandits problem: Theorem 1 (Upper Bound): There exist policies 7!, 72 such that Setting:
Arms of a stochastic bandit Z ={1,2,--- . K}, K > 2 STR(rY)] < polylog(K. T) - \/R/z—zl—/w, . Parameters: T =5x 10 K =3, M =3 and v = 1.

» Reward of pulling arm 7 at time t: r;; ','\51 (1), 1). KTh » Mean reward: p* = 0.6 for the optimal arm and
. Time horizon T. [R(7%)] < polylog(K, T) - — . 1 = 0.5 for all other arms.

. A predictable process m = (m;)_; with regard to the | - miniz A . Implement minimax grid, geometric grid and the
filtration Fy = {A1, Ao, - JAL AL DAy 5 FEA T Theorem 2 (Static Lower Bound): Under any static grid, arithmetic grid with t; = jT /M for j € [M].
Batch constraints: Runin-max(K, M, T) = Q(\/R T 2_21—/\4)’ . Baseline: UCBL1 algorithm [5] without any batch

» Grid of M batches, 1 < 1 <t <---<ty=1T. Rovo-den( K, M, T) = Q(KT%). C.onstraints.

- For j <t < £y, me is Jyy measurable. Theorem 3 (Adaptive Lower Bound): Under any adaptive grid, Experimental results:
Two types of grid: 1

. Static grid: Fix the grid beforehand. Rinin-max(K, M, T) = Q(M~* VKT 22t M),

- Adaptive grid: Determine tj,; based on F;. Roro-dep(K, M, T) = Q(M 2. KT%).
Target: Minimize regret Remark:

T - It is sufficient to have M = O(loglog T) batches to achieve the optimal minimax regret
Rr(m) & Z (M - /L(m)> = Tu" — ZM i O©(vKT), and M = O (log T) to achieve the optimal problem-dependent regret O(K log T).

t=1 - With either static or adaptive grids, it is necessary to have M = Q)(loglog T) batches to

under batched constraints, where /* = max;ck) ul), achieve the optimal minimax regret ©(v/KT), and M = Q (log T/ loglog T) to achieve the
optimal problem-dependent regret ©(K log T).

. It is an open problem to remove the M~ factor in the adaptive lower bound.

Two Types of Regrets

We aim to characterize the following minimax regret and BaSE PO'ICy

prob/em_dependent regret under the batched Settlng: (c) Average regret vs. the time horizon 7'. (d) Comparison of BaSE and ETC.
R (K,M, T)2 inf sup T[R7(T)], Key ldea: Sequentially drop the arms which are “significantly” worse than the “best” one. Observations:
TEMLT (0} A< VK BaSE (Batched Successive Elimination) » The minimax grid typically results in a smallest regret
oro-dep(Ks M, T)= Input: number of arms K, number of batches M, time horizon T, time grid T, tuning parameter among all grids.
we”ﬂf supA - | sup C|R7 ()] v >0 » M = 4 batches appear to be sufficient for the BaSE

MTAZ0 {0} Ae{0}U[A VK] Output: policy 7 performance to approach the centralized performance.
where [y 7 is the set of policies with M batches and initialize the set of active arms A + [K];
horizon T, and A; = u* — u(i). for m=1to M do
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