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Abstract—We consider the problem of estimating the L1

distance between two discrete probability measures P and Q from
empirical data in a nonasymptotic and large alphabet setting. We
construct minimax rate-optimal estimators for L1(P,Q) when Q
is either known or unknown, and show that the performance
of the optimal estimators with n samples is essentially that of
the Maximum Likelihood Estimators (MLE) with n lnn samples.
Hence, we demonstrate that the effective sample size enlargement
phenomenon, discovered and discussed in Jiao et al. (2015), holds
for this problem as well. However, the construction of optimal
estimators for L1(P,Q) requires new techniques and insights
outside the scope of the Approximation methodology of functional
estimation in Jiao et al. (2015).

I. INTRODUCTION

A. Problem formulation

Statistical functionals are usually used to quantify the fun-
damental limits of data processing tasks such as data com-
pression (e.g. Shannon entropy [2]), data transmission (e.g.
mutual information [2]), estimation and testing (e.g. Kullback–
Leibler divergence), etc. They measure the difficulties of
the corresponding data processing tasks and shed light on
how much improvement one may expect beyond the current
state-of-the-art approaches. In this sense, it is of great value
to obtain accurate estimates of these functionals in various
problems.

In this paper, we consider estimating the L1 distance be-
tween two discrete distributions P = (p1, p2, . . . , pS), Q =
(q1, q2, . . . , qS), which is defined as:

L1(P,Q) ,
S∑
i=1

|pi − qi|. (1)

Throughout we use the squared error loss, i.e., the risk function
for an estimator L̂ is defined as

R(P,Q; L̂) , E|L̂(Xn, Y n)− L1(P,Q)|2, (2)

where (Xi, Yi)
i.i.d.∼ P ×Q. The maximum risk of an estimator

L̂, and the minimax risk in estimating L1(P,Q) are defined
as

Rmaximum(P,Q; L̂) , sup
P∈P,Q∈Q

R(P,Q; L̂), (3)

Rminimax(P,Q) , inf
L̂

sup
P∈P,Q∈Q

R(P,Q; L̂), (4)
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respectively, where P,Q are given collections of probability
measures P and Q, respectively, and the infimum is taken over
all possible estimators L̂.

The L1 distance is closely related to the Bayes error, i.e.,
the fundamental limit, in classification problems. Specifically,
for a two-class classification problem, if the prior probabilities
for each class are equal, then the minimum probability of error
achieved using the optimal classifier is given by

L∗ =
1

2
− 1

4
L1(PX|Y=1, PX|Y=0), (5)

where Y ∈ {0, 1} indicates the class, and PX|Y are the class-
conditional distributions. Hence, the problem of estimating
L∗ in this classification problem is reduced to estimating the
L1 distance between the two class-conditional distributions
PX|Y=1, PX|Y=0 from the empirical data. In the statistical
learning theory literature, most work on Bayes classification
error estimation deals with the case that PX|Y=1 and PX|Y=0

are continuous distributions, and it turns out that even in an
asymptotic setting it is very difficult to estimate this quantity in
this general continuous case. Indeed, we know from [3, Section
8.5] the negative result that for every sample size n, any
estimate of the Bayes error L̂n, and any ε > 0, there exist some
class-conditional distributions such that E|L̂n − L∗| ≥ 1

4 − ε.
This negative result shows that one needs to look at special

classes of the class-conditional distributions in order to obtain
consistent estimates. In the discrete setting, the seminal work
of Valiant and Valiant [4] deserves special mention. They
constructed an estimator for L1(P,Q) and showed that when
S/ lnS . n . S, it achieves L1 error

√
S/(n lnn), and it is

the best possible rate for the constant L1 error regime. It is
quite simple to argue, as we do in this paper, that the simplest
estimator for L1(P,Q), namely plugging in the empirical
distribution Pn, Qn and obtaining L1(Pn, Qn) achieves L1

error rate
√
S/n for n & S. In this sense, the optimal estimator

seems to enlarge the sample size n to n lnn in the error rate
expression.

B. Approximation: the general recipe

We emphasize that the observed effective sample size en-
largement here is another manifestation of the recently discov-
ered phenomenon in functional estimation of high dimensional
objects. There has been a recent wave of study on functional
estimation of high dimensional parameters [1], [5]–[7], and it
was shown in Jiao et al. [1] that for a wide class of functional
estimation problems (including Shannon entropy H(P ) =



∑S
i=1−pi ln pi, Fα ,

∑S
i=1 p

α
i , and mutual information),

there exists a general methodology, termed Approximation,
that can be applied to design minimax rate-optimal estimators
whose performance with n samples is essentially that of the
MLE (maximum likelihood estimator, or the plug-in approach)
with n lnn samples.

The general methodology of Approximation in [1] is as
follows. Consider estimating G(θ) of a parameter θ ∈ Θ ⊂ Rp
for an experiment {Pθ : θ ∈ Θ}, with a consistent estimator
θ̂n for θ, where n is the number of observations. Suppose the
functional G(θ) is analytic1 everywhere except at θ ∈ Θ0.
A natural estimator for G(θ) is G(θ̂n), and we know from
classical asymptotics [8, Lemma 8.14] that given the benign
LAN (Local Asymptotic Normality) condition [8], G(θ̂n) is
asymptotically efficient for G(θ) for θ /∈ Θ0 if θ̂n is asymptoti-
cally efficient for θ. In the estimation of functionals of discrete
distributions, Θ is the S-dimensional probability simplex, and
a natural candidate for θ̂n is the empirical distribution, which
is unbiased for any θ ∈ Θ.

We propose to conduct the following two-step procedure in
estimating G(θ).

1) Classify the Regime: Compute θ̂n, and declare that we
are in the “non-smooth” regime if θ̂n is “close” enough
to Θ0. Otherwise declare we are in the “smooth” regime;

2) Estimate:
• If θ̂n falls in the “smooth” regime, use an estimator

“similar” to G(θ̂n) to estimate G(θ);
• If θ̂n falls in the “non-smooth” regime, replace

the functional G(θ) in the “non-smooth” regime
by an approximation Gappr(θ) (another functional)
which can be estimated without bias, then apply an
unbiased estimator for the functional Gappr(θ).

Approaches of this nature appeared before [1] in Lepski,
Nemirovski, and Spokoiny [9], Cai and Low [10], Vinck et
al. [11], Valiant and Valiant [4], developed independently for
entropy estimation by Wu and Yang [6], and later utilized
by Acharya et al. [7]. However, we emphasize that in all
the examples above except for the L1 distance estimator in
Valiant and Valiant [4], the functionals considered all take
the form G(

∑p
i=1 f(θi)) or G(

∫
f(p(x))dx), where p(x) is a

univariate density or function, and each θi ∈ R. In particular,
the functions f(·) considered are everywhere analytic except
at zero, e.g., xα, |x|α for α > 0 and x lnx. Most of these
features are violated in the L1 distance estimation problem. If
we write L1(P,Q) =

∑S
i=1 f(pi, qi) with f(x, y) = |x−y| ∈

C([0, 1]2), then we have:
1) a bivariate function f(x, y) in the sum;
2) a function f(x, y) which is analytic except on a segment

x = y ∈ [0, 1].
As discussed in Jiao et al. [1], approximation of multivariate

functions is much more involved than that of univariate func-
tions, and the fact that the “non-smooth” regime is around a
line segment here makes the application of the Approximation

1A function f is analytic at a point x0 if and only if its Taylor series about
x0 converges to f in some neighborhood of x0.

approach quite difficult: what shape should we use to spec-
ify the “non-smooth” regime? We provide a comprehensive
answer to this problem in this paper, thereby substantially
generalizing the applicability of the Approximation method-
ology and demonstrate the intricacy of functional estimation
problems in high dimensions.

The rest of the paper is organized as follows. In Section
II and III, we present a thorough performance analysis of the
MLE and explicitly construct the minimax rate-optimal esti-
mators, where Section II covers the known Q case and Section
III generalizes to the unknown Q case. Discussions in Section
IV highlight the significance and novelty of our approaches
by reviewing several other approaches which are shown to
be suboptimal. We adopt the following notation for positive
sequences {an}, {bn}: an . bn means supn an/bn < ∞,
an & bn means bn . an, an � bn means an . bn and
an & bn. We omit the proofs due to space limitations, and
refer the readers to the full version [12] for details.

II. DIVERGENCE ESTIMATION WITH KNOWN Q

First we consider the case where Q = (q1, · · · , qS) is
known to us while P is an unknown distribution with support
{1, 2, · · · , S}. In other words, P = MS and Q = {Q}. We
analyze the performance of the MLE in this case, and construct
the approximation-based minimax rate-optimal estimator.

A. Performance of the MLE

The MLE serves as a natural estimator for the L1 distance
which can be expressed as L1(Pn, Q) =

∑S
i=1 |p̂i − qi|,

where Pn = (p̂1, p̂2, · · · , p̂S) is the empirical distribution
with np̂i ∼ B(n, pi). We analyze the bias and the variance of
L1(Pn, Q) separately. For the variance, the bounded difference
inequality [13] gives Var(L1(Pn, Q)) ≤ 1/n, independent of
Q. For the bias, since |p̂i−qi| is almost unbiased in estimating
|pi−qi| when pi is far away from qi, the case P = Q is almost
the worst case. The following lemma provides sharp estimates
on E|q̂ − q|, where nq̂ ∼ B(n, q).

Lemma 1 [14] For nq̂ ∼ B(n, q), we have

E|q̂ − q| ≤
√
q(1− q)

n
. (6)

Furthermore, if 1
n ≤ q ≤ 1− 1

n , there is also a lower bound

E|q̂ − q| ≥
√
q(1− q)

2n
. (7)

Based on this lemma, we obtain both the upper and lower
bounds for the mean squared error of L1(Pn, Q).

Theorem 1 The maximum likelihood estimator satisfies

sup
P∈MS

EP |L1(Pn, Q)− L1(P,Q)|2 ≤
(F1/2(Q))2 + 1

n
(8)



where F1/2(Q) =
∑S
i=1

√
qi. Moreover, if qi ∈ [1/n, 1−1/n]

for all i = 1, 2, · · · , S, there is also a lower bound

sup
P∈MS

EP |L1(Pn, Q)− L1(P,Q)|2 ≥
(F1/2(Q))2

2n
. (9)

Evidently, the mean squared error of the MLE is of the
order (F1/2(Q))2/n, which is closely related to the order-
(1/2) power sum of the known distribution Q. The following
corollary is straightforward since F1/2(Q) ≤

√
S.

Corollary 1 If n & S, we have

sup
P,Q∈MS

EP |L1(Pn, Q)− L1(P,Q)|2 � S

n
. (10)

Hence, it is necessary and sufficient for the MLE to have
n � S samples to be consistent, and we note that the
necessity can also be derived using the result that the empirical
distribution requires n � S samples to have a vanishing L1

risk in estimating the true distribution [15].

B. Construction of the optimal estimator

Since it is by now widely established that the MLE is usu-
ally strictly suboptimal in estimating non-smooth functionals
of high-dimensional parameters [1], [5]–[7], now we apply our
general recipe to construct the minimax rate-optimal estimator.

First we classify regimes. For f(x, q) = |x−q|, we are in the
“non-smooth” regime if and only if the empirical probability p̂
is close to q, or equivalently, p̂ ∈ U(q) for some “uncertainty
set” U(q) containing q. A natural question arises: how do we
measure the closeness, or equivalently, how do we determine
U(q)? Our answer is that, the uncertainty set U(qi) should be
chosen such that the unknown parameter p can be localized
within U(q). More precisely, p ∈ U(q) ensures that p̂ ∈ Ũ(q)
with overwhelming probability, where Ũ(q) , q+2(U(q)−q)
is two times larger, and vice versa by exchanging U and Ũ .
Mathematically, we require

max{ sup
p∈U(q)

Pp(p̂ /∈ Ũ(q)), sup
p/∈Ũ(q)

Pp(p̂ ∈ U(q))} . n−A

for some large universal constant A. In our setting, np̂ ∼
B(n, p), and the Binomial tail bounds yield the choice

U(x) =

{
[0, c1 lnn

n ], x ≤ c1 lnn
n

[x−
√

c1x lnn
n , x+

√
c1x lnn

n ], x > c1 lnn
n

(11)

for some universal constant c1 > 0 depending on A only.
Now we construct the estimator. In the “smooth” regime,

i.e., p̂ /∈ U(q), we simply employ the MLE |p̂− q| to estimate
f(p, q). In the “non-smooth” regime, we need to approximate
f(p, q) by another functional which can be estimated without
bias. In our Binomial model np̂ ∼ B(n, p), the only functional
of p which can be estimated without bias is a polynomial
of p with degree no more than n. Hence, we consider the
best polynomial approximation of f(x, q) on U(q), which is
defined as

PK(x; q) = arg min
P∈PolyK

max
z∈U(q)

|f(z, q)− P (z)| (12)

where PolyK denotes the set of polynomials with degree no
more than K. Once we obtain PK(x; q), we can use an un-
biased estimate P̃K(p̂; q) such that EP̃K(p̂; q) = PK(p; q) for
np̂ ∼ B(n, p). As a result, the bias of the estimator P̃K(p̂; q) in
the “non-smooth” regime is exactly the approximation error of
PK(x; q) in approximating f(x, q) = |x− q| on U(q), which
can be significantly smaller than the MLE. The following
lemma gives the bias and variance bound of P̃K(p̂; q).

Lemma 2 For np̂ ∼ B(n, p) with p ∈ U(q), we have

|EP̃K(p̂; q)− |p− q|| . 1

K

√
q lnn

n
(13)

Var(P̃K(p̂; q)) .
BK(lnn)2

n
(p+ q) (14)

for some universal constant B > 0.

Hence, to balance the bias and the variance, the approxima-
tion order should be set as K � lnn, and then the bias is of the
order

√
q/(n lnn), a logarithmic improvement compared with

Lemma 1. In summary, we have the following construction.

Estimator Construction 1 Randomly split the samples into
two half samples with equal size, and obtain the corresponding
empirical probabilities p̂i,1, p̂i,2 for each i = 1, · · · , S. We use
the first half samples to classify regimes and the second half
samples for estimation, i.e., L̂(1) =

∑S
i=1[|p̂i,2 − qi|1(p̂i,1 /∈

U(qi)) + P̃K(p̂i,2; qi)1(p̂i,1 ∈ U(qi))], where U(qi) is given
by (11), K = c2 lnn, and c1, c2 > 0 are properly chosen
universal constants.

The performance of this estimator is as follows.

Theorem 2 For lnn . lnF1/2(Q), we have

sup
P∈MS

EP |L̂(1) − L1(P,Q)|2 .
[F1/2(Q)]2

n lnn
. (15)

Corollary 2 For lnn . lnS, we have

sup
P,Q∈MS

EP |L̂(1) − L1(P,Q)|2 .
S

n lnn
. (16)

Hence, together with Theorem 1 and Corollary 1, the
estimator L̂(1) has a logarithmic improvement over the MLE.

C. Minimax lower bound
Now we prove a minimax lower bound for estimating

L1(P,Q) via the dual of best polynomial approximation and
show that L̂(1) is indeed minimax rate-optimal. The main idea
is the so-called fuzzy hypothesis testing [16], i.e., we construct
two priors µ1, µ2 satisfying the following two key ingredients:

1) Functional value separation: the expected functional
values under P ∼ µ1 and P ∼ µ2 are quite different,
i.e., |Eµ1

L1(P,Q)− Eµ2
L1(P,Q)| is large.

2) Indistinguishability: the marginal distributions Fi of the
observations generated by P ∼ µi are close to each
other, i.e., the total variation distance TV(F1, F2) is
small.

Specifically, we choose Q = (1/S, · · · , 1/S) and µi = ν⊗Si
as product priors that generate a valid pmf with high probabil-



ity [6], where supp(νi) ⊂ U(1/S). If Eν1xl = Eν2xl for l =
0, 1, · · · ,K � lnn, we can obtain that TV(F1, F2) . n−2.
Hence, it suffices to maximize |Eν1 |x−S−1|−Eν2 |x−S−1||
subject to the previous moment constraints. Duality gives

sup
ν:‖ν‖TV≤1∫

xlν(dx)=0,l=0,1,··· ,K

∣∣∣∣∫ f(x)ν(dx)

∣∣∣∣ = inf
p∈PolyK

‖f − p‖∞,

which is the best polynomial approximation error of degree K
and is � 1/

√
Sn lnn for each symbol. The final lower bound

follows from a detailed analysis of µi.

Theorem 3 For lnn . lnS and S . n lnn, we have

inf
L̂

sup
P,Q∈MS

|L̂− L1(P,Q)|2 &
S

n lnn
(17)

where the infimum is taken over all possible estimators.

Hence, a combination of Corollary 2 and Theorem 3 shows
that the estimator L̂(1) is minimax rate-optimal.

III. DIVERGENCE ESTIMATION WITH UNKNOWN Q

Now we consider the general case where both P and Q are
unknown to us, i.e., P = Q =MS .

A. Performance of the MLE

In this case, the MLE is expressed as L1(Pn, Qn) =∑S
i=1 |p̂i−q̂i|. Since |L1(Pn, Qn)−L1(P,Q)| ≤ L1(Pn, P )+

L1(Qn, Q) by the triangle inequality, Lemma 1 can again be
applied here to give the performance of the MLE.

Theorem 4 If n & S, the MLE satisfies

sup
P,Q∈MS

|L1(Pn, Qn)− L1(P,Q)|2 � S

n
. (18)

Hence, the MLE achieves the mean squared error S/n, and
requires n� S samples to be consistent.

B. Construction of the optimal estimator
Again we apply our general recipe to construct the optimal

estimator, but encounter several new difficulties: f(x, y) =
|x− y| is not analytic on a segment, and both the uncertainty
set and the polynomial approximation need to be generalized
to the 2D case. We will overcome these obstacles step by step.

As usual, first we classify “smooth” and “non-smooth”
regimes. Since the function f(x, y) = |x − y| ∈ C([0, 1]2) is
not analytic on the segment x = y ∈ [0, 1], we are looking for
the “uncertainty set” U containing this segment such that any
(p, q) ∈ U can be “localized” in the previous sense. Applying
the Binomial tail bounds again yields

U = ∪x∈[0,1]U(x)× U(x) (19)

where U(x) is given by (11). As a result, we declare that we
are in the “non-smooth” regime if and only if (p̂, q̂) ∈ U .

Now we construct the estimator. In the “smooth” regime
(p̂, q̂) /∈ U , we employ the MLE |p̂− q̂| as before. In the “non-
smooth” regime, the previous example seems to suggest that
we consider the best polynomial approximation of f(x, y) =
|x− y| on U . However, this will not work for two reasons:

1) the entire 2D stripe U is too large for the polynomial
approximation error to vanish at the correct rate;

2) best polynomial approximation in the 2D case is not
unique, and may not achieve the desired pointwise error.

We will explore these reasons in more detail in Section
IV. To solve the first problem, we remark that although
U is the set such that its element can be localized within
U , a specific element (x, y) ∈ U can be localized in a
smaller subset U(x, y) = U(x+y2 ) × U(x+y2 ) ⊂ U , where
U(x) is given by (11). Hence, for the observation (p̂, q̂), we
should consider a polynomial PK(x, y; p̂, q̂) with degree K
to approximate f(x, y) on U(p̂, q̂), and then use an unbiased
estimate P̃K(x, y; p̂, q̂) of PK(x, y; p̂, q̂) for estimation.

For the second problem, we need to find a suitable polyno-
mial PK(x, y; p̂, q̂) with satisfactory approximation properties.
The answer is as follows: if (p̂ + q̂)/2 > c1 lnn/n, we use
PK(x, y; p̂, q̂) = QK(x− y;

√
2(p̂+ q̂) lnn/n), where

QK(t; s) = arg min
P∈PolyK

max
z∈[−s,s]

||z| − P (z)| (20)

is the 1D polynomial approximation of |t| in [−s, s] by the
variable substitution t = x− y, s =

√
2(p̂+ q̂) lnn/n, which

is validated by the fact f [U(p̂, q̂)] ⊂ [−s, s]. If (p̂ + q̂)/2 ≤
c1 lnn/n, we consider the decomposition |x − y| = (

√
x +√

y)|
√
x − √y| and use PK(x, y; p̂, q̂) = uK(x, y)vK(x, y),

where uK , vK are the degree-K best approximating polyno-
mial of

√
x+
√
y and |

√
x−√y|, respectively, on U(p̂, q̂) =

[0, c1 lnn/n]2. In practice, uK and vK can be replaced by
the efficiently implementable lowpass filtered Chebyshev ex-
pansion [17], which achieves the same error rate as the best
polynomial approximation. The performance of P̃K(x, y; p̂, q̂)
is presented in the following lemma.

Lemma 3 For n(p̂1, q̂1), n(p̂2, q̂2) ∼ B(n, p) × B(n, q) with
(p, q) ∈ U and (p̂1, q̂1) independent with (p̂2, q̂2), we have

|EP̃K(p̂2, q̂2; p̂1, q̂1)− |p− q|| . 1

K

√
lnn

n
(
√
p+
√
q) (21)

Var(P̃K(p̂2, q̂2; p̂1, q̂1)) .
BK(lnn)2

n
(p+ q) (22)

for some universal constant B > 0.

Hence, we still choose K � lnn to balance the bias and
the variance, and construct the estimator as follows.

Estimator Construction 2 As before, use sample splitting
to obtain (p̂i,1, q̂i,1) and (p̂i,2, q̂i,2). The estimator is de-
fined as L̂(2) =

∑S
i=1[|p̂i,2 − q̂i,2|1((p̂i,1, q̂i,1) /∈ U) +

P̃K(p̂i,2, q̂i,2; p̂i,1, q̂i,1)1((p̂i,1, q̂i,1) ∈ U)], where U is given
by (19), K = c2 lnn, and c1, c2 > 0 are properly chosen
universal constants.

The next theorem presents the performance of L̂(2).

Theorem 5 For lnn . lnS, we have

sup
P,Q∈MS

|L̂(2) − L1(P,Q)|2 .
S

n lnn
. (23)

Since the lower bound for the known Q case also serves as a



lower bound for the general case, Theorem 3 and Theorem
5 yield that L̂(2) is minimax rate-optimal. Note that L̂(2)

achieves the minimax rate without knowing the support size S
a priori. Moreover, the effective sample size enlargement effect
holds again: the performance of the optimal estimator with n
samples is essentially that of the MLE with n lnn samples.

IV. COMPARISON WITH OTHER APPROACHES

In this section, we review some other possible approaches
in estimating the L1 distance, and apply approximation theory
to argue the strict suboptimality of some approaches.

A. Approximation only around the origin

In the previous papers [1], [4]–[7] in estimating en-
tropy, power sum, mutual information, etc, the approximation
methodology is conducted only around the origin. However,
we remark that this is insufficient in estimating the L1 dis-
tance. Consider the known Q case with S � n/ lnn and
P = Q uniform, since we are only using approximation for
p̂ ∈ [0, c1 lnn/n], we will use the plug-in approach in this
case. Then the lower bound in Lemma 1 shows that the mean
squared error of this estimator is lower bounded by S/n, which
is worse than the optimal rate S/(n lnn). This is exactly the
reason why the estimator of Valiant and Valiant [4] can only
achieve the optimal error rate when n . S . n lnn, but ours
merely requires lnn . lnS to achieve the optimal error rate.

B. One-dimensional approximation in the 2D case

In the construction of L̂(2), we split into two cases when
(p̂, q̂) ∈ U , i.e., 1D approximation of |t| via the substitution
t = x− y if (p̂+ q̂)/2 > c1 lnn/n, and the decomposition of
|x− y| into (

√
x+
√
y)|
√
x−√y| otherwise. Can we always

do 1D approximation of |t| with t = x − y to achieve the
desired approximation error, i.e., propose some P (t) ∈ PolyK
with K � lnn and |P (t) − |t|| .

√
t/(n lnn) for any |t| ≤

c1 lnn/n? We have a proposition for approximating |t| [18].

Proposition 1 If QK(t) ∈ PolyK is even with QK(0) = 0,
and achieves the best uniform error rate maxt∈[−1,1] |QK(t)−
|t|| . 1/K, we have

lim sup
K→∞

1

K
sup

0<|t|≤1/K

|t| − |QK(t)− |t||
t2

<∞. (24)

Obviously P (0) = 0 and achieves the best uniform bound,
and by P̃ (t) = (P (t)+P (−t))/2 we can get P (t) even. Then
Proposition 1 gives |P (t) − |t|| ≥ |t| − Cnt2 for |t| . 1/n,
contradicting the upper bound when 1/(n lnn) � t � 1/n.
Hence, any 1D approximation does not work in this case!

C. Approximation on the entire 2D stripe

In the unknown Q case we have decomposed the stripe U
into subsets where polynomial approximations take place. Is
it possible that we use a single polynomial P (x, y) of degree
K � lnn to approximate |x − y| such that |P (x, y) − |x −
y|| .

√
(x+ y)/(n lnn) for any (x, y) ∈ U? We prove that

the answer is negative even for U ′ = ∪x∈[c1 lnn/n,tn]U(x) ×
U(x) ⊂ U and any tn � (lnn)3/n.

Proposition 2 If (lnn)3/n� tn ≤ 1/2, K � lnn, we have

lim inf
n→∞

√
n lnn · inf

P∈PolyK
sup

(x,y)∈U ′

|P (x, y)− |x− y||√
x+ y

= +∞.

Proposition 2 shows that the subset U(c1 lnn/n, c1 lnn/n)
of U is the correct set to approximate |x− y| over when our
observation (p̂, q̂) is in it. For a too large set U ′ (e.g., U ′ = U ),
every polynomial fails to achieve the desired approximation
error bound

√
(x+ y)/(n lnn).

D. The estimator in Valiant and Valiant [4]
The estimator for the L1 distance in Valiant and Valiant [4]

also achieves the optimal MSE S/(n lnn) for n . S . n lnn.
Our estimator, as an linear estimator in the language of [4],
improves over [4] in two aspects: it achieves the optimal
error rate in more general cases by approximating over the
whole non-smooth segment, and achieves a tighter upper
bound

√
(p+ q)/(n lnn) by a better polynomial approxima-

tion (sharper than the bound
√
S/(n lnn)(p+q+1/S) in [4]).
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