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Abstract—We propose a general methodology for the con-
struction and analysis of minimax estimators for functionals
of discrete distributions, where the support size S is unknown
and may be comparable to the number of observations n. We
illustrate the merit of our approach by thoroughly analyzing
non-asymptotically the performance of the resulting schemes for
estimating two important information measures: the entropy
H(P ) =

∑S
i=1−pi ln pi and Fα(P ) =

∑S
i=1 p

α
i , α > 0. We

obtain the minimax L2 risks for estimating these functionals up
to a universal constant. In particular, we demonstrate that our
estimator achieves the optimal sample complexity n � S/ lnS
for entropy estimation. We also demonstrate that the sample
complexity for estimating Fα(P ), 0 < α < 1 is n � S1/α/ lnS,
which can be achieved by our estimator and not by the
popular plug-in Maximum Likelihood Estimator (MLE). For
1 < α < 3/2, we show the minimax L2 rate for estimating
Fα(P ) is (n lnn)−2(α−1) regardless of the support size, while
the exact L2 rate for the MLE is n−2(α−1). For all the above
cases, the behavior of the minimax rate-optimal estimators with
n samples is essentially that of the MLE with n lnn samples.
Finally, we highlight the practical advantages of our schemes for
the estimation of entropy and mutual information.

I. INTRODUCTION

One of the key tasks of information theory is to charac-

terize fundamental limits of operational problems by means

of information measures, namely, functionals of probability

distributions or conditional distributions (channels). Among

the most fundamental of such functionals is the entropy [1],

H(P ) �
S∑

i=1

−pi ln pi. (1)

Another widely applicable information measure which we

shall consider in detail is the functional Fα(P ):

Fα(P ) �
S∑

i=1

pαi , α > 0. (2)

The significance of functional Fα(P ) can be seen via the con-

nection Hα(P ) = lnFα(P )
1−α , where Hα(P ) is the Rényi entropy

[2], which also emerges in operational roles in information

theory [3] [4]. In addition to their prominent operational roles

in the traditional realms of information theory, information

measures such as the ones above have found numerous appli-

cations, among other fields, in statistics and machine learning,

biology, neuroscience, image processing, linguistics, secrecy,

ecology, physics, finance, etc. In most real-world inferential

applications, the true underlying distribution that generates

the data is unknown. Thus many statistical modeling, signal

processing and machine learning tasks rest upon data-driven

procedures for accurately estimating information measures.

A. Problem formulation

Given n independent samples from an unknown discrete

probability distribution P = (p1, p2, . . . , pS), with unknown
support size S, consider the problem of estimating a functional

of the distribution of the form:

F (P ) =

S∑
i=1

f(pi), (3)

where f : [0, 1]→ R is analytic1 at (0, 1], and f(0) = 0. Note

that this includes the information measures discussed above.

Denote by MS all discrete distributions with support size

S. Regarding the task of estimating functional F (P ), the L2

risk of an arbitrary estimator F̂ , which is a Borel measurable

function of the observations, is defined as EP

(
F (P )− F̂

)2

,

where the expectation is taken with respect to the distribution

P that generates the observations used by F̂ . The L2 risk is a

function of both the unknown distribution P and the estimator

F̂ , and our goal is to minimize this risk. Since P is unknown,

we cannot directly minimize it, but if we want to do well no

matter what the true distribution P is, we may want to adopt

the minimax criterion [5], and try to minimize the maximum
risk

sup
P∈MS

EP

(
F (P )− F̂

)2

. (4)

The estimator that minimizes the maximum risk above is

called the minimax estimator, and the corresponding risk is

called the minimax risk. The exact solution to this problem

for general F (P ) seems intractable. Indeed, it corresponds to

a high dimensional non-convex optimization problem, which

in general does not admit an efficient solution. In this work,

our goal is to design minimax rate-optimal estimators whose

maximum risk is equal to the minimax risk up to a universal

multiplicative constant.

Notation: Given non-negative sequences aγ , bγ , we use the

notation aγ � bγ to denote that there exists a universal

constant C such that supγ
aγ

bγ
≤ C. Notation aγ � bγ is

equivalent to aγ � bγ and bγ � aγ . Notation aγ � bγ means

lim supγ
aγ

bγ
= 0.

1A function f is analytic at a point x0 if and only if its Taylor series about
x0 converges to f in some neighborhood of x0.
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B. A brief history

A natural estimator for functionals of the form (3) is the

maximum likelihood estimator (MLE), or plug-in estimator,

which simply evaluates F (Pn), where Pn is the empirical

distribution of the data. How well does the MLE perform?

Interestingly, if we focus on n i.i.d. observations from a

distribution with support size S, then the problem of estimating

F (P ) becomes amenable to using the MLE when S is fixed,

and the number of observations n → ∞. This maximum

likelihood estimator is asymptotically efficient [6, Chapter 8].

Thus, the MLE is unbeatable in the asymptotic regime, where

S is fixed, and n grows without bound. However the apparent

optimality of the MLE is misleading when S might be growing

with n, where it can be shown to be strictly sub-optimal [7].

Hence, it is an intriguing question to investigate the optimal

estimator given finitely many samples.

The literature hinted that it is possible to come up with

consistent entropy estimators that only require n� S samples.

The earliest indication appeared in Paninski [8], in which

he showed that there exists a consistent entropy estimator

that requires only sublinear samples, but only an existential

proof based on the Stone–Weierstrass theorem was provided.

It was therefore a breakthrough when Valiant and Valiant

[9] introduced the first explicit entropy estimator requiring a

sublinear number of samples. In [9], they showed that n �
S/ lnS samples are both necessary and sufficient to estimate

the entropy of a discrete distribution. However, the entropy

estimators based on linear programming proposed in Valiant

and Valiant [9], [10] have not been shown to achieve the

minimax risk. Moreover, the scheme of [9] can only be applied

to functionals that are Lipschitz continuous with respect to a

Wasserstein metric, which can be roughly understood as those

functionals that are “smoother” than entropy. Notably, this

does not include the functional Fα, α < 1 and other interesting

nonsmooth functionals of distributions.

Conceivably, there is a fundamental connection between the

smoothness of a functional, and the hardness of estimating

it. The ideal solution to this problem would be systematic

and capture this trade-off for nearly every functional. This

motivates our present work, in which we provide a general

framework and procedure for minimax estimation of function-

als with non-asymptotic performance guarantees.

II. MAIN RESULTS

A. Our estimators

Our main goal in this work is to present a general approach

to the construction of minimax rate-optimal estimators for

functionals of discrete distributions. To illustrate our approach,

we describe and analyze explicit constructions for the specific

cases of entropy H(P ) and Fα(P ). Our estimators are agnos-

tic with respect to the support size S, and achieve the minimax

L2 rates.

Our approach is to tackle the estimation problem separately

for the cases of “small” values of p and “large” values of p (for

both H(P ) and Fα(P ) estimation), corresponding respectively

to treating regions where the functional is “nonsmooth” and

“smooth” in different ways. In the nonsmooth region, we

rely on the best polynomial approximation of the function f
by employing an unbiased estimator for this approximation.

The part pertaining to the smooth region is estimated by a

bias-corrected maximum likelihood estimator. We apply this

procedure coordinate-wise based on the empirical distribution

of each observed symbol, and finally sum the respective

estimates. The best polynomial approximation for a function

f(x) on domain A with order no more than K is defined as

P ∗K(x) � argmin
P∈polyK

max
x∈A

|f(x)− P (x)|, (5)

where polyK is the collection of polynomials with order at

most K on A.

We now look at the specific cases of entropy and Fα(P )
separately. For the entropy, after we obtain the empirical distri-

bution Pn, for each coordinate Pn(i), if Pn(i)� lnn/n, we

(i) compute the best polynomial approximation for −pi ln pi in

the regime 0 ≤ pi � lnn/n, (ii) use the unbiased estimators

for integer powers pki to estimate the corresponding terms

in the polynomial approximation for −pi ln pi up to order

Kn ∼ lnn, and (iii) use that polynomial as an estimate

for −pi ln pi. If Pn(i) � lnn/n, we use the estimator

−Pn(i) lnPn(i)+
1
2n to estimate −pi ln pi. Then, we add the

estimators corresponding to each coordinate. Our estimator for

Fα(P ) is very similar to that of entropy, with the only differ-

ence that we conduct polynomial approximation for xα with

order Kn ∼ lnn, and use the estimator
(
1 + α(1−α)

2nPn(i)

)
Pα
n (i)

when Pn(i)� lnn/n.

Figure 1 demonstrates the estimators for H(P ) and Fα(P )
pictorially. Where p̂i = Pn(i) denotes the empirical frequency

of i-th symbol.

0
1

unbiased estimate

of best polynomial

approximation of

order lnn

lnn
n

“nonsmooth” “smooth”

f(p̂i)− f ′′(p̂i)p̂i

2n

pi

f(pi)

Fig. 1: Pictorial explanation of our estimators.

We remark that our estimator is both conceptually and al-

gorithmically simple, with complexity linear in the number of

samples n. Indeed, the only non-trivial computation required
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is the best polynomial approximation for functions, which is

data-independent and can be done offline before obtaining any

samples.

B. Performance guarantees

Simple as our estimators are to describe and implement,

they can be shown to be “optimal” in a very strong sense.

Remark: In our analysis, we consider the “Poissonized” ob-

servation model [11, Pg. 508]. In the Poisson setting, we first

draw a Poisson random number N ∼ Poi(n), and then conduct

the sampling N times. Consequently the observed number of

occurrences for each symbol are independent. We can show

that the minimax risks under the original multinomial model

and the Poisson model are essentially the same [7].

We have the following characterization of the minimax risk

for entropy estimation.

Theorem 1. Suppose n � S
lnS . Then the minimax risk of

estimating entropy H(P ) satisfies

inf
Ĥ

sup
P∈MS

EP

(
Ĥ −H(P )

)2

� S2

(n lnn)2
+

(lnS)2

n
. (6)

Our estimator achieves this bound without knowledge of the
support size S under the Poisson model.

The following is an immediate consequence of Theorem 1.

Corollary 1. For our entropy estimator, the maximum L2 risk
vanishes provided n � S

lnS . Moreover, if n � S
lnS , then the

maximum risk of any estimator for entropy will be bounded
from zero.

Corollary 1 is consistent with [9], where it was shown that

one must have n� S
lnS for estimating the entropy. Recently,

Wu and Yang [12] independently applied the idea of best

polynomial approximation to entropy estimation, and obtained

its minimax L2 rates under a stricter stipulation (lnn � lnS).

The minimax lower bound part of Theorem 1 follows from

Wu and Yang [12]. We also remark that, unlike the estimator

we propose, the estimator in Wu and Yang [12] relies on

knowledge of the support size S, which generally may not

be known. Figure 2 demonstrates the performance of our

proposed entropy estimator in comparison with the MLE.

We now consider the functional Fα(P ), 0 < α < 1.

Theorem 2. Suppose n � S1/α

lnS when we estimate Fα(P ), 0 <
α < 1. Then we have the following characterizations of the
minimax risk.

1) 0 < α ≤ 1/2. If we also have lnn � lnS, then

inf
F̂α

sup
P∈MS

EP

(
F̂α − Fα(P )

)2

� S2

(n lnn)2α
. (7)

2) 1/2 < α < 1.

inf
F̂α

sup
P∈MS

EP

(
F̂α − Fα(P )

)2

� S2

(n lnn)2α
+

S2−2α

n
.

(8)

Our estimators F̂α achieves this bound without knowledge of
the support size S under the Poisson model.

One immediate corollary of Theorem 2 is the following.

Corollary 2. For our estimators of Fα, the maximum L2 risk
vanishes provided n � S1/α

lnS , 0 < α < 1. Moreover, if n �
S1/α

lnS , then the maximum risk of any estimator for Fα will be
bounded away from zero.

The minimax lower bound we present in Theorem 2 sig-

nificantly improves on Paninski’s lower bound in [8], which

states that if n � S1/α−1, then the maximum L2 risk of any

estimator for Fα(P ), 0 < α < 1, is bounded away from zero.

The next two theorems correspond to estimation of Fα(P ),
α > 1, where consistent estimation is possible even when the

support size is countably infinite.

Theorem 3. Under the Poissonized model, our estimator F̂α

satisfies, for 1 < α < 3
2 ,

sup
P∈∪SMS

EP

(
F̂α − Fα(P )

)2

� 1

(n lnn)2(α−1)
. (9)

In other words, our estimator F̂α, 1 < α < 3/2 achieves

an L2 convergence rate of (n lnn)−2(α−1) regardless of the

support size. This also turns out to be the minimax rate as

shown by the following lower bound result.

Theorem 4. There exists c > 0, such that if S ≥ cn lnn, then
for 1 < α < 3

2 ,

inf
F̂

sup
P∈MS

EP

(
F̂ − Fα(P )

)2

� 1

(n lnn)2(α−1)
, (10)

where the infimum is taken over all possible estimators F̂ .

For α > 3/2, the MLE achieves the parametric rate 1/n for

the mean squared error, which is optimal.

C. Discussion of main results

Table I summarizes the minimax L2 rates and the L2

convergence rates of the MLE in estimating Fα(P ), α > 0 and

H(P ). When the L2 rates have two terms, the first and second

terms represent respectively the contributions of the bias and

the variance. When there is a single term, only the dominant

term is retained. Conditions for these results are presented in

parentheses.

From a sample complexity perspective (i.e. how should

the number of samples n scale with the support size S to

achieve consistent estimation), Table I directly implies the

results stated in Table II.

Our work (including the companion paper [13]) are the first

to obtain the minimax rates, minimax rate-optimal estimators,

and the maximum risk of MLE for estimating Fα(P ), 0 < α <
3/2, and entropy H(P ) in the most comprehensive regimes of

(S, n). Evident from Table I is the fact that the MLE cannot

achieve the minimax risk for estimation of H(P ), and Fα(P )
when 0 < α < 3/2. In these cases, our estimators have

performance with n samples essentially the same of the MLE

with n lnn samples, and it is the best possible. In other words,

the minimax rate-optimal scheme enlarge the effective sample

size from n to n lnn. Furthermore, all the improvements we
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Minimax L2 rates L2 rates of MLE

H(P ) S2

(n lnn)2 + ln2 S
n

(
n � S

lnS

)
(Thm. 1, [12]) S2

n2 + ln2 S
n (n � S) [13]

Fα(P ), 0 < α ≤ 1
2

S2

(n lnn)2α

(
n � S1/α/ lnS, lnn � lnS

)
(Thm. 2) S2

n2α

(
n � S1/α

)
[13]

Fα(P ), 1
2 < α < 1 S2

(n lnn)2α + S2−2α

n

(
n � S1/α/ lnS

)
(Thm. 2) S2

n2α + S2−2α

n

(
n � S1/α

)
[13]

Fα(P ), 1 < α < 3
2 (n lnn)−2(α−1) (S � n lnn) (Thm. 3,4) n−2(α−1) (S � n) [13]

Fα(P ), α ≥ 3
2 n−1 [13] n−1

TABLE I: Summary of results in this paper and the companion [13]

MLE Minimax rate-optimal

H(P ) n� S n� S/ lnS

Fα(P ), 0 < α < 1 n� S1/α n� S1/α/ lnS
Fα(P ), α > 1 n� 1 n� 1

TABLE II: The number of samples needed to achieve consis-

tent estimation
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Fig. 2: The empirical mean squared error (MSE) of our

estimator and the MLE along sequence n = 5S/ lnS. For

each data point, we computer the MSE via 20 Monte Carlo

simulations of sampling n times from uniform distributions

with support size S. The horizontal line is lnS.

have are in the bias, which is the dominating factor in the risk.

This observation suggests a simple way to obtain the minimax

L2 rates from the L2 rates of the MLE. One just needs to find

the bias term in the expression of MLE L2 rates, and replace

the term n by n lnn. This simple rule has deep connections

with the rationale behind the construction and analysis of our

estimators.

Some readers may be concerned that the minimax decision

theoretic framework we adopt is too pessimistic. In some

sense, it characterizes the worst case performance over all

possible distributions P ∈MS , and it would be disappointing

if our estimator fails to behave optimally for distributions

lying in a strict subset of MS not including the worst case

distribution. We remark that our estimators can be shown to

be optimal in a much stronger sense. The statistics community

usually uses the adaptive estimation framework to alleviate

the pessimism of minimaxity [14]. Specifically, one specifies

a nested sequence of subsets of MS , and try to construct

an estimator that achieves simultaneously the minimax risks

over each of the subsets without knowing which subset the

parameter P belongs to. It was shown recently by another

companion paper [15] that along the nested subsetsMS(H) =
{P : H(P ) ≤ H}, our estimator (without knowing H)

simultaneously achieves the minimax rates over P ∈MS(H)
for all H ≤ lnS. Most surprisingly, the performance of

our estimator with n samples is still essentially that of the

MLE with n lnn samples over every set MS(H), further

strengthening the advantages of our estimator in practice.

It is instructive to consider our results in the context of the

intriguing connections and differences between three important

problems in information theory: entropy estimation, estimating

a discrete distribution under relative entropy loss, and minimax

redundancy in compressing i.i.d. sources. Table III summarizes

the known results and conveys several important messages.

First, in the asymptotic regime, there is a logarithmic factor

between the redundancy of the compression problem on one

hand, and the distribution estimation problem on the other.

Indeed, since compression requires use of a coding distribution

Q that does not depend on the data, the redundancy of

compression will definitely be larger than the risk under

relative entropy in estimating the distribution. However, in the

large alphabet setting, the problems are equally difficult - the

phase transition of vanishing risk for both compression and

distribution estimation happen when n is linear in the support

size S.

Second, the large alphabet setting shows that estimation of

entropy is considerably easier than both estimating the corre-

sponding distribution, or compressing the source. There have

been interesting developments in the large alphabet setting

in information theory, cf. [20]–[24]. One of the implications

of Table III is that the approach of entropy estimation via

compression can be sub-optimal in certain regimes.

Recently, [25] has studied the complexity of estimating

Rényi entropy Hα(P ). Interestingly, although we have the

relation Hα(P ) = lnFα(P )
1−α , the phase transitions for Hα(P )

and Fα(P ) can be quite different for α > 1.
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entropy estimation estimation of distribution compression with blocklength n

S fixed MSE ∼ Var(− lnP (X))
n [11] inf P̂ supP ED(PX‖P̂X) ∼ S−1

2n [16], [17] minQ supP
1
nD(PXn‖QXn) ∼ S−1

2n lnn [18]

large S n� S/ lnS [9] n� S [19] n� S [20], [21]

TABLE III: Comparison of difficulties in entropy estimation, estimation of distribution, and data compression under classical

asymptotics and high dimensional asymptotics

III. APPLICATIONS: MUTUAL INFORMATION ESTIMATION

As central as it is in information theory, mutual informa-

tion [1] has been adopted and widely used in a variety of other

disciplines. Recently, in [26], the present authors highlight the

applicability of the aforementioned methodology to statistical

problems beyond functional estimation, and show that it can

yield substantial gains. For example, we demonstrate that

for learning tree-structured graphical models, our approach

achieves a significant reduction of the required data size com-

pared with the classical Chow–Liu algorithm [27], which is

an implementation of the MLE, to achieve the same accuracy.

The key step in improving the Chow–Liu algorithm is to

replace the empirical mutual information with the estimator

for mutual information induced via our entropy estimator. This

estimator is shown to achieve the minimax L2 rates for mutual

information. Further, applying the same replacement approach

to classical Bayesian network classification, the resulting clas-

sifiers uniformly outperform the previous classifiers on 26

widely used datasets.

IV. CONCLUDING REMARKS

The functional estimation problem examined here has been

studied extensively in the fields of statistics, information

theory, computer science, physics, economics, psychology, and

several other disciplines. We implore the reader to refer to the

full version of this paper [7] for comprehensive discussions

pertaining to the motivation, related literature, proofs, method-

ologies, and additional results which we could not delve into

here due to space limitations. Also absent from the present

discussion are deep mathematical ideas from approximation

theory that have allowed us to develop the necessary tools for

the construction and analysis of essentially minimax estimators

for a wide class of functionals.
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