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Abstract—The Maximum Likelihood Estimator (MLE) is
widely used in estimating information measures, and involves
“plugging-in” the empirical distribution of the data to estimate
a given functional of the unknown distribution. In this work we
propose a general framework and procedure to analyze the non-
asymptotic performance of the MLE in estimating functionals of
discrete distributions, under the worst-case mean squared error
criterion.

We show that existing theory is insufficient for analyzing
the bias of the MLE, and propose to apply the theory of
approximation using positive linear operators to study this
bias. The variance is controlled using the well-known tools
from the literature on concentration inequalities. Our techniques
completely characterize the maximum L2 risk incurred by the
MLE in estimating the Shannon entropy H(P ) =

∑S
i=1 −pi ln pi,

and Fα(P ) =
∑S
i=1 p

α
i up to a multiplicative constant. As a

corollary, for Shannon entropy estimation, we show that it is
necessary and sufficient to have n� S observations for the MLE
to be consistent, where S represents the support size. In addition,
we obtain that it is necessary and sufficient to consider n� S1/α

samples for the MLE to consistently estimate Fα(P ), 0 < α < 1.
The minimax rate-optimal estimators for both problems require
S/ lnS and S1/α/ lnS samples, which implies that the MLE
is strictly sub-optimal. When 1 < α < 3/2, we show that the
maximum L2 rate of convergence for the MLE is n−2(α−1) for
infinite support size, while the minimax L2 rate is (n lnn)−2(α−1).
When α ≥ 3/2, the MLE achieves the minimax optimal L2

convergence rate n−1 regardless of the support size.

I. INTRODUCTION

The entropy, and related information measures have found
numerous applications in information theory, statistics, ma-
chine learning, biology, neuroscience, image processing, lin-
guistics, secrecy, ecology, physics, and finance, among others.
Various inferential applications rely on data driven procedures
to estimate these quantities (see, e.g. [1]–[6]). Consider the
problem of estimating the Shannon entropy of an unknown
discrete distribution P based on n i.i.d. samples. This problem
has a rich history, which we refer to [7] for a review. One
of the most widely used estimators for this purpose is the
Maximum Likelihood Estimator (MLE), which is simply the
empirical entropy, i.e. the entropy evaluated on the empirical
distribution of the data. This is known as the plug-in principle
in functional estimation, where a good point estimate of the
parameter (distribution P ) is used to construct an estimator
for a functional of the parameter. The idea of using the MLE
for estimating information measures of interest (in this case

entropy), is not just intuitive, but has strong mathematical
justification: asymptotic efficiency.

The beautiful theory of Hájek and Le Cam [8]–[10] showed
that, as the number of observed samples grows without bound
while the parameter dimension (support size) remains fixed,
the MLE performs optimally in estimating any differentiable
functionals under the benign LAN condition [10]. Thus, for
finite dimensional problems, the problems of parameter and
functional estimation are well understood in an asymptotic
sense, and the MLE appears to be a very natural answer. But
does it make sense to employ the MLE to estimate the entropy
in most practical applications?

Unfortunately, while asymptotically optimal for entropy
estimation, the MLE is by no means sacrosanct in real
applications, especially in regimes where the support size is
comparable to, or even larger than the number of observations.
It was shown that the MLE for entropy is strictly sub-optimal
in the large support regime [11]–[13]. Therefore, classical
asymptotic theory does not satisfactorily address high dimen-
sional settings, which are becoming increasingly important in
the modern era of “big data”. A satisfactory non-asymptotic
theory should have two key components:
• Analysis: one should be able to analyze the non-

asymptotic performance of estimators that are known to
be asymptotically efficient, such as the MLE;

• Estimators: one should be able to construct estimators
that are (near) optimal in a non-asymptotic sense.

The main contribution of this paper is to provide novel
tools for analysis of plug-in estimators like the MLE, leaving
the companion paper [7] to present new estimators that are
shown to be minimax rate-optimal for a family of problems.
The papers [7], [14] also demonstrate that employing the
MLE in functional estimation can result in highly sub-optimal
estimators in inferential applications.

A. Problem formulation

To illustrate our methodology, we shall focus on the fol-
lowing general problem. Suppose we observe n independent
samples from an unknown discrete probability distribution
P = (p1, p2, . . . , pS), with unknown support size S, and
would like to estimate a functional of the distribution of the
form:

F (P ) =

S∑
i=1

f(pi), (1)
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where f : (0, 1]→ R is a continuous function. We shall focus
on two concrete and well-motivated examples of functionals
of this form. In particular, the Shannon entropy,

H(P ) ,
S∑
i=1

−pi ln pi, (2)

plays significant roles in information theory and serves as fun-
damental limits to various operational problems [15]. Another
interesting class of functionals is Fα(P ), α > 0:

Fα(P ) ,
S∑
i=1

pαi , α > 0. (3)

The α-moments of a distribution often emerge in various
operational problems. In particular, the significance of Fα(P )
can also be seen via the connection Hα(P ) =

lnFα(P )
1−α , where

Hα(P ) is the Rényi entropy [16]. Like Shannon entropy, Rényi
entropy is an important information measure emerging in an
increasing variety of disciplines such as ecology, quantum
information, information theory, and statistics, to name a few.
Recently [17] has studied the complexity of estimating the
Rényi entropy.

In this work, we analyze, for the above two classes of func-
tionals, the non-asymptotic performance of the most natural
plug-in rule for functionals of discrete distributions, i.e., the
maximum likelihood estimator (MLE).

Definition 1. The Maximum Likelihood Estimator (MLE) for
the functional F (P ) in (1) is defined as:

F (Pn) ,
S∑
i=1

f(Pn(i)), (4)

where Pn denotes the empirical distribution.

We use the conventional decision theoretic framework, and
present matching upper and lower bounds (up to a constant)
on the maximum L2 risk of the MLE, i.e.

sup
P∈MS

EP (F (P )− F (Pn))2, (5)

where MS denotes the set of discrete distributions of support
size S. Understanding the performance of the MLE serves
two key purposes. First, the approach is a natural benchmark
for comparing other more nuanced procedures for estimation
of functionals. Second, performance analysis for the MLE
reveals regimes where the problem is difficult, and motivates
the development of improvements over the same, cf. [7], [14].

B. Bias of the MLE: an approximation theoretic perspective

In the entropy estimation literature, considerable effort has
been devoted to understanding the non-asymptotic perfor-
mance of the MLE H(Pn) in estimating H(P ). One of the
earliest investigations in this direction is due to Miller [18] in
1955, who showed that, for any fixed distribution P ,

EH(Pn) = H(P )− S − 1

2n
+O

(
1

n2

)
. (6)

Equation (6) was later refined by Harris [19] using higher
order Taylor series expansions to yield

EH(Pn) = H(P )−S − 1

2n
+

1

12n2

(
1−

S∑
i=1

1

pi

)
+O

(
1

n3

)
.

(7)
Harris’s result reveals an undesirable consequence of the

Taylor expansion method: one cannot obtain uniform bounds
on the bias of the MLE. Indeed, the term

∑S
i=1

1
pi

can be
arbitrarily large for some distribution P . However, it is evident
that both H(Pn) and H(P ) are bounded above by lnS, since
the maximum entropy of any distribution supported on S
elements is lnS. Conceivably, for such a distribution P that
would make

∑S
i=1

1
pi

very large, we need to compute even
higher order Taylor expansions to obtain more accuracy, but
even with such efforts we can never obtain a uniform bias
bound for all P .

We gain one of our key insights into the bias of the MLE by
relating it to the approximation error induced by the Bernstein
polynomial approximation of the function f . To see this, we
first compute the bias of F (Pn).

Lemma 1. The bias of the estimator F (Pn) is given by

Bias(F (Pn)) , EF (Pn)− F (P )

=

S∑
i=1

 n∑
j=0

f

(
j

n

)(
n

j

)
pji (1− pi)

n−j − f(pi)

 .

(8)

The bias term in (8) can be equivalently expressed as

Bias(F (Pn)) =
S∑
i=1

 n∑
j=0

f

(
j

n

)
Bj,n(pi)− f(pi)

 , (9)

where Bj,n(x) ,
(
n
j

)
xj(1 − x)n−j is the well-known Bern-

stein polynomial basis. Bernstein in 1912 [20] provided an
insightful constructive proof of the Weierstrass theorem on
approximation of continuous functions using polynomials, by
showing that the Bernstein polynomial of any continuous
function converges uniformly to that function.

From a functional analysis viewpoint, the Bernstein poly-
nomial is an operator that maps a continuous function f ∈
C[0, 1] to another continuous function Bn[f ] ∈ C[0, 1]. This
operator is linear in f , and is positive because Bn[f ] is
also pointwise non-negative if f is pointwise non-negative.
Apparently, bounding the approximation error incurred by
the Bernstein polynomial is equivalent to bounding the bias
of the MLE f(X/n), where X ∼ Binomial(n, x). As is
discussed above, Taylor series expansions are not sufficient
to satisfactorily analyze this bias. Fortunately, the theory of
approximation using positive linear operators [21] provides us
with sophisticated tools that serve admirably to this effect. A
century ago, probability theory served Bernstein in breaking
new ground in function approximation. It is therefore very
satisfying that advancements in the latter have come full circle
to help us understand probability theory better.
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II. MAIN RESULTS

Below, we present bounds on the maximum L2 risk incurred
by the MLE for estimating H(P ) and Fα(P ).

Notation: a ∧ b denotes min{a, b}, and MS denotes the
collection of discrete distributions with support size S. For
two non-negative series {an}, {bn}, notation an . bn means
that lim supn→∞

an
bn

< ∞. Notation an � bn is equivalent
to an . bn and bn . an. Notation an � bn means that an
asymptotically dominates bn, i.e. ∀C > 0, lim infn→∞

an
bn

>
C.

Ditzian and Totik [22] introduced a class of modulus of
smoothness, which proves to be extremely useful in charac-
terizing the incurred approximation errors. For simplicity, for
functions defined on [0, 1], ϕ(x) =

√
x(1− x), the second-

order Ditzian–Totik modulus of smoothness is defined as

ω2
ϕ(f, t) , sup

{ ∣∣∣∣f(u)− 2f

(
u+ v

2

)
+ f(v)

∣∣∣∣ ,
u, v ∈ [0, 1], |u− v| ≤ 2tϕ

(
u+ v

2

)}
.

(10)

Theorem 1 (Upper bounds on the risk of the MLE). For
the functional Fα(P ),

1) α ≥ 2:

sup
P∈MS

EP (Fα(Pn)− Fα(P ))2

≤
(
α(α− 1)

n

)2

+
α2

4n
. (11)

2) 1 < α < 2:

sup
P∈MS

EP (Fα(Pn)− Fα(P ))2

≤
(

4

nα−1
∧ 3S1−α/2

nα/2
∧ Cα,n

5S

2n

)2

+
α2

4n
, (12)

where Cα,n , nω2
ϕ(x

α, n−1/2) > 0 satisfies
lim supn→∞ Cα,n < ∞ for 1 < α < 2, and ω2

ϕ is
the second-order Ditzian–Totik modulus of smoothness.

3) 1/2 ≤ α < 1:

sup
P∈MS

EP (Fα(Pn)− Fα(P ))2

≤
(
3S1−α/2

2nα/2
∧ 5S

2nα

)2

+

(
10S2−2α

n
+

120

α2

(
S

n2α
∧ 1

n2α−1

))
. (13)

4) 0 < α < 1/2:

sup
P∈MS

EP (Fα(Pn)− Fα(P ))2

≤
(
3S1−α/2

2nα/2
∧ 5S

2nα

)2

+

(
10S

n2α
+

120

α2

(
S

n2α
∧ 1

n2α−1

))
. (14)

5) For the entropy H(P ),

sup
P∈MS

EP (H(Pn)−H(P ))
2

≤
(
ln

(
1 +

S − 1

n

))2

+

(
(lnn)2

n
∧ 2(lnS + 2)2

n

)
.

(15)

Moreover, in all the bounds presented above, the first term
bounds the square of the bias, and the second term bounds
the variance.

Theorem 1 has several interesting implications highlighted
in the following corollaries.

Corollary 1. For the functional Fα(P ), α > 1, if n � 1,
MLE is consistent.

In words, if the functional Fα(P ) is differentiable every-
where, then the number of samples required to make the
maximum L2 risk vanish has no dependence on the support
size S. Results of this form have appeared in the literature,
for example, Antos and Kontoyiannis [23] showed that it
suffices to take n � 1 samples to consistently estimate
Fα(P ), α ≥ 2, α ∈ Z. To our knowledge, Theorem 1 gives
the first non-asymptotic result for estimation of Fα(P ), α non-
integer.

Corollary 2. There exist universal convergence rates for
Fα(P ), α > 1. For any support size S (possibly infinite), we
have,

sup
S

sup
P∈MS

EP (Fα(Pn)− Fα(P ))2

.

{
n−2(α−1) 1 < α < 3/2

n−1 α ≥ 3/2
(16)

Corollary 2 implies that, when α ≥ 3/2, the MLE achieves
the best possible rate 1/n. However, when 1 < α < 3/2,
the rate n−2(α−1) is considerably slower. It turns out that the
convergence rate n−2(α−1) is in fact tight for the MLE when
1 < α < 3/2. Precisely, we have the following matching lower
bound.

Theorem 2. If S = cn, 1 < α < 3/2, c > 0 is a positive
constant, then

lim inf
n→∞

n2(α−1) · sup
P∈MS

EP (Fα(Pn)− Fα(P ))2 ≥ cα > 0,

(17)
where cα only depends on α and c.

Interestingly, there exist estimators that demonstrate better
convergence rates for estimating Fα(P ), 1 < α < 3/2. [7]
showed that the minimax L2 rate in estimating Fα(P ), 1 <
α < 3/2 is in fact (n lnn)−2(α−1).

Let us now examine the case where 0 < α < 1, which is
also another interesting regime that has not been characterized
before. In this case, we observe significant gradation in the
difficulty of the estimation problem. In particular, the relative
scaling between the number of observations n and the support
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size S for consistent estimation of Fα(P ) exhibits a phase
transition, encapsulated in the following.

Corollary 3. For the functional Fα(P ), 0 < α < 1, if n �
S

1
α , the MLE is consistent.

For the region 0 < α < 1, the above corollary shows that
S

1
α samples are sufficient for estimating Fα(P ). Again, it

turns out that this tightly characterizes the performance of the
MLE. Precisely, we have the following lower bound for the
performance of the MLE in this region.

Theorem 3. If n ≥ S, then

1) 1/2 ≤ α < 1:

sup
P∈MS

EP (Fα(Pn)− Fα(P ))2 &
S2

n2α
+
S2−2α

n
.

(18)

2) 0 < α < 1/2:

sup
P∈MS

EP (Fα(Pn)− Fα(P ))2

≥ α2(1− α)2

36n2α
(S − 1)2

(
1− 1

n

)2

. (19)

Corollary 4. The maximum L2 risk of the MLE Fα(Pn) in
estimating Fα(P ) can be characterizes as follows when n ≥
S:

sup
P∈MS

EP (Fα(Pn)− Fα(P ))2

�

{
S2

n2α + S2−2α

n 1/2 < α < 1

S2

n2α 0 < α ≤ 1/2
(20)

Corollary 4 follows directly from Theorem 1 and The-
orem 3. In particular, it implies that it is necessary and
sufficient to take n � S1/α samples to consistently estimate
Fα(P ), 0 < α < 1 using MLE. Thus, as one might expect, the
scale of the number of measurements required for consistent
estimation increases as α decreases. When α→ 0, the number
of samples required for the MLE grows super-polynomially in
S. On the other hand, for α > 1, it suffices to take n � 1
samples independent of S for the MLE to be consistent.

We observe a sharp phase transition at α = 1, as the sample
size requirement shifts from n � S

1
α to n � 1, depending

on whether α is in the left or right neighborhood of 1,
respectively. Hence, α = 1 is a critical point in that consistent
estimation requires a number of measurements super-linear or
constant in the size of the support according to whether α < 1
or α > 1.

A natural question arising in light of Corollary 3 and Theo-
rem 3, respectively, is whether one can construct estimators
that are better than the MLE in terms of required sample
complexity for consistent estimation. The answer turns out
to be affirmative, as we show in the companion paper [7].
In particular, the scheme we introduce therein is a consistent
estimator of Fα(P ) in the regime 0 < α < 1 when n� S

1
α

lnS ,
which is a logarithmic improvement in the sample complexity

over the MLE. In fact, it is also shown that the scheme of [7]
is minimax rate-optimal.

Let us now shift our focus to the case of entropy H(P ),
which may be roughly intuitively viewed as the functional
Fα(P ) when α → 1−. Theorem 1 implies the following
corollary.

Corollary 5. Case H(P ): The maximum L2 risk of the MLE
vanishes provided n� S.

As it turns out, n � S is the optimal scaling for consistency
of H(Pn) in estimating H(P ). Further, we show that the
same is true of the Miller–Madow bias-corrected estimator
[18] defined as

HMM(Pn) = H(Pn) +
S − 1

2n
. (21)

Theorem 4. For the entropy H(P ), if n ≥ 15S, then

sup
P∈MS

EP (H(Pn)−H(P ))
2 ≥ 1

2

(
S − 1

2n
+

S2

20n2
− 1

12n2

)2

+ c
ln2 S

n
. (22)

Moreover, if n ≥ 15S, the Miller–Madow bias-corrected
estimator satisfies

sup
P∈MS

EP
(
HMM(Pn)−H(P )

)2 ≥ 1

2

(
S2

20n2
− 1

12n2

)2

+ c
ln2 S

n
, (23)

where the positive constant c > 0 in both expressions do not
depend on S or n.

Theorem 1 and Theorem 4 together imply the following
corollary.

Corollary 6. The maximum L2 risk of the MLE H(Pn) in
estimating H(P ) is characterized as follows when n ≥ 15S:

sup
P∈MS

EP (H(Pn)−H(P ))
2 � S2

n2
+

ln2 S

n
. (24)

We can raise an analogous question for the estimation of
H(P ) as we did for Fα(P ), 0 < α < 1: does there exist
an entropy estimator with vanishing maximum L2 risk with
sublinear n� S number of samples? The answer is affirma-
tive, as was shown in [24], and more recently via a different
scheme by the present authors in [7], and independently by
Wu and Yang in [25], that one can construct estimators for
which n� S/ lnS samples suffice for consistent estimation.
It was further shown in [24], [25] that this is the optimal order
as the number of samples needed for any estimator to achieve
vanishing maximum L2 risk is at least of order S/ lnS. As in
the case of Fα(P ), 0 < α < 1, the MLE serves as a very good
benchmark when we compare it with the minimax rate-optimal
estimator.

To sum up our results regarding achievability and lower
bounds on estimation of Fα(P ) and H(P ), we have Table I.
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Minimax L2 rates L2 rates of MLE
H(P ) S2

(n lnn)2 + ln2 S
n

(
n & S

lnS

)
( [7], [25]) S2

n2 + ln2 S
n (n & S) [13]

Fα(P ), 0 < α ≤ 1
2

S2

(n lnn)2α

(
n & S1/α/ lnS, lnn . lnS

)
[7] S2

n2α

(
n & S1/α

)
[13]

Fα(P ),
1
2 < α < 1 S2

(n lnn)2α + S2−2α

n

(
n & S1/α/ lnS

)
[7] S2

n2α + S2−2α

n

(
n & S1/α

)
[13]

Fα(P ), 1 < α < 3
2 (n lnn)−2(α−1) (S & n lnn) [7] n−2(α−1) (S & n) [13]

Fα(P ), α ≥ 3
2 n−1 [13] n−1

TABLE I: Summary of results in this paper and the companion [7]. When the L2 rates have two terms, the first and second
terms represent respectively the contributions of the bias and the variance. When there is a single term, only the dominant
term is retained. Conditions for these results are presented in parentheses.

Table I demonstrates that the MLE cannot achieve the
minimax risk for estimation of H(P ), and Fα(P ) when
0 < α < 3/2. In these cases, there exist strictly better
estimators whose performance with n samples is roughly the
same as that of the MLE with n lnn samples. In other words,
the optimal estimators enlarge the effective sample size by a
logarithmic factor.

To our knowledge, Paninski [11] was the first to have
realized the connection between Bernstein polynomials and
bias of MLE. In the same paper [11], Paninski demonstrated
that if n = cS, where c > 0 is a constant, then the
maximum squared bias of H(Pn), and of the Miller–Madow
bias-corrected estimator HMM(Pn) would be bounded from
zero. Theorem 4 is the first to provide precise non-asymptotic
constants in lower bounding the maximum L2 risk of H(Pn)
and HMM(Pn).

In summary, our focus in this paper is on estimating
functionals of discrete distributions. We reiterate that our
techniques are equally applicable to the general plug-in rule
of functional estimation in general statistical experiments.
We implore the reader to refer to the full version of this
manuscript [13] for detailed proofs of all stated results, as
well as additional discussions pertaining to the rich history
and context of plug-in rules in functional estimation, as well
as a more comprehensive treatment of approximation theoretic
tools essential to analyze the bias incurred in functional
estimation.
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chain,” Journal of Physics A: Mathematical and Theoretical, vol. 41,
no. 2, p. 025302, 2008.

[7] J. Jiao, K. Venkat, Y. Han, and T. Weissman, “Minimax estimation of
functionals of discrete distributions,” IEEE Transactions on Information
Theory, vol. 61, no. 5, pp. 2835–2885, 2015.
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