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Motivation: assortment optimization

Assortment optimization:

I Select a subset of substitutable items to maximize expected revenue

I Key step of recommendation in online retailing

Mathematical model

Multinomial Logit (MNL) model:

I N available items in the pool

I each item has a revenue ri ∈ [0, 1], and a choice probability vi ∈ [0, 1]

I seller offers an assortment S ⊆ [N ] of size K

I customer selects item i with probability

pi(S , v) =
vi

1︸︷︷︸
“no-purchase”

+
∑

j∈S vj

I seller’s observation: the chosen item or “no-purchase”

I seller’s expected revenue when offering assortment S :

R(S , v) =
∑
i∈S

pi(S , v)ri =

∑
j∈S rjvj

1 +
∑

j∈S vj

Static vs. dynamic model

Regret in repeated assortment optimization:

E

 max
S :|S |=K

T∑
t=1

R(S , vt)−
T∑
t=1

R(St, vt)


Static model: vt ≡ v for all t ∈ [T ]

I Õ(
√
NT ) regret achievable [Rusmevichientong et al. 2010, Agrawal et

al. 2019, ...]

Dynamic model: vt may change across time

I open question: is O(
√

poly(N ,K )T ) regret still achievable?

Combinatorial adversarial bandit

A more general bandit problem:

I time horizon T , number of arms N

I at each time t ∈ [T ], a reward vector vt ∈ [0, 1]N is chosen

I the learner chooses St ⊆ [N ] of size K , and observes bandit feedback

rt ∼ Bernoulli (R(St, vt)) , where R(St, vt) = g

∑
j∈St

vt,j


I g : R+ → [0, 1] is a known link function

I learner’s regret:

E

 max
S :|S |=K

T∑
t=1

R(S , vt)−
T∑
t=1

R(St, vt)


Multinomial Logit model: a special case with g(x) = x/(1 + x)

Main results

Theorem: For general adversarial combinatorial bandits, the optimal
regrets are:

I Θ̃g ,K(
√
TNd) if g is a polynomial of degree d ≤ K ;

I Θ̃g ,K(
√
TNK) if g is not a polynomial of degree ≤ K .

Corollary: O(
√

poly(N ,K )T ) regret is impossible in dynamic assortment
selection

Proof technique

High-level idea: find a distribution µ on v such that

Ev∼µ[P(· | S , v)] =

{
P0, if S = S?.

P1, if S 6= S?.

Intuition: no information is leaked unless the learner guesses the optimal
assortment S? exactly, even if S and S? have a lot in common

Past settings where a small regret could be obtained:

I Static model [Agrawal et al. 2019]: v is deterministic and fixed, so
P(· | S , v) and P(· | S ′, v) must be correlated as long as S ∩ S ′ 6= ∅

I Combinatorial linear bandit [Bubeck et al. 2012]: when g(x) ∝ x , the
mean of Ev∼µ[P(· | S , v)] is

Ev∼µ[g(〈1S, v〉)] = g(〈1S,Ev∼µ[v ]〉),

depending linearly on 1S , so no such construction

I Combinatorial bandit with stochastic dominance [Agarwal and
Aggarwal, 2018]: when an element of [N ]\S? is replaced by an
element of S?, the mean of Ev∼µ[P(· | S , v)] must increase

An example construction

Assortment optimization with K = 2 and g(x) = x/(1 + x):

I choose S? = (i?, j?) ∈
(

[N ]
2

)
uniformly at random

I construction of v ∼ µ:

vk ≡
1

2
, k /∈ {i?, j?}, (vi?, vj?) =


(1, 1) w.p. 1/4,

(0, 1) w.p. 3/8,

(1, 0) w.p. 3/8.

I key property: the multinomial distribution

E
(

1

1 + vi + vj
,

vi
1 + vi + vj

,
vj

1 + vi + vj

)
is always (1/2, 1/4, 1/4) unless the precise pair (i?, j?) is chosen

General construction

Key technical lemma: Let g ∈ Cm([0, b]) be a real-valued and m-times
continuously differentiable function on [0, b], with b ≥ m. Then the
following two statements are equivalent:

I g is not a polynomial of degree at most m − 1;

I there exists a random vector (X1, · · · ,Xm) supported on [0, 1]m, which
follows an exchangeable joint distribution µ, and a scalar x0 ∈ [0, 1],
such that

Eµ[g(X1 + · · · + X`−1 + (b − ` + 1)x0)] = Eµ[g(X1 + · · · + X` + (b − `)x0)]

for all ` = 1, 2, · · · ,m − 1, and

Eµ[g(X1 + · · · + Xm−1 + (b −m + 1)x0)] < Eµ[g(X1 + · · · + Xm + (b −m)x0)].

Proof technique: duality existential arguments, which in turn also applies
several technical tools from real analysis and functional analysis

Future direction

Interpolation between static and regret models: vt is only allowed to
change M times. How does the regret depend on M?
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