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Abstract—We analyze the problem of discrete distribution
estimation under ¢, loss. We provide non-asymptotic upper and
lower bounds on the maximum risk of the empirical distribution
(the maximum likelihood estimator), and the minimax risk in
regimes where the alphabet size S may grow with the number
of observations n. We show that among distributions with
bounded entropy H, the asymptotic maximum risk for the
empirical distribution is 2H/ In n, while the asymptotic minimax
risk is H/Inn. Moreover, a hard-thresholding estimator, whose
threshold does not depend on the unknown upper bound H, is
asymptotically minimax. We draw connections between our work
and the literature on density estimation, entropy estimation, total
variation distance (/1 divergence) estimation, joint distribution
estimation in stochastic processes, normal mean estimation, and
adaptive estimation.

I. INTRODUCTION AND MAIN RESULTS

Given n independent samples from an unknown discrete
probability distribution P = (p1,pa,- - ,ps), with unknown
support size S, we would like to estimate the distribution
P under ¢; loss. Equivalently, the problem is to estimate P
based on the Multinomal random vector (X7, Xo, ..., Xg) ~
Multi(n; p1,p2, ..., Ds)-

A natural estimator of P is the Maximum Likelihood
Estimator (MLE), also known as the empirical distribution P,,
where P, (1) = X;/n is the number of occurrences of symbol
1 in the sample divided by the sample size n. This paper is
devoted to analyzing the performances of the MLE, and the
minimax estimators in various regimes. Specifically, we focus
on the following three regimes:

1) Classical asymptotics: the dimension S of the unknown
parameter P remains fixed, and we analyze the estima-
tion problem when the number of observations n goes
to infinity.

2) High dimensional asymptotics: we let the alphabet size
S and the number of observations n grow together,
analyze the scaling under which consistent estimation
is possible, and obtain the minimax rates.

3) Infinite dimensional asymptotics: the distribution P may
have infinite alphabet size, but is constrained to have
bounded entropy H(P) < H, where

S

H(P)£ Y —pip;. (1

i=1
We remark that results in the first regime follow from the
well-developed theory of asymptotic statistics [1, Chap. 8], and
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we include it here for completeness and comparison with other
regimes. One motivation for considering the high dimensional
and infinite dimensional asymptotics is that, in the modern
era of big data, we can no longer assume that the number of
observations is much larger than the dimension of the unknown
parameter. It is particularly true for the distribution estimation
problem, e.g., the Wikipedia page on the Chinese characters
showed that the alphabet of Chinese language is at least
80,000. Meanwhile, for distributions with extremely large
alphabet sizes (such as the Chinese language), the number of
frequent symbols are considerably smaller than the alphabet
size. It motivates the third regime, in which we focus on
distributions with finite entropy, but possibly extremely large
alphabet sizes. Another key result that motivates the problem
of discrete distribution estimation under bounded entropy
constraint is Marton and Shields [2], who essentially showed
that the entropy dictates the difficulty in estimating discrete
distributions under ¢; loss in stochastic processes.

We denote by Mg the set of all distributions of support
size S. The ¢; loss for estimating P using () is defined as

s
||P_Q||1éZ|pi_Qi|7 ()
i=1

where () is not necessarily a probability mass function. The
risk function for an estimator P in estimating P under ¢; loss
is defined as R R

R(P; P) £ Epl|P - P|, (3)

where the expectation is taken with respect to the measure P.
The maximum ¢; risk of an estimator P, and the minimax
risk in estimating P are respectively defined as

Runasimum(P; P) £ sup R(P; P) @)
pPecP
Rminimax(P) = H}f sup R(Pa P)’ (5)
P PeP

where P is a given collection of probability measures P, and
the infimum is taken over all possible estimators P.

Throughout this paper, we investigate the maximum risk of
the MLE Rpuximum (P; P,) and the minimax risk Ruinimax(P)
for various choices of P. There are good reasons for focusing
on the ¢; loss, as we do in this paper. Other loss functions
in distribution estimation, such as the ¢y loss, have been
extensively studied, while fewer results are known for the ¢;
loss. For the /5 loss, the minimax estimator is unique and
depends on the alphabet size S [3, Pg. 349], which is highly



impractical in cases S is unknown. This fact partially motivates
our focus on the ¢; loss, which turns out to bridge our
understanding of both parametric and nonparametric models.
The ¢; loss in discrete distribution estimation is compatible
with and is a degenerate case of the L; loss in density
estimation, which is the only loss that satisfies certain natural
properties [4].

This paper is organized as follows. In Section II, we inves-
tigate the MLE and the minimax estimator in the preceding
three regimes and state our main results. Various connections
between our results and the literature are drawn in Section
III. The Appendices outline proofs of some theorems, and we
refer the readers to the journal version [5] for complete proofs.
All logarithms in this paper are assumed to be in natural base.

II. MAIN RESULTS

We investigate the maximum ¢; risk of the MLE
Rinaximum (P; Py,) and the minimax £; risk Rpinimax(P) in the
aforementioned three different regimes separately. Understand-
ing Rumaximum(P; Pp) = suppep R(P; P,) follows from an
understanding of R(P; P,) = Ep|/ P, — P||;. This problem
can be decomposed into analyzing the Binomial mean absolute
deviation defined as E|X/n — p|, where X ~ B(n, p) follows
a Binomial distribution. Berend and Kontorovich [6] provided
tight upper and lower bounds on the Binomial mean absolute
deviation, and we summarize some key results in Lemma 1 of
the Appendix. It is well-known that

—P||1§\/§- (6)
n

In the present paper we show that MLE is minimax rate-
optimal in all the three regimes we consider, but possibly sub-
optimal in terms of constants in high dimensional settings.

sup Ep| P,
PeMg

A. Classical asymptotics

It follows easily from (6) that
lim sup v/n - sup Ep|P, — Py < VS <oo. (1)

n—oo
Regarding the lower bound, the well-known Héjek-Le Cam
local asymptotic minimax theorem (Theorem 4 in Appendix
A) and corresponding achievability theorems [1, Lemma 8.14]
show that the MLE is optimal (even in constants) in classical
asymptotics. Concretely, one corollary of Theorem 4 in the

Appendix shows that for a fixed S > 2,
\/5 (S 1)}
T S

where the infimum is taken over all possible estimators.

>0,
3

lim inf v/n - 1nf sup Ep||P — P|, >

n— oo

B. High dimensional asymptotics
It follows easily from (6) that for S = n/c,

lim sup v/c - lim sup sup Ep||P, — Pllhi £1<c0. (9)

c— 00 n—roo

The following theorem presents a non-asymptotic minimax
lower bound.

Theorem 1 For any ¢ € (0, 1], we have

2(14+¢)n (1+QO)n e

_ ) exp (— S ) e N T
inf sup Ep|P— Pl > ¢, =5 A+On _ e
P PeMs g\/%’ s 716

n ¢S
_ —2—)—-12
exp( 24 ) CXP ~32(InS5)?

(10)

where the infimum is taken over all possible estimators.

Theorem 1 implies the following minimax lower bound in
high dimensional asymptotics, if we take ¢ — 0.

Corollary 1 For any constant ¢ > 0, if S = n/c the
convergence rate of the maximum {1 risk is at least ¢~ 3, e,

liminf \/c - lim inf inf sup ]EPHP P||1>%, (11)

c— 00 n—oo P PeM

where the infimum in both formulas is taken over all possible
estimators.

Hence, we show that S = n/c is the critical scaling in
high dimensional asymptotics. In other words, if n < S, then
no estimator for the distribution P can be consistent under ¢;
loss. This phenomenon has been observed in several papers,
such as [6].

C. Infinite dimensional asymptotics

The non-asymptotic performance of MLE in the regime of
bounded entropy is characterized in the following theorem.

Theorem 2 The empirical distribution P, satisfies that, for
any H > 0 and n > 1,
2H 1
* (Inn)n’
(12)

sup

EP”PW P”l >~
P:H(P)<H Inn —

2nlnlnn

Further, for any c € (0,1) and n > max{(1 — c)_ﬁ,eH},

2cH _1\"
sup B[Py Pz 1 (1= (1= cn)F)".
P:H(P)<H
13)
It follows from Theorem 2 after taking ¢ — 1~ to obtain
the following Corollary.
Corollary 2 For any H > 0, the MLE P, satisfies
1
lim =" sup Ep|P,—Pli=2  (14)
n—0oo P:H(P)<H
It implies that we not only have obtained the (Inn)~! conver-

gence rate of the asymptotic ¢; risk of MLE, but also shown
that the corresponding coefficient is exactly 2H. We note
that this logarithmic convergence rate is really slow, since the
sample size needs to be squared to reduce the maximum ¢; risk
by a half. Also note that the maximum ¢; risk is proportional



to the entropy H, thus the smaller the entropy of a distribution,
the easier it is to estimate.

Now we consider the minimax lower bound. Corollary 2
shows that the convergence rate for MLE is (Inn)~!. Given
this slow rate, it is of utmost importance to obtain estimators
such that the corresponding constant is small. We show that
MLE cannot achieve the optimal constant. In the following
theorem, an asymptotically minimax estimator is explicitly
constructed.

Theorem 3 For any 1 > 1, for the estimator defined as
P(X) = (gn(Xl)agn(XQ)»' o agn(XS)) with

) =241 (> W) Cas)
n n n
we have
A H
P:;(I;DI?SH]EP”P ~ Pl < Inn — In(2e?) — 2nlnlnn
1 1 1
(Inn)7 = n®~(lnn)?1  9p2, 5 1 (Inn)2n .

(16)
Moreover, for any c € (0,1) and n > e, we have

inf sup Ep|P— Pl

P p:H(P)<H

> n(2n) exp (76(1 — c)f%(Qn)P%) —6 (1 + lcnji>
((1—c)n)e SH((1—¢)n)e
. |f>xP <_ 16ceH(lnn)3> T exp (_ e(lnn)3 )]
n 1
Bl exp(—ﬂ) ~ 4(Inn)?
a7

where the infimum is taken over all possible estimators.

Theorem 3 presents both a non-asymptotic achievable maxi-
mum ¢; risk and a non-asymptotic lower bound of the minimax
1 risk, and it is straightforward to verify that the upper bound
and lower bound coincide asymptotically by choosing ¢ — 1.
As a result, the asymptotic minimax ¢y risk is characterized
in the following corollary.

Corollary 3 For any H > 0, the asymptotic minimax risk is
H .
Inn*

Inn
liminf —
n—0o0

-inf sup  Ep|[P— Pl =1,

P p:H(P)<H

(18)

and the estimator P in Theorem 3 is asymptotically minimax.

In light of Corollaries 2 and 3, the asymptotic minimax
¢ risk for the distribution estimation with bounded entropy
is exactly % half of that obtained by MLE. Since the
convergence rate is (Inn)~!, the performance of the asymp-
totically minimax estimator with n samples in this problem is
nearly that of MLE with n? samples, which is a significant
improvement.

III. DISCUSSIONS

Now we draw various connections between our results and
the literature.

1) Density estimation under Ly loss: There is an extensive
literature on density estimation under L; loss, and we refer
to the book by Devroye and Gyorfi [4] for an excellent
overview. The conclusion that it is necessary and sufficient
to use n > S samples to consistently estimate an arbitrary
discrete distribution with alphabet size S has appeared in the
literature [7], but we did not find an explicit reference giving
non-asymptotic results, and for completeness we have included
proofs corresponding to the high dimensional asymptotics in
this paper. We remark that, a very detailed analysis of the
discrete distribution estimation problem under ¢; loss may be
insightful and instrumental in future breakthroughs in density
estimation under L loss.

2) Entropy estimation: It was shown that the entropy is
nearly Lipschitz continuous under the ¢; norm [8, Thm.
17.3.3], i.e., if [|P — Q|1 < 1/2, then

1P — QI

[H(P) = H(Q)| < [P - Q| ln =2,

where S is the alphabet size. At first glance, it seems to suggest
that the estimation of entropy can be reduced to estimation of
discrete distributions under ¢; loss. However, this question is
far more complicated than it appears.

First, people have already noticed that this near-Lipschitz
continuity result only holds on finite alphabets [9]. An evident
proof of this fact is the following result by Antos and Kon-
toyiannis [10] on entropy estimation over countably infinite
alphabet sizes.

(19)

Remark 1 Among all discrete sources with finite entropy and
Var(—Inp(X)) < oo, for any sequence {H,} of estimators
for the entropy, and for any sequence {ay,} of positive numbers
converging to zero, there is a distribution P (supported on at
most countably infinite symbols) with H = H(P) < oo such
that

limsup ———— =

n—00 G,

(20)

Remark 1 shows that, among all sources with finite entropy
and finite varentropy, no rate-of-convergence results can be
obtained for any sequence of estimators. Indeed, if the entropy
is still nearly-Lipschitz continuous with respect to ¢; distance
in the infinite alphabet setting, then Corollary 2 immediately
implies that the MLE plug-in estimator for entropy attains a
universal convergence rate. That there is no universal con-
vergence rate of entropy estimators for sources with bounded
entropy is particularly interesting in light of the fact that the
minimax rates of convergence of distribution estimation with
bounded entropy is O((Inn)~1).

Second, it is very interesting and deserves pondering that
along high dimensional asymptotics, the minimax sample com-
plexity for estimating entropy is n > % samples, a result
first discovered by Valiant and Valiant [11], then recovered by
the present authors using a different approach in [12]. Since



it is shown in Corollary 1 that we need n > S samples to
consistently estimate the distribution, this result shows that
we can consistently estimate the entropy without being able
to consistently estimate the underlying distribution. Note that
if the plug-in approach is used for entropy estimation, i.e., if
we use H(P,) to estimate H(P), it has been shown in [13]
that this estimator again requires n > S samples.

3) {1 divergence estimation between two distributions:
Now we turn to the estimation problem for the ¢; divergence
||P—Q)||1 between two discrete distributions P, @) with support
size at most S. At first glance, by setting one of the distribution
to be deterministic, the problem of ¢; divergence estimation
seems a perfect dual to the distribution estimation problem
under ¢ loss. However, compared to the required sample com-
plexity n > S in the distribution estimation problem under
¢y loss, the minimax sample complexity for estimating the ¢,
divergence between two arbitrary distributions is n > %
samples, a result first discovered by Valiant and Valiant [11],
then recovered and extended using a different approach by the
present authors in [14] who also obtained the minimax rates.
Hence, this result shows that it is easier to estimate the ¢;
divergence than to estimate the distribution with a vanishing
¢; risk. Note that for distribution estimation, for each symbol
we need to obtain a good estimate for p; in terms of the ¢,
risk, while for ¢; divergence estimation we do not need to
estimate each p; and q; separately.

4) Joint d-block distribution estimation in stochastic pro-
cesses: Marton and Shields [2] showed that, in a stationary
ergodic stochastic process with sample size n and entropy
rate H, the joint d-tuple distribution of the process can
be consistently estimated using the empirical distribution if
and only if d < U=9™ for any ¢ > 0. An intuitive
explanation of this result is that when d is large enough, the
d-tuples have effective alphabet size e?”, hence it requires
n ~ e samples to consistently estimate the joint d-tuple
distribution. It remains any interesting question to explore
the connection between the infinite dimensional asymptotics
regime considered in this paper and the results by Marton and
Shields [2].

5) Hard-thresholding estimator is asymptotically minimax:
Corollary 3 shows that in the infinite dimensional asymp-
totics, MLE is far from asymptotically minimax, and a hard-
thresholding estimator achieves the asymptotic minimax risk.
The phenomenon that thresholding methods are needed in
order to obtain minimax estimators for high dimensional pa-
rameters in a ¢, ball under ¢, error, p > 0,p < ¢,q € [1,00),
was first noticed by Donoho and Johnstone [15]. Following the
rationale of the James-Stein shrinkage estimator, they proposed
the soft- and hard-thresholding estimators for the normal mean
given that we know a priori that the mean 6 lies in a ¢, ball,
p € (0,00). Note that the set {P : H(P) < H} forms a ball
similar to the £, ball, and the loss function is ¢;, so it is not
surprising that hard-thresholding leads to an asymptotically
minimax estimator. The asymptotic minimax estimators under
other constraints on the distribution P remain to be explored.

6) Adaptive estimation: Note that in the infinite dimen-
sional asymptotics, for a sequence of problems {H(P) < H}
with different upper bounds H, the asymptotically minimax
estimator in Theorem 3 achieves the minimax risk over all
“entropy balls” without knowing its “radius” H. It is very
important in practice, since we do not know a priori an
upper bound on the entropy of the distribution. This estimator
belongs to a general collections of estimators called adaptive
estimators, for details we refer to a survey paper by Cai [16].

APPENDIX A
AUXILIARY LEMMAS

A non-negative loss function {(-) on RP? is called bowi-
shaped iff [(u) = I(—u) for all u € R? and for any ¢ > 0, the
sublevel set {u : [(u) < ¢} is convex. The following theorem
is one of the key theorems in asymptotic efficiency.

Theorem 4 [1, Thm. 8.11] Let the experiment (Py, 0 € ©) be
differentiable in quadratic mean at 6 with nonsingular Fisher
information matrix Iy. Let 1 () be differentiable at 0. Let {T,,}
be any estimator sequence in the experiments (Pg,0 € R¥).
Then for any bowl-shaped loss function 1,

. . h
SI;p hwfggf 229E0+%l (\/ﬁ (Tn - (9 + \/ﬁ))) o
> /ldN(O,w’(G)Ig_W/(@)T%

here the first supremum is taken over all finite subsets I C RF.

The following lemma gives a sharp estimate of the Binomial
mean absolute deviation.

Lemma 1 [6] For X ~ B(n,p), we have

X
E p' §min{\/5,2p}. (22)
n n
Moreover, for p < 1/n, there is an identity
X
E‘n—p‘ =2p(1—p)". (23)

APPENDIX B
OUTLINES OF PROOFS OF MAIN THEOREMS

Due to space constraints, we will not discuss the proof of the
lower bounds. We refer the readers to the journal version [5]
for detailed proofs.

A. Analysis of MLE

Lemma 1 yields

X;
— —Di
n

S

S
Ep||[P— Polli =) Ep
=1




For the upper bound in Theorem 2, we use Lemma 1 again

and obtain
> >

2n \F 27
pi< (In Z) < (n n)

2H L 1
(Inn)n
For the lower bound, we consider the distribution P =

(6/8',-+--,8/5',1 — 0) with entropy H, then it is easy to

obtain that for ¢ € (0,1),6 <,

S" > Jexp <I§> (1—c)<.

We assume without loss of generality that S’ is an integer. For
€ (0,1), by choosing § = cH/Inn < ¢, we can check that

% < %, and the identity in Lemma 1 can be applied to obtain

Ep||P — Ppl1 <2 Vi (24)

25
T lnn—2nlnlnn 25)

o=

(26)

S’ n
Z é

S,
=1
1\
_E)

B. Analysis of the Estimator in Theorem 3

(28)

We first establish a lemma on the properties of g, (X) while
omitting its proof. Define A,, = (Inn)?"/n.

Lemma 2 If X ~ B(n,

p), we have

e“lnn
p+ (W) p <Ay,

Elgn(X) =Pl < ¢ /2 4p A, <p<2e2A,,
2
VE+nTT p > 2e2A,,.
(29)
Combining these results, we conclude that
5 pi
E — < ; o
PIP=Plis S mi+ Y /B
pi<2e2A, pi>A,
e2lnn
¢ Y () X o
pPi<A, pi>2e2A, (30)
1\t 1
<(ln—%— H 4+ —=
- ( . 262An> * nAy
+ 6762 Inn n + nfé 1
(Inn)2n 2e2A,

which is exactly the upper bound of Theorem 3.
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