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Motivation: assortment optimization

Combinatorial adversarial bandit An example construction

Assortment optimization: A more general bandit problem:

Assortment optimization with K =2 and g(x) = x/(1 + x):

- Select a subset of substitutable items to maximize expected revenue ~ time horizon T, number of arms N

. choose §* = (i*, j*) € ([g/]) uniformly at random
» Key step of recommendation in online retailing - at each time t € [T], a reward vector v, € [0,1]" is chosen » construction of v ~

- the learner chooses S; C [N] of size K, and observes bandit feedback
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"-”’.‘*.'“: e 5 |=1=:| - g : R, —[0,1] is a known link function - key property: the multinomial distribution
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Multinomial Logit model: a special case with g(x) = x/(1 + x)

e » learner’s regret: ) 1 Vi Vj
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is always (1/2,1/4,1/4) unless the precise pair (i*,j*) is chosen

General construction
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BRELEL 9459999994 Key technical lemma: Let g € C™(|0, b]) be a real-valued and m-times

Main results continuously differentiable function on [0, b], with b > m. Then the

following two statements are equivalent:

Mathematical model

Multinomia
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Logit (MNL) model:

able items in the pool

Theorem: For general adversarial combinatorial bandits, the optimal

regrets are:

~ g is not a polynomial of degree at most m — 1;
. there exists a random vector (Xi,--- , X,,) supported on [0, 1]”, which

. (:jng(\/ TN) if g is a polynomial of degree d < K;

follows an exchangeable joint distribution f, and a scalar xy € [0, 1],
such that

» O, k(V TNR) if g is not a polynomial of degree < K.

- each item has a revenue r; € [0, 1], and a choice probability v; € [0, 1]

Llg(Xi+ -+ X1+ (b— 0+ 1)x0)] = E [g(Xi + - + Xe + (b — £)x0)]
forall £=1,2,--- . m—1, and
Lulg(Xi+ -+ X+ (b—m+1)x)] <E.[g(Xi+ -+ Xn + (b— m)x)].

Proof technlque Proof technique: duality existential arguments, which in turn also applies

several technical tools from real analysis and functional analysis

Corollary: O(+/poly(N, K)T) regret is impossible in dynamic assortment
selection

- seller offers an assortment S C [N] of size K

» customer selects item 7/ with probability

p,-(S, V) —

Vi
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“no-purchase”

- seller's observation: the chosen item or “no-purchase”

High-level idea: find a distribution y on v such that

- seller's expected revenue when offering assortment S:

R(S.v) = 3 (S, v)r, = - 2i=s 1Y

icS 1 + ZJES V./

Py, if S = S*.
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Future direction

Interpolation between static and regret models: v; is only allowed to

Intuition: no information is leaked unless the learner guesses the optimal |
change M times. How does the regret depend on M?

assortment 5™ exactly, even if S and 5" have a lot in common

Past settings where a small regret could be obtained:
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