

Batched Multi-armed Bandits Problem

Zijun Gao[†], Yanjun Han^{*}, Zhimei Ren[†], Zhengqing Zhou[‡]
[†] Stanford STATS, * Stanford EE, [‡] Stanford MATH
Email: {zijungao,yjhan,zren,zqzhou}@stanford.edu

Introduction

Stochastic multi-armed bandits problem:

- Arms of a stochastic bandit $\mathcal{I} = \{1, 2, \cdots, K\}$, $K \geq 2$.
- Reward of pulling arm i at time t: $r_{t,i} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu^{(i)}, 1)$.
- ightharpoonup Time horizon T.
- A predictable process $\pi = (\pi_t)_{t=1}^T$ with regard to the filtration $\mathcal{F}_t = \{A_1, A_2, \cdots, A_t, r_{1,A_1}, r_{2,A_2}, \cdots, r_{t,A_t}\}$.

Batch constraints:

- Grid of M batches, $1 \leq t_1 < t_2 < \cdots < t_M = T$.
- For $t_j < t \le t_{j+1}$, π_t is \mathcal{F}_{t_i} measurable.

Two types of grid:

- Static grid: Fix the grid beforehand.
- Adaptive grid: Determine t_{j+1} based on \mathcal{F}_{t_i} .

Target: Minimize regret

$$R_T(\pi) \triangleq \sum_{t=1}^T \left(\mu^* - \mu^{(\pi_t)}\right) = T\mu^* - \sum_{t=1}^T \mu^{(\pi_t)},$$

under batched constraints, where $\mu^* = \max_{i \in [K]} \mu^{(i)}$.

Two Types of Regrets

We aim to characterize the following *minimax regret* and *problem-dependent regret* under the batched setting:

$$egin{aligned} R^{\star}_{\mathsf{min-max}}(K,M,T) & riangleq & \mathsf{inf} & \mathsf{sup} & \mathbb{E}[R_{T}(\pi)], \ R^{\star}_{\mathsf{pro-dep}}(K,M,T) & riangleq & \mathsf{sup} & \\ & & \mathsf{inf} & \mathsf{sup}\Delta \cdot & \mathsf{sup} & \mathbb{E}[R_{T}(\pi)]. \ \pi \in \Pi_{M,T} \Delta > 0 & \{\mu^{(i)}\}_{i=1}^{K} : \Delta_{i} \in \{0\} \cup [\Delta,\sqrt{K}] \end{aligned}$$

where $\Pi_{M,T}$ is the set of policies with M batches and horizon T, and $\Delta_i = \mu^* - \mu^{(i)}$.

Related Works

Without batch constraint [1, 2]:

$$R_{\text{min-max}}^{\star}(K, T, T) = \Theta(\sqrt{KT}),$$

 $R_{\text{pro-dep}}^{\star}(K, T, T) = \Theta(K \log T).$

Required number of batches [3]:

$$R_{\min-\max}^{\star}(K, \log \log T, T) = \widetilde{\Theta}(\sqrt{KT}).$$

Two-armed bandit with static grid [4]:

$$R_{ ext{min-max}}^{\star}(2, M, T) = \widetilde{\Theta}(T^{1/(2-2^{1-M})}),$$

 $R_{ ext{pro-dep}}^{\star}(2, M, T) = \widetilde{\Theta}(T^{1/M}).$

Main Results

Theorem 1 (Upper Bound): There exist policies π^1, π^2 such that

$$\mathbb{E}[R(\pi^1)] \leq \mathsf{polylog}(K, T) \cdot \sqrt{K} T^{\frac{1}{2-2^{1-M}}},$$
 $\mathbb{E}[R(\pi^2)] \leq \mathsf{polylog}(K, T) \cdot \frac{KT^{\frac{1}{M}}}{\min_{i \neq \star} \Delta_i}.$

Theorem 2 (Static Lower Bound): Under any static grid,

$$R_{ ext{min-max}}(K, M, T) = \Omega(\sqrt{K}T^{rac{1}{2-2^{1-M}}}),$$
 $R_{ ext{pro-dep}}(K, M, T) = \Omega(KT^{rac{1}{M}}).$

Theorem 3 (Adaptive Lower Bound): Under any adaptive grid,

$$R_{ ext{min-max}}(K, M, T) = \Omega(M^{-2} \cdot \sqrt{K}T^{rac{1}{2-2^{1-M}}}),$$
 $R_{ ext{pro-dep}}(K, M, T) = \Omega(M^{-2} \cdot KT^{rac{1}{M}}).$

Remark:

- It is sufficient to have $M = O(\log \log T)$ batches to achieve the optimal minimax regret $\Theta(\sqrt{KT})$, and $M = O(\log T)$ to achieve the optimal problem-dependent regret $\Theta(K \log T)$.
- With either static or adaptive grids, it is necessary to have $M = \Omega(\log \log T)$ batches to achieve the optimal minimax regret $\Theta(\sqrt{KT})$, and $M = \Omega(\log T/\log \log T)$ to achieve the optimal problem-dependent regret $\Theta(K \log T)$.
- It is an open problem to remove the M^{-2} factor in the adaptive lower bound.

BaSE Policy

Key Idea: Sequentially drop the arms which are "significantly" worse than the "best" one.

BaSE (Batched Successive Elimination)

Input: number of arms K, number of batches M, time horizon T, time grid T, tuning parameter $\gamma > 0$

Output: policy π

initialize the set of active arms $\mathcal{A} \leftarrow [K]$;

for m=1 to M do

pull all active arms for same number of times in m-th batch;

for $i \in \mathcal{A}$ do

compute the mean reward \bar{r}_i for arm i;

end for

compute the maximum mean reward $r_{\max} = \max_{i \in \mathcal{A}} \bar{r}_i$ and the number of pullings τ_m for each active arm;

eliminate all active arms with $r_{\text{max}} - \bar{r}_i \ge \sqrt{\gamma \log(TK)/\tau_m}$ from A;

end for

Optimal Grid Design

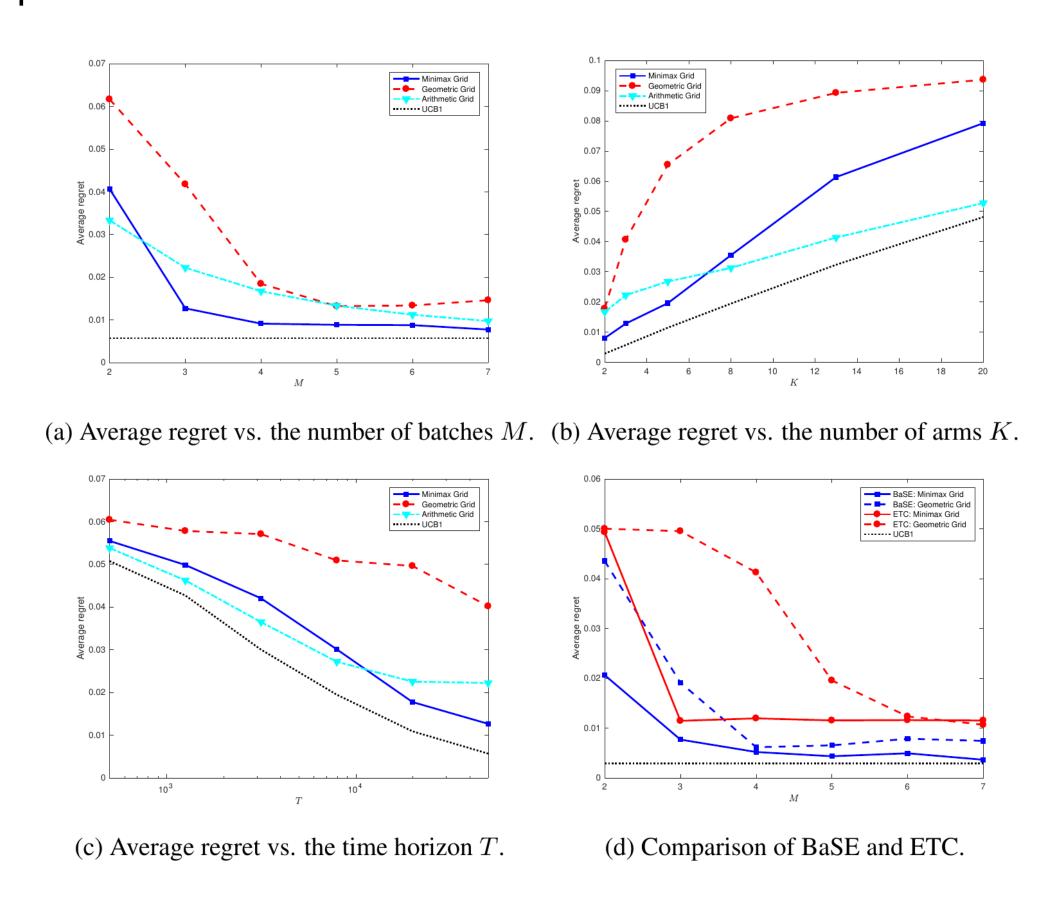
Minimax grid:
$$t_1 = a$$
, $t_m = \lfloor a\sqrt{t_{m-1}} \rfloor$, where $a = \Theta\left(T^{1/(2-2^{1-M})}\right)$. Geometric grid: $t_1' = b$, $t_m' = \lfloor at_{m-1}' \rfloor$, where $b = \Theta\left(T^{1/M}\right)$.

Numerical Experiments

Setting:

- Parameters: $T=5\times 10^4, K=3, M=3$ and $\gamma=1$.
- Mean reward: $\mu^{\star}=$ 0.6 for the optimal arm and $\mu=$ 0.5 for all other arms.
- Implement minimax grid, geometric grid and the arithmetic grid with $t_i = jT/M$ for $j \in [M]$.
- ▶ Baseline: UCB1 algorithm [5] without any batch constraints.

Experimental results:



Observations:

- The minimax grid typically results in a smallest regret among all grids.
- M=4 batches appear to be sufficient for the BaSE performance to approach the centralized performance.

References

- [1] Walter Vogel. *A sequential design for the two armed bandit.* The Annals of Mathematical Statistics, 31(2):430–443, 1960.
- [2] Tze Leung Lai and Herbert Robbins. *Asymptotically efficient adaptive allocation rules*. Advances in applied mathematics, 6(1):4–22, 1985
- [3] Nicolo Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. *Online learning with switching costs and other adaptive adversaries.* In Advances in Neural Information Processing Systems, pages 1160–1168, 2013.
- [4] Vianney Perchet, Philippe Rigollet, Sylvain Chassang, and Erik Snowberg. *Batched bandit problems*. The Annals of Statistics, 44(2):660–681, 2016.
- [5] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. *Finite-time analysis of the multiarmed bandit problem*. Machine learning, 47(2-3):235–256, 2002.