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Abstract—We consider the problem of learning high-dimensional
discrete distributions and structured (e.g. Gaussian) distributions
in distributed networks, where each node in the network observes
an independent sample from the underlying distribution and can
use k bits to communicate its sample to a central processor. We
consider a blackboard communication model, where nodes can share
information interactively through a public blackboard but each
node is restricted to write at most k bits on the final transcript.
We characterize the impact of the communication constraint k
on the minimax risk of estimating the underlying distribution
under `2 loss, and develop minimax lower bounds that apply in a
unified way to many common statistical models. This is achieved by
explicitly characterizing the Fisher information from the blackboard
transcript.

I. INTRODUCTION

Estimating a distribution from samples is a fundamental un-
supervised learning problem that has been studied in statistics
since the late nineteenth century [12]. Consider the following
distribution estimation model

X1, X2, · · · , Xn
i.i.d.∼ P

where we would like to estimate the unknown distribution P un-
der `2 loss. Unlike the traditional statistical setting where samples
X1, · · · , Xn are available to the estimator as they are, in this
paper we consider a distributed setting where each observation
Xi is available at a different node in a network and has to be
communicated to a central processor by using k bits.

We consider a very general blackboard communication pro-
tocol [11] where all nodes communicate via a publicly shown
blackboard while the total number of bits each node can write in
the final transcript Y is limited by k. When one node writes a
message bit on the blackboard, all other nodes can see the content
of the message bit, and depending on the written bit, another node
can take the turn to write a message on the blackboard. Upon
receiving the final transcript Y , the central processor produces
an estimate P̂ of the distribution P based on the transcript Y
and known procotol Π ∈ ΠBB. The goal is to jointly design the
protocol Π and the estimator P̂ (·) so as to minimize the worst
case squared `2 risk, i.e., to characterize

inf
Π

inf
P̂

sup
P∈P

EP ‖P̂ − P‖22,

where P denotes the class of distributions that P belongs to. We
study two different instances of this estimation problem:

1) High-dimensional discrete distributions: in this case we
assume that P = (p1, · · · , pd) is a discrete distribution
with known support size d and P denotes the probability
simplex over d elements. By “high-dimensional” we mean
that the support size d of the underlying distribution may
be comparable to the sample size n.

2) Structured distributions: in this case, we assume that we
have some additional information regarding the structure
of the underlying distribution or density. In particular, we
assume that the underlying distribution or density can be
parametrized such that

X1, X2, · · · , Xn
i.i.d∼ Pθ

where θ ∈ Θ ⊂ Rd. In this case, estimating the underlying
distribution amounts to estimating the parameters of this
distribution and we are interested in the following parameter
estimation problem under squared `2 risk

inf
Π

inf
θ̂

sup
θ∈Θ

Eθ‖θ̂ − θ‖22,

where θ̂(·) is an estimator of θ.
Statistical estimation in distributed settings has gained increas-

ing popularity over the recent years motivated by the fact that
modern data sets are often distributed across multiple machines
and processors, and bandwidth and energy limitations in networks
and within multiprocessor systems often impose significant bot-
tlenecks on the performance of algorithms. There are also an
increasing number of applications in which data is generated
in a distributed manner and the data (or features of it) are
communicated over bandwidth-limited links to central processors.
In particular, recent works [5], [6], [7] focus on a special case
of the distributed parameter estimation problem described above,
when the underlying distribution is known to have Gaussian
structure, i.e. Pθ = N (θ, σ2Id) with σ2 known and θ ∈ Θ = Rd,
often called the Gaussian location model. On the other hand,
[3] focuses on the first problem described above, distributed
estimation of high-dimensional discrete distributions, under `1

loss.
In the authors’ recent work [1], we showed that the results of

these papers (results of [5], [6], [7] and the corresponding results
of [3] under `2 loss) can be recovered in a unified framework
which focuses on Fisher information from a single quantized
sample under the following two simpler communication models:
• Independent protocols: each node independently quantizes its

observation into k bits and communicates it to the central
processor.

• Sequential protocols: node j for 1 ≤ j ≤ n quantizes its
observation to k bits after it observes the quantized samples
broadcasted by nodes 1, 2 . . . , j − 1.

Characterizing Fisher information from a single sample quantized
to k-bits was sufficient to address distributed estimation under
these simpler protocols via an immediate application of the chain
rule for Fisher information. However, applying the chain rule for
Fisher information does not yield the desired answer in the case of
blackboard protocols, as the interaction between nodes introduces
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dependency between the bits written by different nodes on the
blackboard. In this follow-up paper, we show how to characterize
and bound the Fisher information from the blackboard transcript
Y , and use these bounds to recover the results of [5], [6], [7], [3]
under a blackboard protocol, which is also the model considered
in these works except [5]. This further demonstrates the power
and flexibility of the Fisher information approach to developing
minimax lower bounds in distributed estimation problems. With
the exception of our prior work [1], all prior work on related
problems (including [5], [6], [7], [3], [2], [13]) build on an
alternative well-established technique for developing minimax
lower bounds on statistical estimation problems that relies on
converting the estimation problem to a carefully constructed
hypothesis testing problem via the use of Fano’s inequality. Even
though the Cramér-Rao bound which yields a lower bound on the
estimation error of an unbiased estimator in terms of the Fisher
information is one of the most classical results in statistics, we
are not aware of any other Fisher information based approaches
to distributed estimation problems.

II. THE BLACKBOARD COMMUNICATION PROTOCOL

Suppose there are n nodes and each node has access to one
sample Xi such that

X1, X2, · · · , Xn
i.i.d∼ Pθ

where θ ∈ Θ ⊂ Rd. Nodes communicate their samples to a central
node (and each other) via a publicly shown blackboard, and the
total number of bits each node can write in the final transcript Y
is limited by k bits. When one node writes a message (bit) on the
blackboard, all other nodes can see the content of the message.
Formally, a blackboard communication protocol Π ∈ ΠBB can be
viewed as a binary tree [11], where each internal node v of the tree
is assigned a deterministic label lv ∈ [n] indicating the identity
of the node to write the next bit on the blackboard if the protocol
reaches tree node v; the left and right edges departing from v
correspond to the two possible values of this bit and are labeled
by 0 and 1 respectively. Because all bits written on the blackboard
up to the current time are observed by all nodes, the nodes can
keep track of the progress of the protocol in the binary tree. The
value of the bit written by node lv (when the protocol is at node
v of the binary tree) can depend on the sample Xlv observed
by this node (and implicitly on all bits previously written on the
blackboard encoded in the position of the node v in the binary
tree). Therefore, this bit can be represented by a function bv(x) =
pv(1|x) ∈ [0, 1], which we associate with the tree node v; node
lv transmits 1 with probability bv(Xlv ) and 0 with probability
1−bv(Xlv ). Note that a proper labeling of the binary tree together
with the collection of functions {bv(·)} (where v ranges over all
internal tree nodes) completely characterizes all possible (possibly
probabilistic) blackboard communication strategies for the nodes.
See Figure 1 for an example.

The k-bit communication constraint for each node can be
viewed as a labeling constraint for the binary tree; for each
i ∈ [n], each possible path from the root node to a leaf node can
visit exactly k internal nodes with label i. In particular, the depth
of the binary tree is nk and there is one-to-one correspondence
between all possible transcripts y ∈ {0, 1}nk and paths in the
tree. Let τ(y) denote the set of nodes v that are traversed by the
path associated with transcript y.

0 1

0 1 10

b1(X3)

b2(X1) b3(X2)

Fig. 1. A valid blackboard protocol for 3 nodes each writing a single bit on the
blackboard.

Let bv,y(xlv ) = bv(xlv ) if the path associated with y takes the
“1” branch after node v, and bv,y(xlv ) = 1− bv(xlv ) otherwise.
The probability distribution of Y can be written as

P(Y = y) = E

 ∏
v∈τ(y)

bv,y(Xlv )


so that by the independence of the Xi,

P(Y = y) =
n∏
i=1

E

 ∏
v∈τ(y) : lv=i

bv,y(Xi)


=

n∏
i=1

E [pi,y(Xi)]

where pi,y(xi) =
∏
v∈τ(y) : lv=i bv,y(xi). Along with this charac-

terization of the probability distribution of Y , we will need the
following Lemma that appears in [2].

Lemma 1. For each j = 1, . . . , d ,∑
y

∏
i 6=j

E[pi,y(Xi)] = 2k .

III. FISHER INFORMATION

Recall that in the scalar case (when θ ∈ R), the Fisher
information from a sample X ∼ Pθ, where Pθ has density f(x|θ)
with respect to some base measure ν, can be written in terms of
the score function

Sθ(x) =
∂

∂θ
log f(x|θ) .

The Fisher information from X for estimating θ is then

IX(θ) = E[Sθ(X)2]

where E denotes taking the expectation with respect to f(x|θ).
In the vector case, when θ ∈ Rd, we have a score function for

each component θi,

Sθi(x) =
∂

∂θi
log f(x|θ) ,

and a score function vector

Sθ(X) = (Sθ1(X), . . . , Sθd(X)) .

In this paper we will be interested in the sum of the Fisher
informations from the transcript Y for each component θi, i.e.

IY (θ) =
d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]
.
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In order to lower bound the minimax risk under the blackboard
model, we will proceed by characterizing and upper bounding
IY (θ).

Proposition 1. The score for component θi can be written as

∂

∂θi
logP(Y = y) =

n∑
j=1

E[Sθi(Xj)pj,y(Xj)]

E[pj,y(Xj)]
.

Proof. The main difficulty here is that we need to interchange
integration over the sample space X and differentiation with
respect to θi:

∂

∂θi
logP(Y = y) =

n∑
j=1

∂

∂θi
logE [pj,y(Xj)]

=

n∑
j=1

∂
∂θi

E [pj,y(Xj)]

E [pj,y(Xj)]

=
n∑
j=1

∂
∂θi

∫
X pj,y(xj)f(xj |θ)dν(xj)

E [pj,y(Xj)]

=
n∑
j=1

∫
X pj,y(xj)

∂
∂θi
f(xj |θ)dν(xj)

E [pj,y(Xj)]

=
n∑
j=1

E[Sθi(Xj)pj,y(Xj)]

E[pj,y(Xj)]
.

This interchange can be justified when f(x|θ) satisfies the regu-
larity conditions from [1]; namely that

√
f(x|θ) is continuously

differentiable with respect to each θj for ν-almost all x ∈ X , and
that E[Sθj (X)2] exists and is continuous in θj . See also [8].

The Fisher information from Y for estimating the component
θi is then

E

[(
∂

∂θi
logP(Y = y)

)2
]

=
∑
j,k,y

P(Y = y)
E[Sθi(Xj)pj,y(Xj)]E[Sθi(Xk)pk,y(Xk)]

E[pj,y(Xj)]E[pk,y(Xk)]
.

Note that when j 6= k the terms within this summation are zero:∑
y

P(Y = y)
E[Sθi(Xj)pj,y(Xj)]E[Sθi(Xk)pk,y(Xk)]

E[pj,y(Xj)]E[pk,y(Xk)]

= E

[
Sθi(Xj)Sθi(Xk)

∑
y

n∏
l=1

pl,y(Xl)

]
= E [Sθi(Xj)Sθi(Xk)] = 0 . (1)

The step in (1) follows since
∏n
l=1 pl,y(xl) describes the prob-

ability that Y = y for fixed samples x1, . . . , xn, and thus∑
y

∏n
l=1 pl,y(xl) = 1.

Returning to the Fisher information from Y we have that
d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]

=
∑
y

P(Y = y)
∑
j,d

(
E[Sθi(Xj)pj,y(Xj)]

E[pj,y(Xj)]

)2

. (2)

Let Ej,y denote taking expectation with respect to the new density

pj,y(xj)f(xj |θ)
E[pj,y(Xj)]

.

Now we can simplify (2) as

IY (θ) =
d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]

=
∑
y

P(Y = y)
∑
j

‖Ej,y[Sθ(Xj)]‖2 . (3)

IV. UPPER BOUNDS ON FISHER INFORMATION

Using the expression for the Fisher information from (3), we
will develop upper bounds for this Fisher information under
assumptions on the tail of the distribution of Sθ(X). In this first
bound we only assume that the projection of the score function
vector Sθ(X) onto any unit vector has finite variance.

Theorem 1. Suppose that

E[〈u, Sθ(X)〉2] ≤ I0

for some constant I0 and any unit vector u ∈ Rd. Then

d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]
≤ n2kI0 .

Proof. Picking

u =
Ej,y[Sθ(X)]

‖Ej,y[Sθ(X)]‖
,

the Cauchy-Schwarz inequality implies

E[pj,y(X)]‖Ej,y[Sθ(X)]‖2

=
1

E[pj,y(X)]
(E[〈u, Sθ(X)〉pj,y(X)])

2

≤ 1

E[pj,y(X)]
E[〈u, Sθ(X)〉2]E[pj,y(X)2]

≤ 1

E[pj,y(X)]
E[〈u, Sθ(X)〉2]E[pj,y(X)]

= E[〈u, Sθ(X)〉2] .

Together with (3) this gives

d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]

=
∑
y

P(Y = y)
∑
j

‖Ej,y[Sθ(Xj)]‖2

≤
∑
j,y

I0
∏
i 6=j

E[pi,y(X)]

= I0n2k .

The last equality follows from Lemma 1.

Recall that for p ≥ 1, the Ψp Orlicz norm of a random variable
X is defined as

‖X‖Ψp
= inf{K ∈ (0,∞) | E[Ψp(|X|/K)] ≤ 1}

where Ψp(x) = exp(xp) − 1 . A random variable with finite
p = 1 Orlicz norm is sub-exponential, while a random variable
with finite p = 2 Orlicz norm is sub-Gaussian [9]. Our second
theorem shows that when the Ψp Orlicz norm of the projection of
Sθ(X) onto any unit vector is bounded by some finite constant,
the Fisher information can increase at most polynomially with k
with order k

2
p .
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Theorem 2. Suppose that

‖〈u, Sθ(X)〉‖Ψp
≤ N

for some constant N , p ≥ 1, and any unit vector u ∈ Rd. Then

d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]
≤ 4N2nk

2
p .

Proof. Again letting

u =
Ej,y[Sθ(X)]

‖Ej,y[Sθ(X)]‖

we have

2 ≥ E[exp((|〈u, Sθ(X)〉|/N)p)]

≥ E[pj,y(X) exp((|〈u, Sθ(X)〉|/N)p)]

≥ E[pj,y(X)]Ej,y[exp((|〈u, Sθ(X)〉|/N)p)]

≥ E[pj,y(X)] exp

(∣∣∣∣ 1

N
Ej,y[〈u, Sθ(X)〉]

∣∣∣∣p)
≥ E[pj,y(X)] exp

((
1

N
Ej,y[〈u, Sθ(X)〉]

)p)
and

‖Ej,y[Sθ(Xj)]‖ ≤ N
(

log
2

E[pj,y(X)]

) 1
p

.

Continuing from (3),

d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]

≤ N2
∑
y

P(Y = y)
∑
j

(
log

2

E[pj,y(X)]

) 2
P

= N2
∑
y,j

∏
i6=j

E[pi,y(X)]

E[pj,y(X)]

(
log

2

E[pj,y(X)]

) 2
p

(4)

Finally, by upper bounding (4) with the upper concave envelope
φ of x 7→ x

(
log 2

x

) 2
p on [0, 1], and then using both Lemma 1

and Jensen’s inequality:

d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]

≤ N2
∑
y,j

∏
i 6=j

E[pi,y(X)]

φ (E[pj,y(X)])

≤ N2
∑
j

2kφ

(∑
y

1

2k
P(Y = y)

)
= N2n(k + 1)

2
p (5)

≤ 4N2nk
2
p .

In line (5) we have used the fact that φ matches the function
x 7→ x

(
log 2

x

) 2
p for 0 < x ≤ 1

2 .

V. MINIMAX LOWER BOUNDS

Using the upper bounds on Fisher information developed in
Theorems 1 and 2, we will apply the van Trees inequality [10]
to achieve a minimax lower bound on the risk for the underlying
distributed estimation problem. We will see that when the score
function has finite variance (as in Theorem 1), the lower bound
decreases exponentially with k; and when the score function has
some sub-Gaussian structure (as in Theorem 2 with p = 2), the
lower bound decays like 1/k.

Theorem 3. Suppose Θ = [−B,B]d. For any estimator θ̂(Y )
and communication protocol Π ∈ ΠBB, if Sθ(X) satisfies the
hypotheses in Theorem 1 then

sup
θ∈Θ

E[‖θ̂ − θ‖2] ≥ d2

I02kn+ dπ2

B2

,

and if Sθ(X) satisfies the hypotheses in Theorem 2 then

sup
θ∈Θ

E[‖θ̂ − θ‖2] ≥ d2

4N2k
2
pn+ dπ2

B2

.

Proof. Consider the squared error risk in estimating θ:

E[‖θ − θ̂‖2] =
d∑
i=1

E[(θi − θ̂i)2] .

In order to lower bound this risk, we will use the van Trees in-
equality from [10]. Suppose we have a prior µi for the parameter
θi. The van Trees inequality for the component θi gives

∫ B

−B
E[(θ̂i(Y )− θi)2]µi(θi)dθi

≥ 1∫ B
−B E

[(
∂
∂θi

logP(Y = y)
)2
]
µi(θi)dθi + I(µi)

(6)

where I(µi) =
∫ B
−B

µ′
i(θ)

2

µi(θ)
dθ is the Fisher information from the

prior. Note that the required regularity condition that

E
[
∂

∂θi
logP(Y = y)

]
= 0

follows trivially since the expectation over Y is just a finite sum:

E
[
∂

∂θi
logP(Y = y)

]
=
∑
m

∂

∂θi
P(Y = y)

=
∂

∂θi

∑
m

P(Y = y) = 0 .

The prior µi can be chosen to minimize this Fisher information
and achieve I(µi) = π2/B2 [8]. Let µ(θ) =

∏
i µi(θi). By
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summing over each component,∫
Θ

d∑
i=1

E[(θi − θ̂i)2]µ(θ)dθ

≥
d∑
i=1

1∫
Θ
E
[(

∂
∂θi

logP(Y = y)
)2
]
µ(θ)dθ + π2

B2

(7)

= d
d∑
i=1

1

d

1∫
Θ
E
[(

∂
∂θi

logP(Y = y)
)2
]
µ(θ)dθ + π2

B2

≥ d 1∑d
i=1

1
d

∫
Θ
E
[(

∂
∂θi

logP(Y = y)
)2
]
µ(θ)dθ + π2

B2

(8)

=
d2∫

Θ
IY (θ)µ(θ)dθ + dπ2

B2

.

Therefore,

sup
θ∈Θ

E[‖θ̂(Y )− θ‖2] ≥ d2

supθ∈Θ IY (θ) + dπ2

B2

. (9)

The inequaltiy (8) follows from Jensen’s inequality via the
convexity of x 7→ 1/x for x > 0, and the inequality (7) follows
both from this convexity and (6).

In the proof above we could have used the multivariate version
of the van Trees inequality [10] to arrive at the same result, but we
have used the single-variable version in each coordinate instead
in order to simplify the required regularity conditions.

A. Applications to Common Statistical Models
Theorem 3 gives a lower bound on the minimax risk for the

distributed estimation of θ under many common statistical models.
We summarize some of these results in the following corollaries.
The lower bound for the Gaussian location model in Corollary
1 reproduces the lower bound from [2] and is valid with fewer
samples n. It also matches the achievability result from [7]. For
the distribution estimation problem, Corollary 2 matches both
the lower bound and achievability result from [2]. We see that
tight bounds can be shown by directly characterizing the Fisher
information from the blackboard transcript.

Corollary 1 (Gaussian location model). Let X ∼ N (θ, σ2Id)
with [−B,B]d ⊂ Θ. For any Π ∈ ΠBB and nB2 min{k, d} ≥
dσ2, we have

sup
θ∈Θ

E[‖θ̂(Y )− θ‖2] ≥ Cσ2 max

{
d2

nk
,
d

n

}
for any estimator θ̂ where C > 0 is a universal constant
independent of n, k, d, σ2, B.

The condition that nB2 min{k, d} ≥ dσ2 is a weak condition
that ensures that we can ignore the second term in the denom-
inator of (9). For fixed B, σ, this condition is weaker than just
assuming that n is at least order d, which is required for consistent
estimation anyways. We will make a similar assumption in the
subsequent corollaries.

Corollary 2 (distribution estimation). Suppose that X =
{1, . . . , d+ 1} and that

f(x|θ) = θx .

Let Θ be the probability simplex with d + 1 variables. For any
Π ∈ ΠBB and nmin{2k, d} ≥ d2, we have

sup
θ∈Θ

E[‖θ̂(Y )− θ‖2] ≥ C max

{
d

n2k
,

1

n

}
for any estimator θ̂ where C > 0 is a universal constant
independent of n, k, d.

In this final corrolary, we give an example where the score
function is sub-exponential, and therefore Theorem 2 with p = 1
yields a quadratic dependence on k. It is unknown whether or not
this is order-wise optimal.

Corollary 3 (Gaussian covariance estimation). Suppose that
X ∼ N (0, diag(θ1, . . . , θd)) with [σ2

min, σ
2
max]d ⊂ Θ. Then for

n
(
σ2

max − σ2
min

)2
min{k2, d} ≥ dσ4

min, we have

sup
θ∈Θ

E[‖θ̂ − θ‖2] ≥ Cσ4
min max

{
d2

nk2
,
d

n

}
for any communication protocol Π ∈ ΠBB and any estima-
tor θ̂, where C > 0 is a universal constant independent of
n, k, d, σmin, σmax.
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