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Abstract—“To be considered for an 2015 IEEE Jack Keil Wolf
ISIT Student Paper Award.” We consider estimating the Shannon
entropy of a discrete distribution P from n i.i.d. samples.
Recently, Jiao, Venkat, Han, and Weissman, and Wu and Yang
independently constructed approximation theoretic estimators
that achieve the minimax L2 rates in estimating entropy. Their
estimators are consistent given n � S

lnS
samples, where S is the

alphabet size, and it is the best possible sample complexity. On
the contrary, the Maximum Likelihood Estimator (MLE), which
is the empirical entropy, requires n � S samples.

We aim to significantly refine the minimax results of existing
work in this paper. To alleviate the pessimism of minimaxity,
we adopt the adaptive estimation framework, and show that the
minimax rate-optimal estimator in Jiao, Venkat, Han, and Weiss-
man is an adaptive estimator, i.e., it achieves the minimax rates
simultaneously over a nested sequence of subsets of distributions
P , without knowing the alphabet size S or which subset P lies
in. We also characterize the maximum risk of the MLE over
this nested sequence, and show for every subset in the sequence,
the performance of the minimax rate-optimal estimator with
n samples is essentially that of the MLE with n lnn samples,
thereby contributing another example to a general phenomenon
discovered by Jiao, Venkat, Han, and Weissman.

I. INTRODUCTION

Shannon entropy H(P ), defined as

H(P ) ,
S∑
i=1

pi ln
1

pi
, (1)

is one of the most fundamental quantities of information
theory and statistics, which emerged in Shannon’s 1948
masterpiece [1] as the answers to foundational questions of
compression and communication.

Consider the problem of estimating Shannon entropy H(P )
from n i.i.d. samples. Classical theory is mainly concerned
with the case where the number of samples n→∞ while the
alphabet size S is fixed. In that scenario, the maximum likeli-
hood estimator (MLE), H(Pn), which plugs in the empirical
distribution into the definition of entropy, is asymptotically
efficient [2, Thm. 8.11, Lemma 8.14] in the sense of the
Hájek convolution theorem [3] and the Hájek–Le Cam local
asymptotic minimax theorem [4]. It is therefore not surprising
to encounter the following quote from the introduction of
Wyner and Foster [5] who considered entropy estimation:

“The plug-in estimate is universal and optimal not
only for finite alphabet i.i.d. sources but also for finite
alphabet, finite memory sources. On the other hand,
practically as well as theoretically, these problems are
of little interest. ”

In contrast, various modern data-analytic applications deal
with datasets which does not fall into the regime of n→∞.
In fact, in many applications the alphabet size S is comparable
to, or even larger than the number of samples n. For example:
• Corpus linguistics: about half of the words in the Shake-

spearean canon appeared only once [6].
• Network traffic analysis: many customers or website users

are seen a small number of times [7].
• Analyzing neural spike trains: natural stimuli generate

neural responses of high timing precision resulting in a
massive space of meaningful responses [8]–[10].

A. Existing literature

The problem of entropy estimation in the large alphabet
regime (or non-asymptotic analysis) has been investigated
extensively in various disciplines, which we refer to [11] for
a detailed review. One recent breakthrough in this direction
came from Valiant and Valiant [12], who constructed the
first explicit entropy estimator whose sample complexity is
n � S

lnS samples, which they also proved to be necessary. It
was also shown in [13] [14] that the MLE requires n � S
samples, implying that MLE is strictly sub-optimal in terms
of sample complexity.

However, the aforementioned estimators have not been
shown to achieve the minimax L2 rates. In light of this,
Jiao et al. [11], and Wu and Yang in [15] independently
developed schemes based on approximation theory, and ob-
tained the minimax L2 convergence rates for the entropy.
Further more, Jiao et al. [11] proposed a general methodology
for estimating functionals, and showed that for a wide class
of functionals (including entropy, mutual information, and
Renyi entropy), their methodology can construct minimax
rate-optimal estimators whose performance with n samples
are nearly that of the MLE with n lnn samples. They also
obtained minimax L2 rates for estimating a large class of
functionals. On the practical side, Jiao et al. [16] showed
that the minimax rate-optimal estimators introduced in [11]
can lead to consistent and substantial performance boosts in
various machine learning algorithms.

Recall that the minimax risk of estimating functional F (P )

is defined via inf F̂ supP∈MS
EP
(
F̂ − F (P )

)2
, where MS

denotes all distributions with alphabet size S, and the infimum
is taken with respect to all estimators F̂ . Correspondingly,
the maximum risk of MLE F (Pn), which evaluates the
functional F (·) at the empirical distribution Pn, is defined via



Minimax L2 rates L2 rates of MLE
H(P ) S2

(n lnn)2 + ln2 S
n

(
n � S

lnS

)
( [11], [15]) S2

n2 + ln2 S
n (n � S) [14]

Fα(P ), 0 < α ≤ 1
2

S2

(n lnn)2α

(
n � S1/α/ lnS, lnn � lnS

)
( [11]) S2

n2α

(
n � S1/α, lnn � lnS

)
[14]

Fα(P ), 12 < α < 1 S2

(n lnn)2α + S2−2α

n

(
n � S1/α/ lnS

)
( [11]) S2

n2α + S2−2α

n

(
n � S1/α

)
[14]

Fα(P ), 1 < α < 3
2 (n lnn)−2(α−1) (S � n lnn) ( [11]) n−2(α−1) (S � n) [14]

Fα(P ), α ≥ 3
2 n−1 [14] n−1

TABLE I: Comparison of the minimax L2 rates and the L2 rates of MLE in estimating H(P ) and Fα(P ) ,
∑S
i=1 p

α
i .

Whenever there are two terms, the first term corresponds to squared bias, and the second term corresponds to variance. It is
evident that one can obtain the minimax rates from the L2 rates of MLE via replacing n with n lnn in the dominating (bias)
terms.

supP∈MS
EP (F (Pn)− F (P ))

2. Table I in Jiao et al. [11]
summaries the minimax L2 rates and the L2 rates of MLE
in estimating H(P ) and Fα(P ) ,

∑S
i=1 p

α
i . Whenever there

are two terms, the first term corresponds to squared bias,
and the second term corresponds to variance. It is evident
that one can obtain the minimax rates from the L2 rates of
MLE via replacing n with n lnn in the dominating (bias)
terms. We adopt the following notation: an � bn means
supn an/bn < ∞, an � bn means bn � an, an � bn
means an � bn and an � bn, or equivalently, there exists
two universal constants c, C such that

0 < c < lim inf
n→∞

an
bn
≤ lim sup

n→∞

an
bn

< C <∞. (2)

B. Refined minimaxity: adaptive estimation

One concern the readers may have about results on minimax
rates is that they are too pessimistic. Indeed, in the defini-

tion inf F̂ supP∈MS
EP
(
F̂ − F (P )

)2
, we have considered

the worst case distribution P over all possible distributions
supported on S elements, and it would be disappointing if
the estimator in Jiao et al. [11] fail to behave optimally when
we consider distributions lying in subsets of MS . A usual
approach to alleviate this concern is the adaptive estimation
framework, which we briefly review below.

The primary approach to alleviate the pessimism of min-
imaxity in statistics is the construction of adaptive proce-
dures, which was particularly emphasized in nonparametric
statistics [17]. The goal of adaptive inference is to construct
a single procedure that achieves optimality simultaneously
over a collection of parameter spaces. Informally, an adaptive
procedure automatically adjusts to the unknown parameter, and
acts as if it knows the parameter lies in a specific subset of
the whole parameter space. A common way to evaluate such a
procedure is to compare its maximum risk over each subset of
the parameter space in the collection with the corresponding
minimax risk. If they are nearly equal, then we say such a
procedure is adaptive with respect to that collection of subsets
of the parameter space.

The primary results of this paper are twofold.

1) First, we show that the minimax rate-optimal entropy
estimator in Jiao et al. [11] is adaptive with respect

to the collection of parameter space MS(H), where
MS(H) , {P : H(P ) ≤ H,P ∈ MS}. Moreover,
the estimator does not need to know S nor H , which is
an advantage in practice since usually the alphabet size
S nor an a priori upper bound on the true entropy H(P )
are known.

2) Second, we show that the sample size enlargement effect
still holds in this adaptive estimation scenario. Table I
demonstrates that in estimating various functionals, the
performance of the minimax rate-optimal estimator with
n samples is nearly that of the MLE with n lnn samples,
which the authors termed “sample size enlargement”
in [11]. We compute the maximum risk of the MLE
over each MS(H), and show that for every H , the
performance of the estimator in [11] with n samples
is still nearly that of the MLE with n lnn samples.

The facts listed above in this paper suggest that the estimator
in Jiao et al. [11] is optimal in a very strong sense, for
which we refer the readers to [11] for a detailed discussion
on methodology behind their estimator, literature survey, and
experimental results.

This paper is organized as follows. In Section II, we intro-
duce our mathematical framework and recall the approxima-
tion theoretic estimator in [11]. In Section III, we investigate
the MLE and the minimax estimator in the adaptive estimation
regime, and state the main results. The Appendices outline
proofs of some theorems, and we refer the readers to the
journal version [18] for complete proofs. All logarithms in
this paper are assumed to be in natural base.

II. MATHEMATICAL FRAMEWORK AND ESTIMATOR
CONSTRUCTION

Before we discuss the main results, we would like to recall
the construction of the entropy estimator in [11]. The approach
is to tackle the estimation problem separately for the cases of
“small p” and “large p” in H(P ) estimation, corresponding
to treating regions where the functional is “nonsmooth” and
“smooth” in different ways. Specifically, after we obtain
the empirical distribution Pn, for each coordinate Pn(i), if
Pn(i)� lnn/n, we (i) compute the best polynomial approx-
imation for −pi ln pi in the regime 0 ≤ pi � lnn/n, (ii)
use the unbiased estimators for integer powers pki to estimate



the corresponding terms in the polynomial approximation for
−pi ln pi up to order Kn ∼ lnn, and (iii) use that polynomial
as an estimate for −pi ln pi. If Pn(i) � lnn/n, we use the
estimator −Pn(i) lnPn(i) + 1

2n to estimate −pi ln pi. Then,
we add the estimators corresponding to each coordinate.

To simplify the analysis, we utilize the Poisson sampling
model rather than the Multinomial model, i.e., instead of
setting (Z1, Z2, · · · , ZS) ∼ Multi(n; p1, · · · , pS), we first
draw a random variable N ∼ Poi(n), and then conduct N
samples from the distribution P . It is equivalent to having a
S-dimensional random vector Z such that each component Zi
in Z has distribution Poi(npi), and all coordinates of Z are
independent. It follows from [11], [15] that the minimax risks
under the Multinomial model and the Poissonized model are
essentially equivalent.

Moreover, for simplicity of analysis, we conduct the clas-
sical “splitting” operation [19] on the Poisson random vector
Z, and obtain two independent identically distributed random
vectors X = [X1, X2, . . . , XS ]T ,Y = [Y1, Y2, . . . , YS ]T , such
that each component Xi in X has distribution Poi(npi/2), and
all coordinates in X are independent. For each coordinate i,
the splitting process generates a random variable Ti such that
Ti|Z ∼ B(Zi, 1/2), and assign Xi = Ti, Yi = Zi − Ti. All
the random variables {Ti : 1 ≤ i ≤ S} are conditionally
independent given our observation Z. We also note that for
random variable X such that nX ∼ Poi(np),

E
k−1∏
r=0

(
X − r

n

)
= pk, (3)

for any k ∈ N+.
For simplicity, we re-define n/2 as n, and denote

p̂i,1 =
Xi

n
, p̂i,2 =

Yi
n
,∆ =

c1 lnn

n
,K = c2 lnn, t =

∆

4
, (4)

where c1, c2 are positive parameters to be specified later. Note
that ∆,K, t are functions of n, where we omit the subscript
n for brevity.

The estimator Ĥ in Jiao et al. [11] is constructed as follows.

Ĥ ,
S∑
i=1

[LH(p̂i,1)1(p̂i,2 ≤ 2∆) + UH(p̂i,1)1(p̂i,2 > 2∆)] ,

(5)
where

SK,H(x) ,
K∑
k=1

gk,H(4∆)−k+1
k−1∏
r=0

(
x− r

n

)
(6)

LH(x) , min {SK,H(x), 1} (7)

UH(x) , In(x)

(
−x lnx+

1

2n

)
. (8)

We explain each equation in detail as follows.
1) Equation (5): Note that p̂i,1 and p̂i,2 are i.i.d. random

variables such that np̂i,1 ∼ Poi(npi). We use p̂i,2 to
determine whether we are operating in the “nonsmooth”
regime or not. If p̂i,2 ≤ 2∆, we declare we are in
the “nonsmooth” regime, and plug in p̂i,1 into function

Lα(·). If p̂i,2 > 2∆, we declare we are in the “smooth”
regime, and plug in p̂i,1 into Uα(·).

2) Equation (6):
The coefficients rk,H , 0 ≤ k ≤ K are coefficients of the
best polynomial approximation of −x lnx over [0, 1] up
to degree K, i.e.,
K∑
k=0

rk,Hx
k = arg min

y(x)∈polyK
sup
x∈[0,1]

|y(x)− (−x lnx)|,

(9)
where polyK denotes the set of algebraic polynomials
up to order K. Note that in general gk,α depends on K,
which we do not make explicit for brevity.
Then we define {gk,H}1≤k≤K as

gk,H = rk,H , 2 ≤ k ≤ K, g1,H = r1,H − ln(4∆). (10)

It can be shown that for nX ∼ Poi(np),

ESK,H(X) =

K∑
k=1

gk,H(4∆)−k+1pk (11)

is a near-best polynomial approximation for −p ln p
on [0, 4∆]. Thus, we can understand SK,H(X), nX ∼
Poi(np) as a random variable whose expectation is
nearly 1 the best approximation of function −x lnx over
[0, 4∆].

3) Equation (7):
Any reasonable estimator for −p ln p should not exceed
one. We cutoff SK,H(x) by upper bound 1, and define
the function LH(x), which means “lower part”.

4) Equation (8):
The function UH(x) (means “upper part”) is nothing
but a product of an interpolation function In(x) and the
bias-corrected MLE. The interpolation function In(x) is
defined as follows:

In(x) =


0 x ≤ t

g (x− t; t) t < x < 2t

1 x ≥ 2t

(12)

The following lemma characterizes the properties of the
function g(x; a) appearing in the definition of In(x). In
particular, it shows that In(x) ∈ C4[0, 1].
Lemma 1. For the function g(x; a) on [0, a] defined as
follows,

g(x; a) , 126
(x
a

)5
− 420

(x
a

)6
+ 540

(x
a

)7
− 315

(x
a

)8
+ 70

(x
a

)9
,

(13)

we have the following properties:

g(0; a) = 0, g(i)(0; a) = 0, 1 ≤ i ≤ 4 (14)

g(a; a) = 1, g(i)(a; a) = 0, 1 ≤ i ≤ 4 (15)

1Note that we have removed the constant term from the best polynomial
approximation. It is to ensure that we assign zero to symbols we do not see.



The function g(x; 1) is depicted in Figure 1.
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Fig. 1: The function g(x; 1) over interval [0, 1].

III. MAIN RESULTS

Since supP∈MS
H(P ) = lnS, we will assume throughout

this paper that 0 < H ≤ lnS. Denote by MS(H) the set
of all discrete probability distributions P with support size
|supp(P )| = S and entropy H(P ) ≤ H . We call an estimator
Ĥ ≡ Ĥ(Z) is within accuracy ε > 0, if and only if

sup
P∈MS(H)

(
EP |Ĥ −H(P )|2

) 1
2 ≤ ε. (16)

For the plug-in estimator H(Pn), the following theorem
presents the non-asymptotic upper and lower bounds for the
L2 risk.

Theorem 1. If H ≥ H0 > 0, where H0 is a universal positive
constant, then for the plug-in estimator H(Pn), we have

sup
P∈MS(H)

EP |H(Pn)−H(P )|2

�

{(
S
n

)2
+ H lnS

n if S lnS ≤ enH,[
H
lnS ln

(
S lnS
nH

)]2
otherwise.

(17)

Note that the only assumption in Theorem 1 is that the
upper bound H should be no smaller than a constant, which
is a reasonable assumption to avoid the subtle case where the
naive zero estimator Ĥ ≡ 0 has a satisfactory performance.
The minimum sample complexity of the plug-in approach can
be immediately obtained from Theorem 1.

Corollary 1. If H ≥ H0 > 0, where H0 is a universal positive
constant, the plug-in estimator H(Pn) is within accuracy ε if
and only if n �

(
S1− ε

H · lnSH
)
.

Recall that it requires n �
(
S
ε

)
samples for the MLE

to achieve accuracy ε when there is no constraint on the
entropy [14]. Hence, when the upper bound is loose, i.e.,
H � lnS, the minimum sample complexity in the bounded
entropy case exactly reduces to [14], i.e., we cannot essentially
improve the estimation performance. On the contrary, when
the upper bound is tight, i.e., H � lnS, the required sample
complexity enjoyed a significant reduction, i.e., we only need
sublinear samples for an accurate entropy estimation.

When it comes to the maximum L2 risk, we conclude from
Theorem 1 that the bounded entropy property helps only at the

boundary, i.e., when n is close to S and H is small. Moreover,
this help vanishes quickly as S increases: when n = S1−δ ,
the maximum L2 risk will be at the order (δH)2, which is the
same risk achieved by the naive zero estimator when δ is not
close to zero.

Is the plug-in estimator H(Pn) optimal in the minimax
sense? It has been shown in [11], [12], [15] that when there is
no constraint on H(P ), i.e., H = lnS, the answer is negative.
What about subsets of MS , such as MS(H)? The following
theorem characterizes the minimax L2 rates over MS(H).

Theorem 2. If H ≥ H0 > 0, where H0 is a universal positive
constant, then

inf
Ĥ

sup
P∈MS(H)

EP |Ĥ −H(P )|2

�

{
S2

(n lnn)2 + H lnS
n if S lnS ≤ enH lnn,[

H
lnS ln

(
S lnS
nH lnn

)]2
otherwise.

(18)

where the infimum is taken over all possible estimators.
Moreover, the upper bound is adaptively achieved by the
estimator in [11] under the Poissonized model without the
knowledge of H nor S.

An immediate result on the sample complexity is as follows.

Corollary 2. If H ≥ H0 > 0, where H0 is a universal positive
constant, the minimax rate-optimal estimator in [11] is within
accuracy ε if and only if n �

(
1
HS

1− ε
H

)
.

For the minimum sample complexity, we still distinguish H
into two cases. Firstly, when H � lnS, the required sample
complexity is n � S

ε lnS , which exactly reduces to the minimax
results with no constraint on entropy in [11]. Secondly, when
H � lnS, there is a significant improvement.

We also conclude from Theorem 2 that the bounded entropy
constraint again helps only at the boundary, and this help
vanishes quickly as S increases: when n = S1−δ , we do not
have sufficient information to make inference, and the naive
zero estimator is near-minimax.

To sum up, we have obtained the following conclusions.

1) The minimax rate-optimal entropy estimator in Jiao et
al. [11] is adaptive with respect to the collection of
parameter space MS(H), where MS(H) , {P :
H(P ) ≤ H,P ∈ MS}. Moreover, the estimator does
not need to know S nor H , which is an advantage in
practice since usually the alphabet size S nor an a priori
upper bound on the true entropy H(P ) are known.

2) Second, the sample size enlargement effect still holds in
this adaptive estimation scenario. Table I demonstrates
that in estimating various functionals, the performance
of the minimax rate-optimal estimator with n samples
is nearly that of the MLE with n lnn samples, which
the authors termed “sample size enlargement” in [11].
Theorems 1 and 2 show that over every MS(H), the
performance of the estimator in [11] with n samples is
still nearly that of the MLE with n lnn samples.



IV. FUTURE WORK

This paper applies adaptive estimation framework to
strengthen the optimality properties of the approximation theo-
retic entropy estimator proposed in Jiao et al. [11]. We remark
that the techniques in this paper are by no means constrained
to entropy, and we believe similar statements are also true for
estimators of Fα(P ) =

∑S
i=1 p

α
i in [11]. Furthermore, the

fact that the sample size enlargement effect still holds in the
adaptive estimation setting is very intriguing to the authors,
and we believe there is a larger picture surrounding this theme
to be explored.
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APPENDIX A
OUTLINES OF PROOFS OF MAIN THEOREMS

A. Analysis of the MLE

1) Upper bound: We first consider the bias. For p < 1
n and

np̂ ∼ Poi(np), the Poisson tail bounds show that p̂ < lnn
n with

overwhelming probability, which leads to −p̂ ln p̂ � p̂ lnn and

E[−p̂ ln p̂] � E[p̂ lnn] = p lnn. (19)

Thus, the bias for pi < 1
n will be −pi ln(npi), and one can

show that summing up these terms subject to H(P ) ≤ H
cannot exceed A ln S

nA with A � H
lnS . For pi ≥ 1

n , the norm
bound 1

n in [14] works.
As for the variance, the Efron-Stein inequality in [20] can

be applied to yield

Var(H(Pn)) �
S∑
i=1

pi(ln pi)
2 � H lnS. (20)

2) Lower bound: As for the bias, it suffices to consider the
distribution (p, · · · , p, 1− (S− 1)p) with entropy H and then
use the lower bounds in [14]. The minimax lower bound for
variance follows from Le Cam’s two-point method [21, Sec.
2.4.2].

B. Analysis of the minimax estimator

1) Upper bound: Most of the analysis goes through s-
moothly with the help of [11, Lem. 3, Lem. 4], and the
remaining thing is to compute the bias

|ESK,H(p̂) + p ln p| =

∣∣∣∣∣4∆

K∑
k=1

gk,H

( p

4∆

)k
+ p ln p

∣∣∣∣∣ (21)

= 4∆

∣∣∣∣∣
K∑
k=1

rk,H

( p

4∆

)k
+

p

4∆
ln

p

4∆

∣∣∣∣∣ (22)

for np̂ ∼ Poi(np) and p < 1
n lnn . Let pK(x) =

∑K
k=1 rk,Hx

k,
we have the following lemma in approximation theory.

Lemma 2. There exists a universal constant Dp > 0 such
that for any C ≥ 1, we have

|pK(x)− 2 lnK · x| ≤ DpCx, ∀x ∈
[
0,

C

K2

]
. (23)

In light of Lemma 2, one can show that |ESK,H(p̂i) +
pi ln pi| � −pi ln(pin lnn) for all pi < 1

n lnn , whose sum sub-
ject to H(P ) ≤ H cannot exceed A ln S

An lnn with A � H
lnS .

2) Lower bound: The minimax lower bound is based on
the so-called fuzzy hypothesis testing [21], and this idea is
inspired by [11], [15].

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, pp. 379–423, 623–656, 1948.

[2] A. W. Van der Vaart, Asymptotic statistics. Cambridge university press,
2000, vol. 3.
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