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Abstract—We study the distributed simulation problem where
n players aim to generate same sequences of random coin
flips, and some subsets of the players share an independent
common coin which can be tossed multiple times. The players
communicate with each other via a publicly seen blackboard. We
provide a tight representation of the optimal communication rates
via linear programming, and more importantly, propose explicit
algorithms for the optimal distributed simulation for a wide
class of hypergraphs. In particular, the optimal communication
rate in complete hypergraphs is still achievable in sparser
hypergraphs containing a path-connected cycle-free cluster of
topologically connected components. Some key steps in analyzing
the upper bounds rely on two different definitions of connectivity
in hypergraphs, which may be of independent interest.

I. INTRODUCTION

Public randomness, or shared randomness, refers to some
external randomness known to all agents which enables them
to take coordinated actions. The most classical application of
public randomness is the generation of the secret public key
in cryptography [1]. This is also a valuable resource which
aids diverse applications including developing randomized
algorithms [2], reducing the communication complexity in
distributed computing [3], reducing the sample complexity in
distributed inference [4], coordination among players in game
theory [5], and quantum mechanics [6]. In these applications,
generating public randomness is of the utmost importance.

In many scenarios, there is shared randomness within certain
subsets of the agents, and sound communication strategies are
necessary to generate public randomness for all agents. Con-
sider the following simple example: Alice shares independent
randomness with Bob and Carlo respectively, and Alice aims
to broadcast as few messages as possible to Bob and Carlo
so that they have access to some public randomness. The
simplest strategy for Alice is to broadcast any random bit R0,
then they generate 1 bit of public randomness with 1 bit of
communication. However, if Alice broadcasts R1⊕R2 where
the bits R1 and R2 come from the shared randomness with
Bob and Carlo, respectively, then they successfully generate 2
bits of public randomness still with 1 bit of communication.

Y. Han and K. Tatwawadi contribute equally to this paper. GK and VP were
supported by the Department of Atomic Energy, Government of India, under
project no. RTI4001. This work was done while G. R. Kurri was at the Tata
Institute of Fundamental Research.

Hence, the communication resources may be saved under
better strategies.

In this paper, we consider a natural generalization of the
above scenario: we are given a hypergraph G = (V,E),
where the vertex set V = [n] is the set of n players, and the
edge set E = {e1, · · · , em} consists of hyperedges ei ⊆ V
representing the subsets of players sharing a common fair
coin. We assume that the coins for different hyperedges are
mutually independent. The players can toss the shared coins
multiple times as a part of the communication strategy. We
also assume that the players may communicate with each other
via a blackboard communication protocol [7], i.e., each player
may write some messages on a publicly seen blackboard based
on his shared coins and all current messages on the black-
board. The blackboard communication protocol allows for
interactive strategies and is stronger than both the simultaneous
message passing (SMP) protocol where each player writes
messages on the blackboard independently of each other, and
the sequential message passing protocol where players write
messages sequentially but in a fixed order. The objective of the
players is to generate the same random variable (or vector) X
following a given target discrete distribution while minimizing
the communication cost, i.e., the entropy of the message M
written on the blackboard. We define the communication rate
as the ratio H(M)/H(X), where H(·) denotes the Shannon
entropy of discrete random variables. We provide a tight
representation of the optimal communication rates via linear
programming (see Theorem 1 and the discussion following it).
More importantly, we also propose explicit algorithms for the
optimal distributed simulation for a wide class of hypergraphs
(Theorem 2).

A. Related works

The role of public randomness has been given consider-
able attention in information theory literature starting from
Wyner [8] who characterized the minimum rate of public
randomness required for two processors to produce (approx-
imatley) independent copies of random variables (X,Y ).
Public randomness was used for encoding and decoding in
arbitrary varying channels by Ahlswede [9], and Csiszár and
Narayan [10]. Generation of public randomness between two
players which is hidden from an eavesdropper was studied in
secret key (SK) agreement by Maurer [11], and Ahlswede and
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Csiszár [1]. Secret key agreement between multiple players
was studied by Csiszár and Narayan [12]. This is closely
related to communication for omnicience [13], [14]. The
minimum communication rate required to generate secret key
between two players was studied by Tyagi [15], and Ghazi and
Jayram [16]. Building on this, Mukherjee et al. [17] derived
a lower bound on this communication rate for SK agreement
in the multiterminal source model.

A special source model, i.e., the hypergraphical source
model, where clusters of players share independent random-
ness, has received attention in various works [17]–[20]. SK
capacity as a function of the total communication was studied
by Courtade and Halford [18], Chan [19], and Zhou and
Chan [20], where [18] focussed on the non-asymptotic ver-
sion. Our work is also on the hypergraphical source model,
but differs from the previous works in that we exploit the
combinatorial nature of general hypergraphs. We remark that
the hypergraph theory plays an important role in Theorem 2.
Specifically, the two different notions of hypergraph connec-
tivity presented in Theorem 2 aim to generalize the following
folklore in different ways (see Lemmas 1 and 3):

Folklore. A tree on n vertices has exactly n− 1 edges.

The work by Mukherjee et al. [17] deserves special mention.
Specifically, it showed that if the k-uniform hypergraph, or
in general any multiterminal source model, is of type S (a
notion introduced in [17]), then there is a strategy achieving
the optimal communication rate n−k

n−1 and outputting each
hyperedge (from a multi-hypergraph) exactly once. The main
differences between our work and [17] are as follows. First,
our achievability scheme is one-shot (i.e. no blocklengths re-
quired) and combinatorial, while the scheme in [17] potentially
requires large blocklengths and is more information-theoretic.
Second, although the type S condition is a nice “if and only
if” result and could be checked efficiently in polynomial time
for a given hypergraph (see also [21]), a rich combinatorial
characterization about which family of hypergraphs are of type
S remains unclear. Our work aims to provide a partial answer
to this combinatorial problem, and based on the fundamental
notions of connectivity, proposes rich families of hypergraphs
that achieve the optimal n−k

n−1 communication rate. Although
our families of hypergraphs must be of type S, it is worth
noting that so far we do not have a direct argument to connect
them. Thus, our work presents an alternative approach which
sheds more lights on the combinatorial perspective.

Notation: We denote by ⊕ the logical XOR operator. For a
set A and k ∈ N, let

(
A
k

)
be the collection of all size-k subsets

of A. Consequently, a k-uniform hypergraph G = (V,E) is
complete if E =

(
V
k

)
.

II. MAIN RESULTS

The first theorem presents a general lower bound of the
communication rate for any hypergraph.

Theorem 1. Let G = (V,E) be any hypergraph. Let X be the
discrete random variable outputted by each vertex through a

blackboard communication protocol, and M be the message
written on the blackboard. Then H(M)/H(X) ≥ t(G), where
t(G) is the solution to the following linear program:

t(G) =



min
∑

v∈V rv,

subject to
∑

v∈U rv ≥
∑

e∈E:e⊆U se, ∀U ( V,∑
e∈E se ≥ 1,

rv, se ≥ 0, ∀v ∈ V, e ∈ E.

A detailed proof is in an extended draft [22, Appendix B].
The linear program in Theorem 1 can be seen as a special case
of a linear program [19, Corollary 2] in a related problem of
secret-key agreement where it is also shown to be solvable
in polynomial time1. Intuitively, the quantity rv denotes the
length of the messages sent by player v, and se denotes the
number of random bits extracted from the hyperedge e to
generate the common output X . Therefore, the first inequality
constraints require that for any graph cut U ( V , the amount
of information communicated from the players in U should
at least cover the amount of randomness extracted out of
hyperedges totally contained in U .

Although Theorem 1 (together with the asymptotic upper
bounds) provides a tight characterization of the optimal com-
munication rates of distributed simulation, the picture is still
incomplete due to the following reasons. First, the existential
proof of the network coding approach in [22, Appendix B]
does not give an explicit communication strategy, and the
result is asymptotic in the sense that large blocklengths are
required and the communication rate only approaches but
may never reach t(G). Second, the linear program tells little
about the combinatorial properties of the hypergraphs where
a small communication rate is possible. For example, which
hypergraphs are as good as the complete graphs?

To answer these questions, in this paper we propose ex-
plicit algorithms of communication strategies and investigate
the combinatorial properties of hypergraphs which lead to a
small communication rate, at the expense of losing certain
generalities. Specifically, we will investigate the hypergraph
structures which perform equally well as the complete k-
uniform hypergraphs. Note that a hypergraph G = (V,E)
is called k-uniform if for all hyperedges e ∈ E we have
|e| = k. The following corollary follows immmediately from
Theorem 1, which itself is a standard result (e.g. it is exactly
the definition of type S in [17] for uniform hypergraphs).

Corollary 1. Under the notations of Theorem 1, if G = (V,E)
is a k-uniform hypergraph, then

H(M)

H(X)
≥ n− k

n− 1
.

By Corollary 1, it remains to find hypergraph structures and
explicit communication strategies where the optimal rate n−k

n−1
is achievable. The case k = 2 is easy and analyzed in [22,

1A version of extended draft [22] (arXiv:1904.03271v2) with Theorem 1
appears slightly earlier than [19] (arXiv:1910.01894v1) but without the
observation of polynomial time solvability.
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Appendix A], where a simple strategy achieves the optimal
rate n−2

n−1 whenever the graph G is connected. However, this
result does not generalize to any k-uniform hypergraphs with
k ≥ 3 under the usual notion of path connectivity for graphs,
and a number of path-connected hypergraphs are too sparse
to achieve a small communication rate. It also becomes chal-
lenging to propose an achievability scheme even if k = 3. The
following theorem shows that under the correct definitions of
connectivity, the optimal rate of communication is attainable.

Theorem 2. Let G = (V,E) be a k-uniform hypergraph,
with 1 ≤ k ≤ n. If G is a path-connected cycle-free cluster
(cf. Definition 6) of topologically connected components (cf.
Definition 1), then there exists an explicit communication
strategy under the simultaneous message passing protocol such
that for some m ∈ N, each vertex can output the same random
vector X ∼ Unif({0, 1}m) while the message M written on
the blackboard satisfies

H(M)

H(X)
=

n− k

n− 1
.

Remark 1. Although Theorem 2 restricts the output X to
be an independent and identically distributed (i.i.d.) Bernoulli
random vector, the same communication rate can also be
generalized to any i.i.d. random vectors, for H(X) fair coin
flips on average suffice to generate the distribution of a random
variable X [8], [23].

A detailed proof is deferred to Sections III and IV. Theo-
rem 2 shows that the optimal rate (n−k)/(n−1) is attainable
non-asymptotically when the underlying hypergraph satisfies
suitable connectivity conditions, which are generalizations
of the classical connectivity for k = 2 from two different
angles. We remark that a path-connected cycle-free cluster of
topologically connected components differs significantly from
the usual notion of path connectivity in hypergraphs, where the
topological connectivity, the central concept in Theorem 2 and
a stronger notion than path connectivity, views the hypergraph
as a simplicial complex in the context of algebraic topology.
For example, when k = 3 and n = 4, the hyperedges may
be viewed as surfaces of a pyramid; two surfaces suffice to
make the hypergraph path-connected, while three surfaces are
necessary to make it topologically connected. We leave more
discussions to the related works on hypergraph theory and
formal definitions in Section III.

The new notion of connectivity contains a rich family
of hypergraphs which suggests that Theorem 2 covers all
hypergraphs for which the rate (n− k)/(n− 1) is achievable.
Surprisingly, there are indeed richer families of hypergraphs
which do not follow the previous connectivity notion but still
achieve the optimal communication rate. We discuss these
examples in [22, Section IV-C], where we characterize the
complete class of optimal hypergraphs in certain cases such
as k = 2, and k = 3 star-shaped hypergraphs, which are dis-
cussed in [22, Appendix F]. It is an outstanding open problem
to figure out the complete class of optimal hypergraphs.

III. ACHIEVABILITY: TOPOLOGICAL CONNECTIVITY

In this section we provide an achievability scheme for
general topologically k-connected hypergraphs (cf. Definition
1). Later we generalize this scheme to incorporate cluster
of topologically connected components (cf. Definition 6) in
Section IV. We introduce the definition and properties of topo-
logical connectivity in Section III-A and the corresponding
achievability strategy in Section III-B.

A. Topological connectivity

In [22, Appendix A], general achievability schemes have
been proposed for all connected simple graphs when k = 2.
A natural conjecture would be that similar ideas should also
work for general “connected” k-uniform hypergraphs. We will
show that this conjecture is true, while we need the correct
definition of connectivity for k-uniform hypergraphs.

In our paper, we adopt the tree definition in [24] and
reinterpret it as topological connectivity:

Definition 1 (Topologically k-connected hypergraph). For any
k-uniform hypergraph G = (V,E) with k ≥ 2, define the
following generation step: for hyperedges e1, · · · , em ∈ E and
any hyperedge e /∈ E, if all (k−1)-tuples in

(
V

k−1
)

appearing
in e1, · · · , em, e appear an even number of times, we may add
the hyperedge e to the hypergraph. We call G is topologically
k-connected if G becomes a complete k-uniform hypergraph
after a finite number of generation steps.

Definition 2 (Minimal topologically k-connected hypergraph).
For k ≥ 2, a k-uniform hypergraph G is called minimal
topologically k-connected if G is topologically k-connected
and removing any hyperedge of G makes it become not
topologically k-connected.

The main property for minimally topologically k-connected
hypergraphs is summarized in the following lemma. We re-
mark that this property is implicitly implied by the main
theorem in [24].

Lemma 1. Any minimal topological k-connected hypergraph
with n vertices has exactly

(
n−1
k−1
)

hyperedges.

The proofs of this lemma and the subsequent lemmas can be
found in [22, Appendix E]. When k = 2, Lemma 1 generalizes
the fact that a tree on n vertices has exactly n− 1 edges.

B. Achievability scheme

In this subsection we propose the achievability scheme for
general topologically k-connected hypergraph G. We assume
that G is minimal topologically k-connected. For each i ∈ [n],
we define the induced hypergraph Gi from G as follows: the
vertex set of Gi is Vi = [n]\{i}, and the edge set of Gi is
Ei = {e\{i} : i ∈ e ∈ E}. Hence, the induced hypergraph Gi

is (k − 1)-uniform, and e is a hyperedge of Gi if and only if
e ∪ {i} ∈ E. We have the following lemma.

Lemma 2. For k ≥ 3, if G is topologically k-connected,
then all induced hypergraphs Gi are topologically (k − 1)-
connected.

1933
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(a) A minimal topologically 2-connected hypergraph on 7 vertices
with 6 edges, or equivalently, a spanning tree.

1

2
3 4

5

(b) A minimal topologically 3-connected hypergraph on 5 vertices
with 6 hyperedges.

Fig. 1: Examples of minimal topologically k-connected hyper-
graphs with k = 2, 3.

We propose the following communication strategy for topo-
logically k-connected hypergraphs. For each edge e ∈ E, we
define an independent random variable Re ∼ Unif({0, 1}) by
tossing the associated common coin.

Definition 3 (Communication strategy for k-connected hyper-
graphs). For a minimal topologically k-connected hypergraph
G with k ≥ 3, the communication strategy is as follows: for
each i ∈ [n],

1) Player i constructs the induced hypergraph Gi, and
choose an arbitrary minimal topologically (k − 1)-
connected subgraph G?

i ⊆ Gi (existence of G?
i is

ensured by Lemma 2);
2) For each hyperedge e of Gi which is not in G?

i , let e be
generated by e1, · · · , em in G?

i (cf. Definition 1). Player
i then writes Re∪{i} ⊕Re1∪{i} ⊕ · · · ⊕Rem∪{i} on the
blackboard.

Although the previous scheme is defined for k ≥ 3,
it is straightforward to see that it reduces exactly to the
achievability scheme in [22, Appendix A] when k = 2 (by
adapting the definition of topologically 1-connected graph
appropriately). Moreover, this strategy can be implemented
under the simultaneous message passing model. We refer to
Figure 2 for an example.

Assuming for a moment that every player may decode
the random vector X = (Re : e ∈ E), we show that the
communication rate of this strategy is optimal. Firstly, by
Lemma 1 and the minimality of G, H(X) = |E| =

(
n−1
k−1
)
.

Moreover, the number of bits player i writes on the blackboard
is |Mi| = |{e ∈ E : i ∈ e}| −

(
n−2
k−2
)
, where Lemma 1 again

shows that each G?
i has

(
n−2
k−2
)

hyperedges. As a result, the

1

2 3

4

5
1→ R124 ⊕R134 ⊕R123

(a) Induced graph G1 (solid lines)
and G?

1 (red lines).

1

2 3

4

5
2→ R124 ⊕R125 ⊕R245

R123 ⊕R125 ⊕R235

(b) Induced graph G2 (solid lines)
and G?

2 (red lines).

Fig. 2: The communication strategy on the minimally topolog-
ically connected 3-uniform hypergraph in Figure 1(b), which
achieves the optimal communication rate 1/2.

total length of the message M is

|M | =
n∑

i=1

|Mi| =
n∑

i=1

(
|{e ∈ E : i ∈ e}| −

(
n− 2

k − 2

))
= k|E| − n

(
n− 2

k − 2

)
=

(
n− 2

k − 1

)
.

Hence, the communication rate can be upper bounded as

H(M)

H(X)
≤ |M |

H(X)
=

(
n−2
k−1
)(

n−1
k−1
) =

n− k

n− 1
,

which is optimal by Corollary 1. Therefore it remains to prove
the following theorem.

Theorem 3. Let G = (V,E) be a topologically k-connected
hypergraph. Then under the communication strategy in Defi-
nition 3, every player may decode the random vector X .

The proof of Theorem 3 requires delicate algebraic and
combinatorial arguments for topological connectivity, which
is deferred to [22, Appendix C].

IV. GENERALIZATION: CLUSTERS OF CONNECTED
COMPONENTS

In this section, we generalize the achievability scheme in
Section III to incorporate the cases where the hypergraph
is not topologically connected but consists of topologically
connected components.

A. Path connectivity

First we review the notion of path connectivity in general
(and not necessarily uniform) hypergraphs. Recall that a
general hypergraph G = (V,E) consists of a finite vertex
set V and a finite hyperedge set E = {A1, · · · , Am}, where
Ai ⊆ V are non-empty subsets of V . Path connectivity in
hypergraphs is defined as follows.

Definition 4 (Path and path connectivity). In a hypergraph
G = (V,E) and vertices u, v ∈ V , a simple path from u
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to v is a sequence of distinct vertices v0, v1, · · · , vk ∈ V and
distinct hyperedges A1, · · · , Ak ∈ E such that v0 = u, vk = v,
and vi−1, vi ∈ Ai for any i ∈ [k]. The hypergraph G is path-
connected iff a simple path from u to v exists for any u, v ∈ V .

We also need the notion of cycle-free hypergraphs.

Definition 5 (Simple cycle and cycle-free hypergraph). In
a hypergraph G = (V,E), a simple cycle is a sequence of
distinct vertices v0, v1, · · · , vk−1 ∈ V and distinct hyperedges
A1, · · · , Ak ∈ E such that vi−1, vi ∈ Ai for any i ∈ [k],
where vk = v0. The hypergraph G is cycle-free iff there is no
simple cycle in G.

Note that a path-connected cycle-free 2-uniform hypergraph
is a tree. The next lemma is another generalization of the fact
that a tree on n vertices has exactly n− 1 edges. Recall that
for each v ∈ V , the degree of v is defined as deg(v) = |{A ∈
E : v ∈ A}|.

Lemma 3. Let G = (V,E) be a path-connected cycle-
free hypergraph. Then

∑
A∈E (|A| − 1) = |V | − 1, and∑

v∈V (deg(v)− 1) = |E| − 1.

B. Achievability scheme

In this section we formally define the cluster of connected
components, and present a communication strategy achieving
the upper bound in Theorem 2 under the simultaneous message
passing procotol.

Definition 6. Let G = (V,E) be a k-uniform hypergraph. We
call G is a cluster of connected components if and only if
there is another hypergraph (not necessarily k-uniform) Gc =
(V, {A1, · · · , Am}) such that (where the subscript c stands for
“cluster”):

1) the hypergraph Gc is path-connected and cycle-free;
2) for each i ∈ [m], the restriction of G on the vertices in

Ai is topologically k-connected.

1

4 5

6

2

3

G
1

4 5

6

2

3

Gc

Fig. 3: An example of a cluster of connected components.

Definition 6 essentially says that to form a cluster, the
topologically k-connected components of G should be path-
connected without cycles in terms of components. Figure 3
illustrates an example of such a cluster, where

G = ([6], {{1, 2, 3}, {1, 4, 5}, {1, 4, 6}, {4, 5, 6}}),
Gc = ([6], {{1, 2, 3}, {1, 4, 5, 6}}).

Next we define the communication strategy for clusters of
connected components.

Definition 7 (Communication strategy for clusters of con-
nected components). Let the k-uniform hypergraph G =
(V,E) be a cluster of connected components, with the cor-
responding cluster hypergraph Gc = (V, {A1, · · · , Am}). The
communication strategy is as follows:

1) For each i ∈ [m], remove edges so that the restriction
of G on Ai is minimally topologically k-connected;

2) Messages within components: for each i ∈ [m], repeat
(for different realizations of coin tosses) the strategy in
Definition 3 for Mi times in the restricted graph on Ai,
where Mi is chosen so that

Mi ·
(
|Ai| − 2

k − 2

)
= C (1)

for some common constant C > 0. We choose C large
enough so that each Mi is an integer;

3) Messages across components: for each v ∈ V belonging
to at least two connected components Ai1 , · · · , Ai` (i.e.,
` = degGc

(v) ≥ 2) and j ∈ [`], let G?
j be the

minimal topologically (k − 1)-connected subgraph of
v-induced hypergraph in the connected component Aij

(cf. Definition 3) used in the previous step. Let Rj ∈ FC
2

be the binary vector consisting of the outcomes of coin
tosses corresponding to every hyperedge in G?

j repeated
Mij times2, in an arbitrary order. Then vertex v writes

Mv = (R1 ⊕R2, R1 ⊕R3, · · · , R1 ⊕R`)

on the blackboard.

For example, for the previous hypergraph in Figure 3, we
have |A1| = 3, |A2| = 4. Consequently, we may choose M1 =
2,M2 = 1 and C = 2. Let R123, R

′
123 be independent out-

comes of the common coin shared among {1, 2, 3} (i.e., toss
coin twice), then the message within components (broadcast by
player 4) is R145⊕R146⊕R456, and the messages across com-
ponents (broadcast by player 1) are R123⊕R145, R

′
123⊕R146.

It is straightforward to see that each player may decode the
random vector (R123, R

′
123, R145, R146, R456), and thus the

previous strategy achieves the optimal communication rate 3/5
in this example.

The following theorem (proved in [22, Appendix D]) states
that for general clusters of connected components, the strategy
in Definition 7 achieves the optimal communication rate,
thereby completing the proof of Theorem 2. Let X be the
binary vector consisting of all coin tossing outcomes during
the strategy in Definition 7.

Theorem 4. For any k-uniform hypergraph G = (V,E)
which is a path-connected cycle-free cluster of topologically
connected components, every player may decode the entire
outcome vector X under the strategy in Definition 7, with
communication rate H(M)/H(X) = (n− k)/(n− 1).

2Note that G?
j has exactly

(|Aij
−2|

k−2

)
hyperedges by Lemma 1, the choice

of Mij in (1) ensures that the dimension of the vector Rj is exactly C.
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