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Abstract—The Dirichlet prior is widely used in estimating
discrete distributions and functionals of discrete distributions.
In terms of Shannon entropy estimation, one approach is to
plug-in the Dirichlet prior smoothed distribution into the entropy
functional, while the other one is to calculate the Bayes estimator
for entropy under the Dirichlet prior for squared error, which
is the conditional expectation. We show that in general they
do not improve over the maximum likelihood estimator, which
plugs-in the empirical distribution into the entropy functional.
No matter how we tune the parameters in the Dirichlet prior, this
approach cannot achieve the minimax rates in entropy estimation,
as recently characterized by Jiao, Venkat, Han, and Weissman [1],
and Wu and Yang [2]. The performance of the minimax rate-
optimal estimator with n samples is essentially at least as good
as that of the Dirichlet smoothed entropy estimators with n lnn
samples.

We harness the theory of approximation using positive linear
operators for analyzing the bias of plug-in estimators for general
functionals under arbitrary statistical models, thereby further
consolidating the interplay between these two fields, which was
thoroughly exploited by Jiao, Venkat, Han, and Weissman [3]
in estimating various functionals of discrete distributions. We
establish new results in approximation theory, and apply them
to analyze the bias of the Dirichlet prior smoothed plug-in
entropy estimator. This interplay between bias analysis and
approximation theory is of relevance and consequence far beyond
the specific problem setting in this paper.

I. INTRODUCTION

One of the key tasks of information theory is to charac-
terize fundamental limits of operational problems by means
of information measures, namely, functionals of probability
distributions or conditional distributions (channels). Among
the most fundamental of such functionals are the Shannon
entropy [4],

H(P ) ,
S∑
i=1

pi ln
1

pi
(1)

and the mutual information, which emerged in Shannon’s
1948 masterpiece [4] as the answers to the most fundamental
questions of compression and communication.

In addition to their prominent operational roles in the tradi-
tional realms of information theory, information measures have
found numerous applications in fields ranging from statistics,
machine learning, to biology, ecology, to name a few. In
most real-world inferential applications, the true underlying
distribution that generates the data is unknown. Thus the

applications rest upon data-driven procedures for accurately
estimating information measures.

Classical theory is mainly concerned with the case where
the number of samples n → ∞, while the alphabet size S
is fixed. In that scenario, the maximum likelihood estimator
(MLE), H(Pn), which plugs in the empirical distribution into
the definition of entropy, is asymptotically efficient [5, Thm.
8.11, Lemma 8.14]. It is therefore not surprising to encounter
the following quote from the introduction of Wyner and Foster
[6] who considered entropy estimation:

“The plug-in estimate is universal and optimal not
only for finite alphabet i.i.d. sources but also for finite
alphabet, finite memory sources. On the other hand,
practically as well as theoretically, these problems are
of little interest. ”

In contrast, various modern data-analytic applications deal
with datasets which do not fall into the regime of n→∞. In
fact, in many applications the alphabet size S is comparable
to, or even larger than the number of samples n, e.g., more
than half of the words in the collected works of Shakespeare
appeared only once [7].

The problem of entropy estimation in the large alphabet
regime (or non-asymptotic analysis) has been investigated
extensively in various disciplines, which we refer to [1] for
a detailed review and apologize for omitting a large body of
references due to space constraint. One recent breakthrough
in this direction came from Valiant and Valiant [8], who
constructed the first explicit entropy estimator with sample
complexity n � S

lnS , which they also proved to be necessary.
It was also shown in [3], [9] that the MLE requires n � S
samples.

Later, Jiao et al. [1], and Wu and Yang [2] independently
developed schemes based on approximation theory, and ob-
tained the minimax L2 convergence rates for the entropy.
Furthermore, Jiao et al. [1] proposed a general methodology
for estimating functionals, and showed that for a wide class
of functionals (including entropy, mutual information, and
Rényi entropy), this methodology can construct minimax rate-
optimal estimators whose performance with n samples are
nearly that of the MLE with n lnn samples. It was argued
in [1] that the “only” approach that can achieve the minimax
rates for entropy must either implicitly or explicitly conduct
best polynomial approximation as [1] did. A question that
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arises naturally then is whether modifications of the plug-in
approach, such as the Dirichlet prior smoothing ideas, can at
least improve over the plug-in idea in terms of maximum risk.
This paper answers this question negatively.

Dirichlet smoothing may have two connotations in the
context of entropy estimation:
• [10], [11] One first obtains a Bayes estimate for the

discrete distribution P , which we denote by P̂B , and then
plugs it in the entropy functional to obtain the entropy
estimate H(P̂B).

• [12], [13] One calculates the Bayes estimate for entropy
H(P ) under Dirichlet prior for squared error. The esti-
mator is the conditional expectation E[H(P )|X], where
X represents the samples.

We show in the present paper that neither approach results
in improvements over the MLE in the large alphabet regime.
Specifically, these approaches require at least n � S to be
consistent, while the minimax rate-optimal estimators such as
the ones in [1] [2] only need n� S

lnS to achieve consistency.
A main motivation for the present paper, beyond that

discussed above, is to demonstrate the power of approxi-
mation theory using positive linear operators for bounding
the bias of plug-in estimators for functionals of parameters
under arbitrary statistical models. It was explicitly pointed
out in Jiao et al. [3] that under mild conditions, the problem
of bias analysis of plug-in estimators for functionals from
arbitrary finite dimensional statistical models is equivalent
to approximation theory using positive linear operators, a
subfield of approximation theory which has been developing
for more than a century. Applying advanced tools from positive
linear operator theory [14], Jiao et al. [3] obtained tight non-
asymptotic characterizations of maximum L2 risks for MLE in
estimating a variety of functionals of probability distributions.
In this paper, we contribute to the general positive linear
operator theory [14], and use the Dirichlet smoothing prior
plug-in estimator as an example to demonstrate the efficacy
of this general theory in dealing with analysis of the bias
in estimation problems. We believe this connection has far
reaching implications beyond analyzing bias in statistical
estimation, which itself is an important problem.

The remainder of this paper is organized as follows. In
Section II, we introduce the Dirichlet smoothing, L2 risk anal-
ysis and approximation theory using positive linaer operators.
In Section III, we investigate the L2 risk of the Dirichlet
smoothed entropy estimator and state our main results. Section
IV applies the approximation theory using positive linear
operators to analyze the bias. We refer the readers to the
journal version [15] for complete details of the proofs.

II. PRELIMINARIES: DIRICHLET SMOOTHING, L2 RISK
ANALYSIS, AND POSITIVE LINEAR OPERATORS

A. Dirichlet Smoothing

The Dirichlet smoothing is widely used in practice to
overcome the undersampling problem, i.e., one observes too
few samples from a distribution P . The probability density

function of Dirichlet distribution with order S ≥ 2 and
parameters α1, . . . , αS > 0 is given by

f (x1, · · · , xS ;α1, · · · , αS) =
1

B(α)

S∏
i=1

xαi−1
i (2)

on the open (S − 1)-dimensional simplex {x1, x2, · · · , xS ∈
R+,

∑S
i=1 xi = 1} and zero elsewhere, and the normalizing

constant is the multinomial Beta function.
Assuming the unknown distribution P follows prior

distribution P ∼ Dir(α), and we observe a vector
X = (X1, X2, . . . , XS) with Multinomial distribution
Multi(n; p1, p2, . . . , pS), then the posterior mean (conditional
expectation) of pi given X is given by [16, Example 5.4.4]

δi(X) , E[pi|X] =
αi +Xi

n+
∑S
i=1 αi

. (3)

The estimator δi(X) is widely used in practice for various
choices of α. For example, if αi =

√
n/S, then the corre-

sponding (δ1(X), δ2(X), . . . , δS(X)) is the minimax estimator
for P under squared loss [16, Example 5.4.5]. Note that the
estimator δi(X) subsumes the MLE p̂i =

Xi

n as a special case
by taking the limit α→ 0.

The Dirichlet prior smoothed distribution estimate is de-
noted as P̂B , where

P̂B =
n

n+
∑S
i=1 αi

Pn +

∑S
i=1 αi

n+
∑S
i=1 αi

α∑S
i=1 αi

. (4)

Note that the smoothed distribution P̂B can be viewed as a
convex combination of the empirical distribution Pn and the
prior distribution α∑S

i=1 αi
. We call the estimator H(P̂B) the

Dirichlet prior smoothed plug-in estimator.
Another way to apply Dirichlet prior in entropy estimation

is to compute the Bayes estimator for H(P ) under squared
error, given that P follows Dirichlet prior. It is well known
that the Bayes estimator under squared error is the conditional
expectation. It was shown in Wolpert and Wolf [12] that

ĤBayes (5)

, E[H(P )|X] (6)

= ψ

(
S∑
i=1

(αi +Xi) + 1

)

−
S∑
i=1

(
αi +Xi∑S

i=1(αi +Xi)

)
ψ(αi +Xi + 1), (7)

where ψ(z) , Γ′(z)
Γ(z) is the digamma function. We call the

estimator ĤBayes the Bayes estimator under Dirichlet prior.

B. Non-asymptotic analysis of L2 risk

We adopt the conventional statistical decision theoretic
framework in analyzing the performance of H(P̂B). Denote
byMS all discrete distributions with support size S. We adopt
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the minimax criterion, and evaluate the maximum L2 risk

sup
P∈MS

EP
(
H(P )−H(P̂B)

)2

= sup
P∈MS

[(
Bias(H(P̂B))

)2

+ Var(H(P̂B))

] (8)

where we have decomposed the L2 risk into the bias part and
the variance part:

Bias(H(P̂B)) , EH(P̂B)−H(P ) (9)

Var(H(P̂B)) , E
(
H(P̂B)− EH(P̂B)

)2

. (10)

Hence, it suffices to analyze the bias and variance term,
respectively, for the non-asymptotic analysis of L2 risk.
The literature on concentration inequalities [17] provide us
with excellent techniques in controlling the variance non-
asymptotically. However, the focus of this paper is on bias
analysis, rather than variance. It may read surprising: how
hard can the bias analysis be? It turns out that there is a sub-
field of mathematics with more than a century’s history, called
approximation theory using positive linear operators, that is
largely devoted to analyzing the bias of statistical estimators.

An operator L defined on a linear space of functions, V , is
called linear if

L(αf + βg) = αL(f) + βL(g), ∀f, g ∈ V, α, β ∈ R, (11)

and is called positive, if

L(f) ≥ 0 for all f ∈ V, f ≥ 0. (12)

For example, the classical Bernstein operator Bn(f) maps
a continuous function f ∈ C[0, 1] to another continuous
function Bn(f) ∈ C[0, 1] such that

Bn(f)(x) =

n∑
j=0

f

(
j

n

)(
n

j

)
xj(1− x)n−j . (13)

One can easily verify that this operator is positive and
linear. More generally, as argued in Jiao et al. [3], for any
estimator θ̂ of a parametric model indexed by θ, the expec-
tation ϕ 7→ Eθϕ(θ̂) is a positive linear operator for ϕ, and
analyzing the bias Eθϕ(θ̂) − ϕ(θ) is equivalent to analyzing
the approximation properties of the positive linear operator
Eθϕ(θ̂) in approximating ϕ(θ).

Hence, we conclude that the most general problems of bias
analysis about plug-in methods in functional estimation are a
subset of the general theory of approximation using positive
linear operators. Surprising as it may sound, the converse is
also true. Firstly, it is obvious that the study of positive linear
operators in this context can be reduced to that of positive
linear functionals. Then it was shown in Paltanea [14, Remark
1.1.2.] that if I is an interval of R, then for any positive linear
functional F : C(I)→ R, there exists a positive regular Borel

measure µ, such that we have the integral representation1:

F (f) =

∫
I

fdµ, f ∈ C(I), (14)

where C(I) denotes the space of continuous functions on I .
Denote by ej , j ∈ N+ ∪ {0}, the monomial functions

ej(x) = xj , x ∈ I . If we naturally require F (e0) = 1, then
the measure µ in (14) is a probability measure, implying that
F (f) can be written as an expectation

F (f) = Eµf(Z), Z ∼ µ,Z ∈ I. (15)

Thus, there is an equivalence between bias analysis of
continuous plug-in estimators and approximation theory using
positive linear operators, with extensive literature left for us
to explore. Paltanea [14] provides a comprehensive account
of the state-of-the-art theory in this subject. We remark that
the current theory is “highly developed for certain problems,
but far from complete”: we now have highly non-trivial tools
for positive linear operators of functions on one dimensional
compact sets, but the theory is incomplete for vector valued
multivariate functions on non-compact sets [14].

III. MAIN RESULTS

For simplicity, we restrict attention to the case where
the parameter α in the Dirichlet distribution takes the form
(a, a, . . . , a). We remark that for general α the analysis goes
through smoothly. In comparison to MLE H(Pn), where Pn
is the empirical distribution, the Dirichlet smoothing scheme
H(P̂B) has a disadvantage: it requires the knowledge of the
alphabet size S in general. We define p̂B,i = np̂i+a

n+Sa , and
pB,i = E[p̂B,i] = npi+a

n+Sa .

Throughout we adopt the following notations: an . bn
means supn an/bn < ∞, an & bn means bn . an, an � bn
means an . bn and an & bn, or equivalently, there exist two
universal constants c, C such that

0 < c < lim inf
n→∞

an
bn
≤ lim sup

n→∞

an
bn

< C <∞. (16)

The main results of this paper are the following theorems.

Theorem 1. If n ≥ Sa, then the maximum L2 risk of H(P̂B)
in estimating H(P ) is upper bounded as

sup
P∈MS

EP
(
H(P̂B)−H(P )

)2

≤(
ln

(
1 +

S − 1

n+ Sa

)
+

2Sa

n+ Sa
ln

(
n+ Sa

2a

))2

+
2n

(n+ Sa)2

[
3 + ln

(
n+ Sa

a+ 1
∧ S
)]2

,

(17)

where a ∧ b = min{a, b}. Here the first term bounds the
squared bias, and the second term bounds the variance.

The following corollary is immediate.

1We remark that not every positive linear functional can be formulated in
the form (14). See [14, Remark 1.1.3.].
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Corollary 1. If n� S and a is upper bounded by a constant,
then the maximum L2 risk of H(P̂B) vanishes.

Theorem 2. The maximum L2 risk of H(P̂B) in estimating
H(P ) is lower bounded as

sup
P∈MS

EP
(
H(P̂B)−H(P )

)2

≥

1
2

[
(S−3)a

4(n+Sa) ln
(
n+Sa
a

)
+ S−1

8n + S2

80n2 − 1
48n2

]2
+ c ln2 S

n

if n ≥ max{15S, Sa},(
(S−3)a

4(n+Sa) ln
(
n+Sa
a

)
+ bn/15c

8n − 1
16n

)2

+
if n < 15S,

ln2 S
16 if n < Sa.

where c > 0 is a universal constant, and bxc is the largest
integer that does not exceed x, and (x)+ = max{x, 0}
represents the positive part of x.

We have the following corollary.

Corollary 2. If n . S or n < Sa, then the maximum L2 risk
of H(P̂B) is bounded away from zero.

The next theorem presents a lower bound on the maximum
risk of the Bayes estimator under Dirichlet prior. Since we
have assumed that all αi = a, 1 ≤ i ≤ S, the Bayes estimator
under Dirichlet prior is

ĤBayes = ψ(Sa+ n+ 1)−
S∑
i=1

a+Xi

Sa+ n
ψ(a+Xi + 1). (18)

Theorem 3. If S ≥ e(2n+ 1) and n ≥ Sa, then

sup
P∈MS

EP
(
ĤBayes −H(P )

)2

≥
(
ln

(
S

e(2n+ 1)

))2

.

(19)
If n < Sa, then

sup
P∈MS

EP
(
ĤBayes −H(P )

)2

≥

[(
ln

(
Sa+ n

e(a+ n+ 1)

))
+

]2

.

(20)

Evident from Theorem 1, 2, and 3 is the fact that in
the best situation (i.e. a not too large), both the Dirichlet
prior smoothed plug-in estimator and the Bayes estimator
under Dirichlet prior still require at least n � S samples
to be consistent, which is the same as MLE. In contrast, the
minimax rate-optimal estimator in Jiao et al. [1] is consistent if
n� S

lnS , which is the best possible rate for consistency. Thus,
we can conclude that the Dirichlet smoothing technique does
not solve the entropy estimation problem. From an intuitive
point of view it is also clear: both the Dirichlet prior smoothed
plug-in estimator and the Bayes estimator under Dirichlet prior
do not exploit the special properties of the entropy functional
p ln(1/p), i.e. the functional has a nondifferentiable point at
p = 0. The analysis in [1] demonstrates that the minimax
rate-optimal estimator has to exploit the special structure of
the entropy function.

IV. APPROXIMATION THEORY FOR BIAS ANALYSIS

For a linear positive functional F , we adopt the following
notation

BF (x) = |F (e1)− xF (e0)| , VF = F
(
(e1 − F (e1)e0)

2
)
,

which represent the “bias” and “variance” of a positive linear
functional F . Define the first order and second order Ditzian–
Totik modulus of smoothness [20] by

ωϕ1 (f, 2h) , sup{|f(u)− f(v)| :

u, v ∈ [0, 1], |u− v| ≤ 2hϕ

(
u+ v

2

)}
ωϕ2 (f, h) , sup

{∣∣∣∣f(u)− 2f

(
u+ v

2

)
+ f(v)

∣∣∣∣ :
u, v ∈ [0, 1], |u− v| ≤ 2hϕ

(
u+ v

2

)}
.

A. A contribution to approximation theory

First we recall the following result, which is a direct
corollary of [14, Thm. 2.5.1].

Lemma 1. If F : C[0, 1] → R is a linear positive functional
and F (e0) = 1. Then we have

|F (f)− f(x)| ≤ BF (x)

2h1ϕ(x)
· ωϕ1 (f, 2h1) +

5

2
ωϕ2 (f, h1), (21)

for all f ∈ C[0, 1] and h1 ∈ (0, 1
2 ], where

ϕ(x) =
√
x(1− x) and h1 =

√
F ((e1 − xe0)2)/ϕ(x) =√

VF + (BF (x))2/ϕ(x).

We remark that Lemma 1 cannot yield the desired result for
f(p) = −p ln p and

F (f) =

n∑
k=0

f

(
k + a

n+ Sa

)
·
(
n

k

)
pk(1− p)n−k. (22)

Specifically, it is easy to show that

BF (p) =

∣∣∣∣ np+ a

n+ Sa
− p
∣∣∣∣ = |1− pS|an+ Sa

, VF =
np(1− p)
(n+ Sa)2

,

and for f(x) = −x lnx, ωϕ1 (f, 2h) � h, and

ωϕ2 (f, h) =
h2 ln 4

1 + h2
, h ≤ 1. (23)

Hence, when x→ 0, we conclude that

h1 =

√
VF + (BF (x))2

ϕ(x)
≥ a

n+ Sa
· |1− xS|√

x(1− x)
(24)

is unbounded as x → 0, thus does not satisfy the condition
h1 ≤ 1/2. Thus, we cannot directly use the result of Lemma
1.

It turns out that the general result in Lemma 1 can be
strictly improved in a general fashion. The result is given by
the following lemma.
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Lemma 2. If F : C[0, 1] → R is a linear positive functional
and F (e0) = 1. Then

|F (f)− f(x)| ≤ ω1(f,BF (x);x) +
5

2
ωϕ2 (f, h2) (25)

for all f ∈ C[0, 1] and 0 < h2 ≤ 1
2 , where ϕ(x) =

√
x(1− x)

and h2 =
√
VF /ϕ(x), and

ω1(f, h;x) , sup {|f(u)− f(x)| : u ∈ [0, 1], |u− x| ≤ h} .

Proof. Applying Lemma 1 to x = F (e1) we have

|F (f)− f(F (e1))| ≤
5

2
ωϕ2 (f, h2) (26)

and then (25) is the direct result of the triangle inequality
|F (f)−f(x)| ≤ |F (f)−f(F (e1))|+ |f(F (e1))−f(x)|.

We show that Lemma 2 is indeed stronger than Lemma
1. First, due to h1 ≥ h2, we have ωϕ2 (f, h2) ≤ ωϕ2 (f, h1).
Second, for x ≤ 1/2, we have

BF (x)

2h1ϕ(x)
· ωϕ1 (f, 2h1) ≈

BF (x)

2h1ϕ(x)
· sup

0≤s≤1
2h1ϕ(s)f

′(s)

≥ BF (x) · sup
x≤s≤1−x

f ′(s)

≈ sup
x≤s≤1−x

ω1(f,BF (x); s)

which is no less than the pointwise result ω1(f, |F (e1 −
xe0)|;x), and here we have used the inequality ϕ(s) ≥ ϕ(x)
for x ≤ s ≤ 1−x. A similar argument also holds for x > 1/2.
Hence, Lemma 2 transforms the first order term from the norm
result in Lemma 1 to a pointwise result, which may exhibit
great advantages when we applied it to specific problems.
B. Application of the improved general bound to our problem
Theorem 4. If n ≥ max{Sa, 4},

sup
P∈MS

EP |H(P̂B)−H(P )|

≤ 5nS ln 2

(n+ Sa)2
+

2Sa

n+ Sa
ln

(
n+ Sa

2a

)
.

(27)

Note that Theorem 4 implies a slightly weaker bias bound
than Theorem 1, but it is only sub-optimal up to a constant.
The bias bound in Theorem 1 is obtained using another
technique which is tailored for the entropy function, for which
we refer the readers to the journal version [15] for details.

Now we give the proof of Theorem 4 using the approx-
imation theoretic machinery we just established. Note that
h2 =

√
n

n+Sa . where n ≥ 4 ensures h2 ≤ 1/2. In light of
Lemma 2, we have

EP |H(P̂B)−H(P )|

≤
S∑
i=1

(
ω1

(
f,
|1− piS|a
n+ Sa

; pi

)
+

5n ln 2

(n+ Sa)2

)

≤ −

(
S∑
i=1

|1− piS|a
n+ Sa

)
ln

(
1

S

S∑
i=1

|1− piS|a
n+ Sa

)
+

5nS ln 2

(n+ Sa)2

≤ 2Sa

n+ Sa
ln

(
n+ Sa

2a

)
+

5nS ln 2

(n+ Sa)2

where we have used the fact that if |x−y| ≤ 1/2, x, y ∈ [0, 1],
then |x lnx − y ln y| ≤ −|x − y| ln |x − y|. The readers are
referred to the proof of Cover and Thomas [21, Thm. 17.3.3]
for details. We also utilized the fact that if n ≥ Sa, then

|1− piS|a
n+ Sa

≤ Sa

n+ Sa
≤ 1

2
, 1 ≤ i ≤ S. (28)
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