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Abstract—We show that in high dimensional distributions, i.e.,
the regime where the alphabet size of each node is comparable
to the number of observations, the Chow–Liu algorithm on
learning graphical models is highly sub-optimal. We propose
a new approach, where the key ingredient is to replace the
empirical mutual information in the Chow–Liu algorithm with
a minimax rate-optimal estimator proposed recently by Jiao,
Venkat, Han, and Weissman [1]. We demonstrate the improved
performance of the new approach in two problems: learning tree
graphical models and Bayesian network classification.

Index Terms—Chow–Liu algorithm, mutual information esti-
mation, approximation theory, high dimensional statistics, nons-
mooth functional estimation

I. INTRODUCTION

Graphical models provide us with efficient computational

tools to conduct inference in high dimensional data with

potential structure, cf. [2] and references therein. Learning the

structure and parameters of graphical models from empirical

data is therefore the starting point for all these applications.

It has been known that exact learning of a general graphical

model is NP-hard [3], and there exist tractable sub-classes

among which tree graphical models are the most famous. The

seminal work of Chow and Liu [4] contributed an efficient

algorithm to compute the Maximum Likelihood Estimator

(MLE) of tree structured graphical model based on empirical

data, and constitutes one of the very few cases where the exact

MLE can be solved efficiently. There are various approaches

towards learning more complex structures, for which we refer

the reader to [5] for a review.

Concretely, the Chow–Liu algorithm (CL) addresses the

following question. Given n i.i.d. samples of a random vector

X = (X1, X2, . . . , Xd), where Xi ∈ X , |X | < ∞, we want to

estimate the joint distribution of X. Chow and Liu [4] assumed

that PX can be factorized as:

PX =
d∏

i=1

PXmi
|Xmj(i)

, 0 ≤ j(i) < i, (1)

where (m1,m2, . . . ,md) is an unknown permutation of inte-

gers 1, 2, . . . , d, and PXi|X0
is by definition equal to PXi .

Then, CL outputs the distribution PX that maximizes the

likelihood of the observed data.

Proposed in 1968, The Chow–Liu algorithm is widely used

in machine learning and statistics as a tool for dimensionality

reduction, classification, and as a foundation for algorithm

design in more complex dependence structures [5] in the

theory of learning graphical models [2], [6]. It has also been

widely adopted in applied research, and is particularly popular

in systems biology. For example, the Chow–Liu algorithm is

extensively used in the reverse engineering of transcription

regulatory networks from gene expression data [7].

We begin by asking the following natural question:

Question. Is the Chow–Liu algorithm optimal for learning
tree graphical models?

Since the Chow–Liu algorithm exactly solves the MLE,

and has been widely used in many applications, its optimality

seems to be tacitly assumed in much of the literature. However,

a closer inspection of the statistical theory [8], [9] reveals

that it is only known that the Chow–Liu algorithm performs

essentially optimally when the number of samples n grows

to ∞, while the number of states of the tree has fixed size.

Indeed, the modern theory of the maximum likelihood esti-

mation paradigm [10] only justifies the asymptotic efficiency
of MLE, without general non-asymptotic guarantees when we

have finitely many samples. In contrast, various modern data-

analytic applications deal with datasets that do not have the

luxury of too many observations compared to the alphabet

size.

The main contribution of the present paper is the introduc-

tion of a new algorithm that provably significantly improves

upon the CL algorithm when the alphabet size is comparable

to the number of observations. The key ingredient in our

improved algorithm is to replace the empirical mutual informa-

tion employed in the Chow–Liu algorithm with the minimax

rate-optimal estimator for mutual information proposed in [1].

In a nutshell, the performance of the new algorithm with n
samples is essentially that of the original algorithms with

n lnn samples.

We remark that we do not think nor try to imply that the

schemes we present here are necessarily competitive with the

state of the art for the applications we experimented with.

Our point rather is that machine learning schemes which have

a mutual information estimation component stand to benefit

from significant performance boosts via use of improved near

optimal estimators, such as those recently discovered by [1].

This is particularly true in the large-alphabet regimes where

use of the latter estimators in lieu of the standard ones such as

empirical mutual information can spell the difference between



consistency and complete divergence.

II. IMPROVING THE CHOW–LIU ALGORITHM

Chow and Liu [4] considered solving for the MLE under the

constraint that the joint distribution factors as a tree. Interest-

ingly, this optimization problem can be efficiently solved after

being transformed into a Maximum Weight Spanning Tree

(MWST) problem. In particular, they showed that the MLE

of the tree structure boils down to the following expression:

EML = arg max
EQ:Q is a tree

∑

e∈EQ

I(P̂e), (2)

where I(P̂e) is the mutual information associated with the

empirical distribution of the two nodes connected via edge e,

and EQ is the set of edges of a tree distribution Q (i.e., Q

factors as a tree). In words, it suffices to first compute the

empirical mutual information between any two nodes (in total(
d
2

)
pairs), and the maximum weight spanning tree is the tree

structure that maximizes the likelihood. To obtain estimates of

distributions on each edge, Chow and Liu [4] simply assigned

the empirical distribution.

To explain the insights underlying our improved algorithm,

we revisit equation (2) and note that if we were to replace the

empirical mutual information with the true mutual information,

the output of the MWST would be the true edges of the tree.

In light of this, the CL algorithm can be viewed as a “plug-

in” estimator that replaces the true mutual information with

an estimate of it, namely the empirical mutual information.

Naturally then, it is to be expected that a better estimate

of the mutual information would lead to smaller probability

of error in identifying the tree. However, how bad can the

empirical mutual information be as an estimate for the true

mutual information? The following theorem in [1] implies that

it can be highly sub-optimal in high dimensional regimes.

Theorem 1. Suppose we have two random variables X1, X2 ∈
X , |X | < ∞. The minimax sample complexity in estimating
the mutual information I(X1;X2) under mean squared error
is Θ(|X |2/ ln |X |), while the sample complexity required by
the empirical mutual information to be consistent is Θ(|X |2).

In words, Theorem 1 implies that for the minimax rate-

optimal estimator, it suffices to take n � |X |2/ ln |X | samples

to consistently estimate the mutual information I(X1;X2)
for any underlying distributions. At the same time, unless

n � |X |2, there exist distributions for which the error of the

empirical mutual information would be bounded away from

zero.

Theorem 1 sheds light on a possible improvement over

CL. How can we construct computationally efficient mutual

information estimators that require only |X |2/ ln |X | samples?

Here we take a slight detour and review recent work in entropy

and mutual information estimation, which assists us in the

improving the classical CL approach.

A. Recent advances in functional estimation

To simplify the notation, we use S and |X | interchangeably

to denote the alphabet size of a discrete distribution.

Recently, [1] proposed a general methodology of construct-

ing minimax estimators for functionals, and showed that the

MLE is generally far from minimax optimality1 [11]. In

particular, [1] showed that this methodology achieves the

minimax rates for estimating the Shannon entropy H(P ) =∑S
i=1 −pi ln pi, mutual information, as well as the functional

Fα(P ) =
∑S

i=1 p
α
i , for any α > 0. In particular, an interesting

observation therein is that the performance under L2 risk

of the optimal estimators with n samples is essentially that

of the MLE with n lnn samples. It has been shown that

this effective sample size enlargement phenomena generalize

to more functionals [12]–[15]. On the practical side, the

estimators in [1] have complexity linear in sample size n.

Specifically, for the estimation of the Shannon entropy,

Valiant and Valiant [16], [17] were the first to show that

it is necessary and sufficient to take n = Θ(S/ lnS) sam-

ples. More recently, [1] and [18] developed schemes based

on approximation theory that achieve the optimal rates of

convergence for the entropy. In contrast to all these schemes

which require n = Θ(S/ lnS) samples, the MLE requires

n = Θ(S) samples [11], [19]. It was recently shown in [20]

that the seemingly natural approach of first using Dirichlet

prior to obtain a smoothed distribution, and then plugging-in

the entropy functional also requires n = Θ(S) samples. A

comprehensive review of this problem can be found in [1].
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Fig. 1. The empirical MSE of the estimator in [1] and the MLE along
sequence n = 5S/ lnS, where S is sampled equally spaced logarithmically
from 10 to 106. The horizontal line is lnS, and the vertical line is the
MSE obtained using 20 Monte Carlo simulations from sampling a uniform
distribution supported on S elements.

Figure 1 compares the performance of the essentially mini-

max optimal estimator in [1] and the MLE, and shows that this

improvement can in fact be significant in practice. Intriguing

as these findings are theoretically, they are valuable also

1An estimator is called minimax optimal if its maximum risk (e.g. expected
L2 error) is the minimum among all possible estimators. We refer the readers
to [10] for more details.



to the practitioner encountering problems beyond functional

estimation, as we illustrate next.

B. New algorithm for learning tree graphical models

The mutual information estimator in [1] can be shown to

achieve the minimax sample complexity shown in Theorem 1.

It is thus natural to suspect that using the latter in lieu of the

empirical mutual information in the CL algorithm would lead

to performance boosts. It is gratifying to find this intuition

confirmed in all the experiments that we conducted. In the

following experiment, we fix d = 7, |X | = 300, construct

a star tree (i.e. all random variables are conditionally inde-

pendent given X1), and generate a random joint distribution

by assigning independent Beta(1/2, 1/2)-distributed random

variables to each entry of the marginal distribution PX1

and the transition probabilities PXk|X1
, 2 ≤ k ≤ d (with

normalization). Then, we increase the sample size n from 103

to 5.5 × 104, and for each n we conduct 20 Monte Carlo

simulations.

Note that the true tree has d − 1 = 6 edges, and any

estimated set of edges will have at least one overlap with these

6 edges because the true tree is a star graph. We define the

wrong-edges-ratio in this case as the number of edges different

from the true set of edges divided by d− 2 = 5. Thus, if the

wrong-edges-ratio equals one, it means that the estimated tree

is maximally different from the true tree and, in the other

extreme, a ratio of zero corresponds to perfect reconstruction.

We compute the expected wrong-edges-ratio over 20 Monte

Carlo simulations for each n, and the results are exhibited in

Figure 2.
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Fig. 2. The expected wrong-edges-ratio of our modifed algorithm and the
original CL algorithm for sample sizes ranging from 103 to 5.5× 104.

Figure 2 reveals intriguing phase transitions for both the

modified and the original CL algorithm. When we have fewer

than 3 × 103 samples, both algorithms yield a wrong-edges-

ratio of 1, but soon after the sample size exceeds 6 × 103,

the modified CL algorithm begins to reconstruct the network

perfectly, while the original CL algorithm continues to fail

maximally until the sample size exceeds 47×103, 8 times the

sample size required by the new algorithm, which we tem-

porarily call “Modified Chow–Liu” algorithm. The theoretical

properties of these sharp phase transitions will be considered

in future work.

III. APPLICATION: BAYESIAN NETWORK CLASSIFIERS

Given n training samples, each of which has d attributes

X = (X1, X2, · · · , Xd), Xi ∈ Xi and a class label C ∈ C,

we are interested in constructing a classifier to assign a class

label to a test instance characterized by its attributes. One

important class of classifiers is the Bayes classifier [21], which

learns from training data the conditional joint distribution of

X given the class label C. Then classification is done by

applying the Bayes rule to compute the posterior probability of

each class given the attribute vector. Many classifiers fall into

this class under various assumptions. For example, the Naive

Bayes classifier assumes that all the attributes are conditionally

independent given the class label. This assumption was further

relaxed by Friedman et al. [22] that X satisfies the order-

one dependence conditioning on the class label, i.e., the joint

probability of X given C can be factorized into the product

of the probabilities of each attribute conditioning on another

attribute and the class label. To be precise, PX|C can be

factorized as

PX|C =
d∏

i=1

PXmi
|Xmj(i)

,C , 0 ≤ j(i) < i, (3)

where, as in the preceding section, (m1, . . . ,md) is an un-

known permutation of the integers 1, 2, . . . , d.

A. TAN classifier and CL classifier

In light of the CL algorithm, Friedman et al. [22] proposed

the tree-augmented naive Bayes (TAN) classifier. To construct

the TAN classifier, the tree graphical model is established

first using the CL algorithm, with a slight difference that

the empirical mutual information I(P̂e) in (2) is replaced by

the conditional empirical mutual information I(P̂e|C). Once

the tree graphical model has been obtained, the empirical

distributions P̂C and P̂Xi|Xπ(i),C are used to estimate PC and

PX|C , respectively, and both are substituted into

f(x) � argmax
c∈C

PC(c)PX|C(x|c), (4)

which is the maximum a posteriori (MAP) estimator of the

class label given attribute vector x using the Bayes rule.

Since we have demonstrated in the preceding section that

the CL algorithm based on MLE is far from optimal, it

is reasonable that we can harvest a performance gain in

classification problems by simply using our better estimate of

the mutual information for learning the tree graphical model.

Specifically, we estimate the conditional mutual information

via

I(P̂XiXj |C) = Ĥ(Xi, C) + Ĥ(Xj , C)

− Ĥ(C)− Ĥ(Xi, Xj , C),
(5)



where Ĥ is the entropy estimator in [1]. In this way, we

construct a modified TAN classifier, and we remark that this

construction does not impose an increased implementation

burden since the computational complexity of the improved

estimator Ĥ is linear in the number of observations [1]. If the

mutual information is conditioned on a concrete realization of

the class label, i.e.,

I(P̂XiXj
|C = c) = Ĥ(Xi|C = c) + Ĥ(Xj |C = c)

− Ĥ(Xi, Xj |C = c),
(6)

the TAN classifier is turned into the Chow-Liu (CL) classifier

[22]. In other words, in the construction of the CL classi-

fier, different tree structures under different class labels are

allowed.

In our real experiments, we also used the smoothing idea.

Since we may be in an undersampling position for a robust

estimation of the conditional probability PX|C , the perfor-

mance of the original classifiers can be further improved by the

introduction of an additional smoothing operation [22]. The

identical smoothing method is also adopted in the modified

classifiers which updates the conditional probability using

some intuitive priors, i.e.,

ps(A|B) =
N0 · p̂(A) + n · p̂(A ∩B)

N0 + n · p̂(B)
, (7)

for any events A,B, where p̂(·) denotes the empirical proba-

bility, and N0 ≥ 0 is the smoothing parameter.

B. Experiments and Results

Now we evaluate the performance gain of our modified clas-

sifiers in terms of the classification error via experimentation

on a total of 26 datasets. All of the datasets are popular datasets

from the UCI repository [23], and the first 25 datasets are

identical to those used by Friedman et al. [22] for comparison.

The last dataset pendigits is selected due to its property that

its attribute alphabet size max1≤i≤d |Xi| is large. We refer to

the full version [24] on the detailed description of the datasets

and our preprocessing techniques.

First, we implement the 5-fold random cross validation

repeatedly on all datasets for 100 times, and in each cross

validation, the classification errors of naive Bayes, original

and modified TAN, and original and modified CL classifiers

are recorded separately. The full table consisting of all classi-

fication errors is referred to [24].

Figure 3 shows intriguing properties of the modified TAN

classifier relative to the original one, where our modified

TAN classifier uniformly outperforms the original one in

terms of classification errors. Furthermore, a closer inspection

reveals that the top eight datasets with largest classification

error reduction all share a common feature that the squared

maximum alphabet size is comparable to the number of

observations, i.e., S2 ∼= n, where S = max1≤i≤d |Xi|. It is

consistent with Theorem 1, which indicates that the minimax

rate-optimal estimators would perform significantly better than

the empirical mutual information in the regime S2 ∼= n.
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Fig. 3. The scatter plot comparing non-smoothed original TAN classifier (x-
axis) with non-smoothed modified TAN classifier (y-axis). In this scatter plot,
points above the diagonal line corresponds to datasets where original TAN
classifier performs better and points below the diagonal line corresponds to
datasets where modified TAN classifier performs better.
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Fig. 4. The error probability decay curve comparing non-smoothed original
TAN classifier (dashed line) with non-smoothed modified TAN classifier (solid
line) in random subsets of the dataset letter. The x-coordinates of all squares
(and circles) correspond to the subset size of 1000, 2000, 3000, 5000, 8000,
10000, 15000 and 20000, respectively.

Second, to further convey the point that the modified clas-

sifiers require fewer samples to achieve an acceptable classi-

fication error, we conducted another experiment to compare

the error probability decay curves under different classifiers.

Specifically, sample sizes from 1000 to 20000 are selected, and

for each sample size n, the preceding classification experiment

on a training sample of size 4n/5 and a testing sample of size

n/5 is implemented 20 times, where in each time the training

sample is a subset randomly generated from the training data

in dataset letter. Figure 4 displays the relationship between

the average classification errors and training sample sizes.

Figure 4 exhibits a remarkable error reduction over the
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Fig. 5. The scatter plot comparing smoothed original TAN classifier (x-axis)
with smoothed modified TAN classifier (y-axis). In this scatter plot, points
above the diagonal line corresponds to datasets where original TAN classifier
performs better and points below the diagonal line corresponds to datasets
where modified TAN classifier performs better.

original scheme, uniformly over all sample sizes. For example,

to achieve probability of error 0.7, the sample size required by

the modified TAN classifier is about 2000, while that for the

original one is about 10000. We remark that a random guess

in this dataset would result in at least classification error 95%.

Now we come to the comparison in the smoothed scheme.

Fig. 5 illustrates the comparison of the original and the

modified TAN classifiers in the smoothed scheme, and unlike

the non-smoothed scheme, the gap between two classifiers

almost vanishes, i.e., most scatter points lie very close to

the diagonal line. A closer inspection of the experimental

details reveals that the output of the classifier does not differ

much even though the tree structures generated by two clas-

sifiers differ considerably. Therefore, the involvement of the

smoothing priors makes the classification problem insensitive

to the tree structure. However, despite the similarity of these

two classifiers, it can still be observed that for those datasets

with S2 ∼= n, e.g., letter and glass2, the classification error

reduction is still significant.

We have also compared the original CL classifier with our

modified CL classifier in both the non-smoothed and smoothed

schemes, and the results form a similar pattern as the TAN

classifiers. In summary, we observe that

1) no matter how well the tree structure fits the data,

replacing the empirical mutual information with the

mutual information estimator of [1] results in uniformly

better classification accuracy;

2) our modified TAN and CL classifiers require fewer

training data to establish the correct dependence tree

with the same classification error;

3) the uniformly better performance still holds when adding

the smoothing operation, though this operation signifi-

cantly reduces the sensitivity of the classification results

to the selection of the tree.
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