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Eeneralhypothesis testinga
S simple : Do/D

,
is a singleton (

Hi : Of
, composite : /D, is a set

In the composite setting , for a test TE %0 . 1) :

Type I error = sup PolT = 1)
Oo⑰

Type I error =SEPP T=

Ihm .

if (PT= + supPT =) =-if TUE ,F
0,# T

# Minimax theorem ; details left as exercise
.

· In the last lecture
,

basic LeCam's two-point method reduces the estimation

problem to the hypothesis testing between two simple hypothesis.
· However

,
it could be helpful to choose one or both hypotheses to be composite,

or in other words
,

to be moturedistributions with a carefully chosen prior it.

-AdvancedLe Cam I : point vs
.

mixture

GeneralThm
.

Let OoE and D
,
D

. Suppose

inf min L(00
,
a) + L(0

, a) > 0
.

O ,E,
a

then for any probability distribution it on D
,

inf sup
↑ davo.

Fo[LIO ,T(x)] * (1-TV(Po
·

EntPo
.])

.

# Consider the two-point prior[LS0o + +) . The Bayes risk lower bound

follows from the same two-point proof with

↑ = Po
·

Q = #or[Po)
. E



How to
upper

bound TV(Poo
·
E+[Po. ]) ?

· The "point vs . mixture" structure is only helpful when

TV(Poo
,

En[Po, 3) <int TVL40
,

POI

i

. e. mixture increases closeness
.

-

·

Tochieveso,the standard methodissterSuline
x method or the second-moreit

#hm(x-method)
. X (ETPa) 11 Po

. 3 =0
, 0+ [SEPy-1

where DWTT is an independent copy of O.

#

EnTPoIP
y Fin

&rollary. For i . i . d. models,

*+[P 11 p ) = Edir[(SKPgy-1 .

#
.

Check =S El

Examplarted Clique Given an undirected graph G on vertices
,

ina

Ho : Gvg(r .E) (ie . Vizj· P((ij)tE) = 2)

Hi : G-g(n.
,

k) (i . e
.

there is an unknown S[[n]
. ISl = K.

and
P((i.j)fE) = & it is C



Target :- constant Cs.

t
. if K ( Llogan-Llognlogan + C

,
then no test

can reliably distinguish between Ho and H. .

Why mixture structure in H , is important? Because for each fixed instance of Hi,

the learner knows the sets and can look at if GIS] is a clique or not.

# Lot P be the distribution of G-G(r, E) :

Ps be the distribution of G with a clique planted at S
:

S be a uniformlyrandom subset of [n] of size K.

(
(2) -

(2)](Xij= 1) . (_(2)-(s](Xj)Then ge=G

=790.
13 (t)(2)

2()-2(.-2
+IS is a

=> xE[Ps]1IP) = Es
. s

: [2ly -1

=z. Folk when Klogan-2logloea
by algebra

El

Example1 . 2 (uniformity testing) Given X...
..

.
X. " p = (p...... pr) .

aim to test

Ho : P = Urif[k]

vs
.

Hi : TV(P
, Unif[k]) > 2

.

Target : the sample complexity of a reliable uniformity testing is

n=

Note : Again ,
a naive two-point method will not succeed

, for if the learner knows

the pattern of how P deviates from uniform , then OC) samples will suffice

to tell the difference .



#of lower bound .WLOGassumeiseas

Under Hi : Pr =(..... ) ,
with

v = (v ... V2) ~Unif(EI) .

Note that TV(Pr
, Unif[kj) = a for all rePE12

,
and

J
= It viv!

=>XYETP)1(4* = Err[(1+ vi)"] - 1

* Eveexp)
Therefore ,

X" = 01K
whenExp) =exp

E

ple1
. 3 /Linear functional of sparse parameters) X-NIM .

[a) with 11MloS .

Target :

ifSup ET-Slog(1+)

#folower bound. Ho : M = 0 (call it 4

Hi : M = P1s .
SwUnif(([@)] (call it EIPs])

Separation condition is satisfied witho =PS"

J=X-P)dx=PS

To proceed,
note that ISNS') ~ Hypergeometric /d . S

.
S)

,

so by Hoeffling's lemma
.

*(ETPs]1140) + 1 = ETcOnSly < ElePB(s,y = (1-f + Get)3
= Olk when prot

⑮



&ma (Hoeffding) Let C = PG
, ... <)-R be a fixed population ,

and

X.. -

, Xn :
m draws from 2 without replacement

* ...., X*: n draws from 2 with replacement

Then for convex f : R-s R
,

Elf(Xi)] => Elf(
,
X]

·

Example1 .
4 (Quadratic functional estimation) X ...... X. " -

,
where the densityf is supported on

To,
179

,
and1If"llc = OlK for some integers .

Target :

inf sp Ef/T-Stif(xdx)
= ni + nE

#lower bound. The parametric rate(t) is trivial
, by either LAM or a simple

two-point argument (try it yourself ! ). For the &In-id) lower bound :

Ho : f = /

Hi : fu(x) = 1 +chg()
,

with veUnif)3135%
where g() is a smooth function on [0

.
1)" with Sg = 0,

To, 171 is partitioned into hd subcubes with edgelength h

Ci is the lower-left corner of i-th subcube
.

For a small absolute constant 230
· can verify 11 follo = OU3 for all v ,

and

Ston frixidx = 1 +c=g
=> Separation condition holds with 0 = 1*

For indistinguishability ,

J = 1 +Stop virg)dx = 1 + illgitevill
=> XIETfE /If*) + 1 E Elexp/ncIIgI: Last vivis]

-subtaussian
& exp)O(n his

+2
. -9) = 0() when him



-aced Le Cam It : mixture vs
.

mixture

[eneralThm
.

Fix any #EG and D
,

E D
. Suppose that

inf
Bo. D,

War (((00 .
1) + (10

, 9)) -0 .

then for any probability distributions No andM,

inf sup Ea[L(o ,T(x]] > E(1-TVCEn[PoS ,
En[Po)) -ToLOS -i , (a, ))

.

T REQUE,

# The only new observation is that
, if to is the restriction of to on Go

,
then

TV/En[PoJ
,
En[Paj) = TV(to ,) = To (D)

·

E

Challenge : What is a good way to upper board TV/En[Po] .
#n[Po

.
3) apart from

trivial convexity arguments ?

#thogonalfunctions/ polynomials . Suppose (POJOCIO-c0+s] is a 1-D family of distributions
.

with likelihood ratio expansion

↳(x) = for 1

Then under some structural condition
, EPm(X; 03] mo

are orthogonal under Poo
.

Lemma. If SPoor depends only on (00 .
u . v)

,

the

Ex-po [Pm(X ; 00 > Pr(X : 0)) = 0 VmEn
.

# S%P = Expe
.

[p(X:0)(p(x :0))

== Ex-p
.

[Pm(X: 00)4e(X :03]
Since this quality depends on (n .v) through now

,

all coefficients on the RHS are

En
O for men .



Two important examples .

sic
. ForProvid Hei the

Poisson For Po = Poild)
,

then /P =e
-

The

correspondingPriscaledair Polynomial
xixtht

BingTV and X2 : methods of moments

#hm(Gaussian mixture) For MER and RVs U
.

V :

TW) EIN(+ U
, 1] , EINI+ V .1))US EVEY

If in addition ETV] = 0
.
ETR] = M2

,
then

*EIN(+ U
. 1) 11 EIN(m+ V . 13)) < e**EOSETUS

# WLOG assume M
= O

,

and let Om : = ETUM] - EIVM] ·

Then

TV (EIN (U.13]
. EINIV.1])= Si)Forc[Y(x-0] - EnerTy(x-01]/dx

= SinY(x))Foru [Ha(x)] - For Hed
= Ex-No

.
/Hr(

=E ) #xwo.)Hr(X)2y"
=[



For upper bound
, we lower board the denominator as

Fov[q(x - a) = y(x) · Ear [exp(ox - E)) = y(x) . exp(a[ox - =)) = y(x)eY

The rest is the same
.

E

Similarly ,
we have the following result for Poisson mixtures .

#(Poissonmixture) For X30 and RVs U , V supported on [-X .
0)

:

TV (EPoi(XU) .

EPoi(X +v)<On : = EU-EIS

If in addition EIV] = 0 and IVIM ,
then

X(E[Poi(x+ u3] /I [Poi(x+ v >]) > em.
If. Exercise .

Example2
.11/Generalized uniformity testing) X ....

-

.

X. p = (p1 :" 41)
.

Air to test :

Ho : P = UnifIS] for some S & [K)

vs
.

Hi :
min TVLP , Unif(S)) > 2.

S[[k]

Target : sample complexity for a reliable test is+ )

#oflower board
.
① n =2) follows from uniformity testing /Example 1

. 2)

② For n =R() ·
assume Poissonization

,
where the observations are Poilp :

).
i .
i . d.

Construct two product priors : under Ho
, p, :"

, PK-LarIU]

under Hi : Ps ---
.pi Lar(V]

where
~=



Note that : D Under Ho
, piedo,Y ,

so (p.... Pr) is generalized uriform.

② Under Hi
, (p1.- , PK) is &(2)-far from generalized uniform w .

h
. p.

③ ELU] = EIV] = E
,

so under both Ho and Hi
, (P ,

:

:, PK) is a puf

~expectation .

Additional arguments need to be made to ensure that it suffices

to consider "approximate pufs" ,

but we're omitting them here.

④ ELUS = EIr]= and

IEICU-]- ETCV-)) = Ems .

Now by the Poisson mixture result ,

ElPoiCnU3]1l ElPoiLnV)])=e
e t ,

so

n n =k= 1
.

=> XCEn[PoiCupis] 11 EntPoiLapis]) +1 (1 + Ol ,y
tersorization

of x2

= exp(0) = 04)

if n =0 E

Remark : This construction matches the first two moments of (U .
v)

.

Can we match more ? No !

Lemma Let
M be a prob . measure supported on 90 , X .. .... Xx -13 <To

.

8).
--

Letr be another prob .
measure supported on [0 . a) s.

t.

Fa[X] = Er[X] for all m = 0
.

1
.

-

.
2k-1.

Then M = V.

#
.

O = En[X(X-x)... (X - xi1)] = Ev[X(X-x, )- -- (X-Xa-1)"] 30 = supplis 190 ,
X:, Xe]

=> u =M . El



Zampe22Stiron
estimation) X-NI) with lol

inf sup FolT-11011 1 ) InT Holl

#oflower bound
.

Idea : test between Ho : 1/011, Po us
.

Hi : /1011
,

3 P ,

Cassign On Lassign Ow

Desired properties : & X2(M.
* No, K /1 M, * N10. 1) = O(t)

·

② (H) + M(Hi) = ok
.

③ -Po = R(n .H
We design (Po , Pl , Mo , M . ) for these properties separately .

D : If Mo , M ,
match the first K moments

,

then

x2)M * N(o . 1) /1 M. * No. 1) =0(k)()"
↑

by shifting M.

if necessary

To make it Oct
-

choose KE

② Choose Po = n . En (8 , ) + w()

p = n . Em, (a) - w(r) .

Since underM 11011 ,
concentrates around n . Enol01 with fluctuation OCES

,

Chebysher's inequality gives MH) . M(Hi) = 0(k).

③ It remains to solve the following optimization program :

S max Emlal - Emplo
St

. Mo,h, supported on [1
. 1]

, E .
[O"] = Ento) for 0xm = K

.

There is a quality result between moment matching & best polynomial approximation .



Im
. Let IER be a compact set

,
and of be continuous on I

vx = [max Entf(x)3-EIfx
supp(m) . supp(M. ) & I

.
with matching K first moments

E
*

= inf sup 1 f(x) - P(x))
P : degPEK Xel

Then

v
*

= 2 . E *.

# The direction V** IE
*

is easy (exercise)
.

For the hard direction V** &E*, consider F = Spangl . x
. .... x"

, f(x)]
.

Define a linear functional Lon F with L(x) = 0 Um = 0 , l
.

· -
- ,

L(f) = E
*

Then 1/211 := sup((h) is 1
. To see it ,

let P
*

(x) be the best approximating polynomial,
he F

1) HI) with1lf-P
*

/Lo = E*.

Then any hEF can be written as h = c2f-p
*

) + P
,

with 1/h FICE
*

by definition of P*.

=> = 1
,

with equality if =

Now by Hahn-Bannah
.

L can be extended to CCI) with 11211 = 1.

by Riese representation .
Lh = Sinde for a signed measure M.

Apply Jordan decomposition M = M + - M =, then 21 to = M+ LI) = M- (I)

3 = M+ (i) =M- (I)

14 = 1 = M + (I) + M - (1) = 1 =
.

Also
.

((x = 0 => Sxdet = Sxdu- for all m = o, .... K
.

Finally ,

choose M.
= 2M+· Mo = 2-, we get

E
*

= Lf = Em[f] - Entf]= (Em[f] -EnT53)
.

By approximation theory ,

the uniform approximation error of 181 by spansl ..... Oly is DL)
so we get p . -p = r() = R(n)
Combining D- gives the target lower bound

. &



&cial topic : dualizing Le Cam (Polyanskiy & Wu'2019)

Setting :
D .....&n. XildPo .

observations : (X
.. "i Xn)

(in other words
,

X
..

: -

.

Xo Eo[Poj =: + P(

Target : estimate a linear functional T(i)
,

and characterize

r
*

= ifsuP En[(FXX-T]

2 A related setting : X: 10: Poi ·

where (8... On) is an individual sequence.

The target is to estimate TCO)= 10)
,

which is linear ino=ESi.

Note that this covers the setting of functional estination such as 1.-norm estimation

in Example 2
.
2

.

A similar result holds in this setting ; see paper (

Im
. If T is lineer and It is convex

,

under regularity conditions,

Exte Sx().

where Sylt) is the modulus of continuity :

(xr(t) = sup()T(+) - T(π)): xY(+ Pl + P) = t 2
,

T ,
+π)

-

Rmark . D Ext is the best separation constant subject to the X2 indistinguishability

constraint
, and****x()" trivially follows from Le Cen's two-point

method

& The upper
bound shows that for linear T

.
Le Can's method can

be "dualized" to get statistical upper
bounds.

Pepperbound
.

Try F(X... Xo) = in JSX: ) for some function g : X + M.

By bies-variance analysis ,

Sup EnICT-T()(2] = (T() = ng)" + Varp(g) .



Therefore ,
it suffices to show that

i9)+a) Sx)
L(i, g)

Ideally we'd like to apply minimax duality to LLit
. g) . Note that

· LLE, g) is convex in g :

·Marp(g) is concave in it ; but

· IT()- Pg) is orex in i
.

To mitigate the last issue
,

write

L(n, g) = Sup sup (T()-ng) - 9(T(t) - T Pg)+p(g)
i 0322

= Sup
#zES3:-TTsy of
~-

: Tu

Therefore ,
we may apply minimox theorem to get

itsLn .)TN-PT
=Sif T( - T() + (-g+mp(s)

.

Recall that * (nP(l + P) = sup()(i- π)Pg12 : Var-p(g)-13
.

So if XIP1l +P)>t
,

then Ego with Varip(g) < 1 and (i - 14g< - E .

Now choosing g = go with c + 0 gives that inf(-4g+pa = -0
.

On the other had
, if(PIP) E. then inf(n-PS+empty = 0.

Therefore ,

ifspLig) =SupST()-T:PP
= Sxlin) .

⑫



Example(Fisher's species problem) Let X
.. .... XnIt puf p supported on N.

Let m = nw ,
and hypothetically draw Xi- Xo " p ,

aim to estimate

V =19X , : XmY)SX,
X . 3) (# of "new" species) .

Q : Characterize r
*

= its Ept - v)

A :

r
*

=

O(t) if r=)
,S Ein') if rel

.

#of upper bound
.

First we make some simplifications :

& Poissonization : the histograms Nx= 1(X: = x) ~ Poi(npx) .

and NX-Poi(mpx)

are independent Poisson RVs
.

② Replace by expectation: can show UF EU wh . p ., so it's equivalent to estimate

#[U] = E[[1 (N = 0
, Nicol] = [erPx)1- e

-

upx)
.

③ The support size of p is at most O(n) .
In this case

,

let Ox = npx and

~ Unif((OxY) ,
then FEIU] is equivalent to

En[h(0) = Ean[e-o-e-C+r0]

By the previous result , it suffices to show that
>P = Poi

Sx)) = supPlEv-[hi]) : X+P1 +P) = tyn-mind if
Let t= .

Since X
*

- implies That , we have

Sxr(t) = sup(/Sndol : 101l +El . 110PII += + )
.

where O = T - it is a signed measure. To
upper bound this quantity ,

we use complex

analysis. Let

fo(z) = Se
*

olda) CLaplace transform

fop (2)= EXP(m) (2-transform

then

Shdo = Sale-o - e

-(+ (0)0(de) = fo(-1) - fo) - 1 - r)
.



In addition
,

fop(z)= zes(da) = Seal-O(da) = fo(z -1)
,

Finally,

Ho(z)) = Sr
+

101(da) =2 for Re(z) = 0.

(fop(z)) = loP))-2+ for 121 = 1
.

Consequently,
* (t) =

> Sup((fo7-fol-r)) : /I folHRez -on
= 2

. IlfolIHD- = 2 + )

disk2+- 13 .

-
>

Sup 31f()-f(l-r)1 : //fI/H*Resol = 2
. /If/HOp-1)-2t ,

f holomorphic on P2 : Relz) = 0 3.

| z+ (2)
(f) = 2

~
Im(z)

v = 1+ Re(v) = E

In(w)

Re(z) = 0 - Re(w) = 1

-- r

|f) = 2+ I 1g12t

↑

(f) = 2

8

10
3

Re(z) #r
-

& I
>

Re(w)

1) If r-1
,

then IfG-f(--r))-4t as-1-r lies in the disk D-1
.

2) If wal
,

use the conformal map f(z) = g(l+E )
. By Hadamard three-line

theorem
,

(f(1 - r)) = (s(0)) - 11g
=
Else = 0+

=> If(--r) - f(-x)) = 0(t + +) = o(ti)as + = = - 1
.

⑰


