Lec 8: Advanced Le Can's Method

Yanjun	Han	
		1

Pf. Minimax theorem; details left as exercise.

In the composite setting, for a test $T \in \{0, 1\}$: Type I error = $\sup_{\theta_0 \in \Theta_0} P_{\theta_0}(T=1)$

Type I error = sup Po, (T=0)

 $\frac{Thm}{T} \cdot \inf_{\theta \in \Theta_{0}} \left(\sup_{\theta \in \Theta_{0}} \left(T = 1 \right) + \sup_{\theta \in \Theta_{1}} \left(T = 0 \right) \right) = \left[-\inf_{\pi \in P(\Theta_{1})} TV \left(\mathbb{E}_{\theta_{n} \sim \pi_{n}} \left[P_{0} \right], \mathbb{E}_{\theta_{1} \sim \pi_{n}} \left[P_{0} \right] \right) \right]$

· In the last lecture, basic Le Can's two-point method reduces the estimation

problem to the hypothesis testing between two simple hypothesis.

However, it could be helpful to choose one or both hypotheses to be composite, or in other words, to be mixture distributions with a conefully chosen prior TT.

Advanced Le Can I: point vs. mixture

.

General Thm. Let
$$\Theta_0 \in \Theta$$
 and $\Theta_1 \subseteq \Theta$. Suppose inf min $L(\Theta_0, a) + L(\Theta_1, a) > 0$, $\Theta_1 \in \Theta_0$, a

then for any probability distribution To on D.,

$$\inf_{T} \sup_{\theta \in \{\theta_{\bullet}\} \cup \theta_{\bullet}} \mathbb{E}_{\theta} \left[L(\theta, T(X)) \right] \geqslant \frac{\Delta}{2} \left(1 - TV(P_{\theta_{\bullet}}, \mathbb{E}_{\pi}[P_{\theta_{\bullet}}]) \right).$$

Pf. Consider the two-point prior $\frac{1}{2}(S_0, +\pi)$. The Bayes risk lower bound follows from the same two-point proof with $P = P_0$, $Q = \mathbb{E}_{\theta \sim \pi}[P_{\theta_1}]$.

How to upper bound TV(Po., En[Po.])?

· The 'point us. mixture' structure is only helpful when

$$TV(P_{\theta \bullet}, E_{\pi}[P_{\theta \bullet}]) \ll \inf_{i \in \mathcal{P}} TV(P_{\theta \bullet}, P_{\theta \bullet}).$$

i.e. mixture increases closeness.

• To achieve so, the standard method is Ingster-Suslina χ^2 method or the second-moment method, by upper bounding $\chi^2(\mathbb{E}_{\pi}[P_0]) \| P_0)$.

$$\frac{\text{Thm (}\chi^{2}\text{-method)}}{\chi^{2}(\mathbb{E}_{\pi}[P_{\theta_{i}}]\parallel P_{\theta_{i}})} = \mathbb{E}_{\theta_{i},\,\theta_{i}^{\prime}\sim\pi}\left[\int\frac{P_{\theta_{i}}P_{\theta_{i}^{\prime}}}{P_{\bullet_{i}}}\right] - 1,$$

where $\theta_i' \sim \pi$ is an independent copy of θ_i .

$$\frac{Pf}{Pe} = \int \frac{(\mathbb{E}_{\pi}[Pe])^{2}}{Pe} \\
= \int \frac{\mathbb{E}_{\theta_{i},\theta_{i}^{\prime} \sim \pi}[Pe,Pe_{i}^{\prime}]}{Pe} \\
= \mathbb{E}_{\theta_{i},\theta_{i}^{\prime} \sim \pi} \left[\int \frac{Pe,Pe_{i}^{\prime}}{Pe} \right] \quad \text{by Fubini}.$$

Corollary. For i.i.d. models.

$$\chi^{2}(\mathbb{F}_{\pi}[P_{\theta_{i}}^{\otimes n}] || P_{\theta_{i}}^{\otimes n}) = \mathbb{F}_{\theta_{i}, \theta_{i}' \sim \pi}[(\int \frac{P_{\theta_{i}} P_{\theta_{i}'}}{P_{\theta_{i}}})^{n}] - 1.$$

$$\frac{\text{Pf. } Check}{\int \frac{P_{\theta_1}^{\bullet} P_{\theta_1}^{\bullet \bullet}}{P_{\theta_0}^{\bullet \bullet}} = \left(\int \frac{P_{\theta_1} P_{\theta_1}}{P_{\theta_0}}\right)^n.$$

Example 1.1 (Planted Clique) Given an undirected graph G on a vertices, aim to test between

Hor
$$G \sim G(n, \frac{1}{2})$$
 (i.e. $\forall i < j$, $P((i,j) \in E) = \frac{1}{2}$)

$$H_1$$
: $G \sim g(n, \frac{1}{2}, k)$ (i.e. there is an unknown $S \subseteq [n]$, $|S| = k$.

and
$$P((i,j) \in E) = \begin{cases} 1 & \text{if } i, j \in S \\ \frac{1}{2} & \text{o.w.} \end{cases}$$

14

4

Target: a constant C s.t. if K < 2 log_n - 2 log_ log_n + C, then no test can reliably distinguish between H. and H,.

Why mixture structure in H1 is important? Because for each fixed instance of H1, the learner knows the set S and can look at if G[S] is a clique or not.

Pf. Let P be the distribution of
$$G \sim G(n, \frac{1}{2})$$
;
Ps be the distribution of G with a clique planted at S ;

S be a uniformly random subset of [N] of size k.

Then
$$\int \frac{Ps Ps'}{P} = \sum_{G} \frac{Ps(G) Ps'(G)}{P(G)} = \sum_{(X_{ij}) \in \{0,1\}^{\binom{n}{2}}} \frac{\binom{1}{2}\binom{n}{2}-\binom{k}{k}}{\binom{n}{2}}$$

$$\frac{\int \frac{P_{S} P_{S'}}{P} = \sum_{G} \frac{P_{S}(G) P_{S'}(G)}{P(G)} = \sum_{(X_{ij}) \in \{0,1\}^{C_{S}}} \frac{\left(\frac{1}{2}\right)^{(T_{S}) - \left(\frac{1}{2}\right)} \prod_{i,j \in S} 1(X_{ij} = i) \cdot \left(\frac{1}{2}\right)^{(T_{S}) - \left(\frac{1}{2}\right)} \prod_{i,j \in S} 1(X_{ij} = i) \cdot \left(\frac{1}{2}\right)^{(T_{S}) - \left(\frac{1}{2}\right)} \prod_{i,j \in S} 1(X_{ij} = i) \cdot \left(\frac{1}{2}\right)^{(T_{S}) - \left(\frac{1}{2}\right)} \prod_{i,j \in S} 1(X_{ij} = i) \cdot \left(\frac{1}{2}\right)^{(T_{S})} = \frac{1}{2} \frac{\left(\frac{1}{2}\right)^{(T_{S}) - 2} \left(\frac{1}{2}\right)^{(T_{S}) - 2} \left(\frac{1}{2}\right)^{(T_{S}) - 2} \left(\frac{1}{2}\right)^{(T_{S})} = 2 \frac{\left(\frac{1}{2}\right)^{(T_{S}) - 2} \left(\frac{1}{2}\right)^{(T_{S})}}{\left(\frac{1}{2}\right)^{(T_{S})}} = 2 \frac{\left(\frac{1}{2}\right)^{(T_{S})}}{\left(\frac{1}{2}\right)^{(T_{S})}} =$$

$$\Rightarrow \chi(\mathbb{E}[P_{i}]|P) = \mathbb{E}_{S,S'}[2^{s}] - 1$$

$$= \sum_{r=1}^{k} 2^{\binom{r}{2}} \cdot \frac{\binom{k}{r} \binom{n-k}{k-r}}{\binom{n}{k}} = o(1) \quad \text{when } k \in 2\log_{n} - 2\log_{n} + C$$
by algebra

H .: P = Unif [h]

vs. H1: TV(P, Unif[k]) ≥ €.

Target: the sample complexity of a reliable uniformity testing is
$$n = \mathbb{E}\left(\frac{\sqrt{k}}{\epsilon^2}\right)$$

Note: Again, a naive two-point method will not succeed, for if the learner knows the pattern of how P deviates from uniform, then $O(\frac{1}{\epsilon^2})$ samples will suffice to tell the difference.

proceed, note that
$$|SNS'| \sim Hypergeometric(d, s, s)$$
, so by Hoeffling's lemma.

$$\chi^{2}(\mathbb{E}[PS]||P_{0}) + 1 = \mathbb{E}\left[e^{p^{2}|SNS'|}\right] \leq \mathbb{E}\left[e^{p^{2}B(s,\frac{s}{d})}\right] = \left(1 - \frac{s}{d} + \frac{s}{d}e^{p^{2}}\right)^{S}$$

$$= O(1) \text{ when } p \approx \sqrt{\log(1 + \frac{d}{s^{2}})}.$$

Note that
$$TV(P_v, Unif[k]) = \varepsilon$$
 for all $v \in \{\pm 1\}^{k/2}$, and

Pf of lower bound. WLOG assume k is even. Under Ho: $P = (\frac{1}{k}, \dots, \frac{1}{k})$

$$\int \frac{P_{v}P_{v'}}{P} = \sum_{x=1}^{k} \frac{P_{v}(x)P_{v}(x)}{P(x)} = \sum_{i=1}^{k/2} \left(\frac{(1-2\epsilon v_{i})(1-2\epsilon v_{i}')}{k} + \frac{(1+2\epsilon v_{i})(1+2\epsilon v_{i}')}{k} \right)$$

$$= | + \frac{\Re \epsilon^2}{k} \sum_{i=1}^{k/2} V_i V_i'$$

Under H_1 : $P_V = \left(\frac{1-2\epsilon v_i}{k}, \frac{1+2\epsilon v_i}{k}, \dots, \frac{1-2\epsilon v_{k/2}}{k}, \frac{1+2\epsilon v_{k/2}}{k} \right)$, with

 $V = (V_1, \dots, V_{k/2}) \sim U_{nif}(\{\pm 1\}^{k/2}).$

$$\Rightarrow \chi^{2}(\mathbb{E}[P_{v}^{\otimes r}] \parallel P^{\otimes r}) = \mathbb{E}_{v,v'} \left[\left(1 + \frac{\delta \xi^{2}}{k} \sum_{i=1}^{k/2} v_{i} v_{i}^{r} \right)^{r} \right] - 1$$

$$\leq \mathbb{E}_{v,v'} \exp \left(\frac{\delta \kappa \varepsilon^{2}}{k} \sum_{i=1}^{k/2} v_{i} v_{i}^{r} \right)^{r} - 1$$

K-subfacusian

$$\leq \exp\left(\frac{1}{2}\left(\frac{6n\epsilon^2}{k}\right)^2 \cdot \frac{k}{2}\right) - \left(= \exp\left(\frac{16n^2\ell^4}{k}\right) - 1\right)$$

Therefore,
$$\chi^{L} = O(1)$$
 when $n = O(\frac{\sqrt{k}}{\Sigma^{1}})$.

4

Example 1.3 (Linear functional of sparse parameter) X~N(M. Ia) with 11/111. < s.

Target:
$$\inf_{T \in \mathcal{F}} \sup_{s \in S} \mathbb{E}_{p} \left(T - \sum_{i=1}^{d} \mu_{i}^{s} \right)^{2} \leq s^{2} \log \left(1 + \frac{d}{s^{2}} \right).$$

Pf of lower bound Ho:
$$\mu = 0$$
 (call it P)

$$H_1: p = p1s. S \sim U_{nif}(\binom{rdJ}{s})$$
 (call it $\mathbb{E}[PsJ]$)

Separation condition is satisfied with $\Delta \approx \rho s^2$.

$$\frac{\int \frac{P_s P_{s'}}{P}}{P} = \int \frac{\varphi(x - \rho I_s) \varphi(x - \rho I_{t'})}{\varphi(x)} dx = e^{\rho^2 \langle I_s, I_{s'} \rangle} = e^{\rho^2 |S \cap S'|}.$$

To proceed, note that |SNS' | ~ Hypergeometric (d. s. s), so by Hoeffling's lemma.

Lemma (Hoeffling) Let $C = \{c_1, \dots, c_N\} \subseteq \mathbb{R}$ be a fixed population, and $X_1, \dots, X_n : n$ draws from C without replacement $X_1^*, \dots, X_n^* : n$ draws from C with replacement

Then for convex $f: R \rightarrow R$, $\mathbb{E}[f(\hat{\Sigma} X_i)] \leq \mathbb{E}[f(\hat{\Sigma} X_i^*)].$

Example 1.4 (Quadratic functional estimation) $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} f$, where the density f is supported on $[0,1]^d$, and $\|f^{(3)}\|_{\infty} = O(1)$ for some integer s.

Target: inf sup $\mathbb{E}_f \left| T - \int_{Co,1} df(x)^2 dx \right| \simeq n^{-\frac{4s}{4s+d}} + n^{-\frac{1}{2}}$

Pf of lower bound. The parametric rate $\Omega(\frac{1}{4n})$ is trivial, by either LAM or a simple two-point argument (try it yourself!). For the $\Omega(n^{-\frac{4n}{4n+4}})$ lower bound:

Ho: f = 1H₁: $f_v(x) = 1 + c \sum_{i=1}^{n} v_i h^s g(\frac{x - c_i}{h})$, with $v \sim Unif(f \pm 1)^{n-d}$)

where g(-) is a smooth function on $[0,1]^d$ with $\int g = 0$, $[0,1]^d$ is partitioned into h^{-d} subcubes with edgelength hC: is the lower-left corner of i-th subcube.

For a small absolute constant coo, can verify $\|f_{v}^{(s)}\|_{\infty} = O(1)$ for all v, and $\int_{(v,t)^{2}} \int_{v} \int_{v}^{2} dx = 1 + \epsilon^{2} \sum_{i=1}^{h^{-h}} h^{2i} \int_{(v,t)^{h}} g^{2} \left(\frac{x-c_{i}}{h}\right) dx = 1 + \epsilon^{2} h^{2i} \|g\|_{c}^{2}$

 \Rightarrow Separation condition holds with $\triangle \simeq L^{23}$.

For indistinguishability,

$$\int \frac{f_{v} f_{v'}}{f} = 1 + \int_{[a_{i}]^{1}} c^{2} \sum_{i=1}^{k-d} v_{i} v_{i}' h^{2s} g^{2}(\frac{x-c_{i}}{h}) dx = 1 + c^{2} ||g||_{2}^{2} h^{2s+d} \sum_{i=1}^{k-d} v_{i} v_{i}'$$

$$\leq \exp(O(n^2h^{4s+2d}\cdot h^{-1})) = O(1)$$
 when $h \approx n^{-\frac{2}{4s+d}}$.

Advanced Le Cam II: mixture vs. mixture

General Thm. Fix any $\Theta_{\bullet} \subseteq \Theta$ and $\Theta_{\bullet} \subseteq \Theta$. Suppose that

 $\inf_{\theta_{0}\in\Theta_{0},\,Q\in\Theta_{0}}\left(L(\theta_{0},a)+L(\theta_{1},a)\right)\geq\Delta,$ then for any probability distributions π_{0} and π_{1} ,

inf sup $\mathbb{E}_{\theta}[L(\theta,T(x))] \geqslant \frac{\Delta}{2}(1-TV(\mathbb{E}_{\pi}[P_{\theta}],\mathbb{E}_{\pi}[P_{\theta}])-\pi_{\theta}(\mathfrak{Q}^{\epsilon})-\pi_{1}(\mathfrak{Q}^{\epsilon}))$.

Pf. The only new observation is that, if $\widetilde{\pi}_{o}$ is the restriction of π_{o} on Θ_{o} , then $TV(\mathbb{E}_{\pi_{o}}[P_{\Theta}], \mathbb{E}_{\widetilde{\pi}}[P_{\Theta}]) \leq TV(\pi_{o}, \widetilde{\pi}_{o}) = \pi_{o}(\Theta_{o}^{c})$.

Orthogonal functions/polynomials. Suppose (Po) 0 = [A-c, 0+ =] is a 1-D family of distributions

Challenge: What is a good way to upper bound TU(En[Pos], En[Po]), apart from

with likelihood ratio expansion $\frac{P_{\theta,+n}}{P_{\bullet}}(x) = \sum_{m=0}^{\infty} P_{n}(x;\theta_{\bullet}) \frac{u^{m}}{m!}, \text{ for } |n| \leq \varepsilon.$

Then under some structural condition, {Pm(x; 0.)}maso are orthogonal under Po.

CP D

Lemma. If $\int \frac{P_{0+\nu}P_{0+\nu}}{P_{0-}} depends only on (0. u.v), then <math display="block">\mathbb{E}_{X \sim P_{0-}} \left[p_m(x; 0.) p_n(x; 0.) \right] = 0 \quad \forall m \neq n.$

 $\frac{Pf}{P_{\theta_{\bullet}+\infty}P_{\theta_{\bullet}+\nu}} = \mathbb{E}_{X \sim P_{\theta_{\bullet}}} \left[\left(\sum_{m=0}^{\infty} P_m(X; \theta_{\bullet}) \frac{v^m}{m!} \right) \left(\sum_{n=0}^{\infty} P_n(X; \theta_{\bullet}) \frac{v^n}{n!} \right) \right]$

 $= \sum_{m,n=0}^{\infty} \mathbb{E}_{X \sim P_{\theta_n}} \left[P_m(X; \theta_0) P_n(X; \theta_0) \right] \frac{u^m v^n}{m! n!}.$

Since this quatity depends on (u,v) through $u\cdot v$, all coefficients on the RHS are C for $m \neq n$.

Two important examples.

Gaussian For
$$P_0 = N(0.1)$$
, then $\int \frac{P_- P_v}{P_o} = \exp(uv)$.

The corresponding $p_m(x; \theta_{n=0})$ is called Hermite polynomials $H_m(x)$, with $\mathbb{E}_{x \sim M(n)} \left[H_m(x) H_m(x) \right] = h! \cdot 1(m=n)$.

Poisson. For
$$P_{\Theta} = P_{O}(\Theta)$$
, then $\int \frac{P_{\lambda+\nu}P_{\lambda+\nu}}{P_{\lambda}} = \sum_{k=0}^{\infty} \frac{e^{-\lambda_{n}\nu}}{k!} \left(\frac{(\lambda+\nu)(\lambda+\nu)}{\lambda}\right)^k = \exp\left(\frac{u\nu}{\lambda}\right)$.

The corresponding $p_m(x; \theta_0 = \lambda)$ is called <u>Poisson-Charlier polynomial</u> $C_m(x; \lambda)$, with $\mathbb{E}_{X \sim Poi(\lambda)} \Big[C_m(X; \lambda) c_m(X; \lambda) \Big] = \frac{n!}{2^n} 1(m=n)$.

Bounding TV and X2: methods if moments

Thm (Gaussian mixture) For MER and RVS U.V.

$$TV(\mathbb{E}[N(\mu+U,1)],\mathbb{E}[N(\mu+V,1)]) \leq \frac{1}{2}(\frac{2}{m^2}\frac{(\mathbb{E}[U]-\mathbb{E}[V])^2}{m!})^{1/2}$$

If in addition E[V]=0, E[V2] < M2, then

$$\chi^{2}\Big(\mathbb{E}\big[N(\mu+U,1)\big] \parallel \mathbb{E}\big[N(\mu+V,1)\big]\Big) \leq e^{M_{2}^{2}} \cdot \sum_{n=0}^{\infty} \frac{\big(\mathbb{E}\big[U^{n}J - \mathbb{E}\big[V^{n}J\big]\big)^{2}}{n!}.$$

Pf. WLOG assume $\mu=0$, and let $\Delta_m := \mathbb{E}[U^m] - \mathbb{E}[V^m]$. Then

$$= \frac{1}{2} \int_{\mathbb{R}} \varphi(x) \left[\sum_{n=0}^{\infty} H_{n}(x) \frac{\theta^{n}}{n!} \right] - \mathbb{E}_{\theta \sim V} \left[\sum_{n=0}^{\infty} H_{n}(x) \frac{\theta^{n}}{n!} \right] dx$$

$$= \frac{1}{2} \left[\mathbb{E}_{X \sim N(0,1)} \left[\sum_{n=0}^{\infty} H_{n}(x) \frac{\Delta_{n}}{n!} \right] \right]$$

$$\leq \frac{1}{2} \left(\mathbb{E}_{X \sim N[0,1]} \left| \sum_{n=0}^{\infty} H_n(X) \frac{\Delta_n}{n!} \right|^2 \right)^{1/2}$$

$$= \frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{\Delta_n^2}{n!} \right)^{1/2}$$

$$\mathbb{E}_{\theta \sim V} \left[\varphi(x - \theta) \right] = \varphi(x) \cdot \mathbb{E}_{\theta \sim V} \left[\exp\left(\theta x - \frac{\theta^2}{2}\right) \right] \geqslant \varphi(x) \cdot \exp\left(\mathbb{E}_{\theta \sim V} \left[\theta x - \frac{\theta^2}{2}\right]\right) \geqslant \varphi(x) e^{-\frac{\Lambda_V^2}{2}}$$

The rest is the same.

Similarly, we have the following result for Poisson mixtures.

The (Poisson mixture) For
$$\lambda > 0$$
 and RVs U, V supported on $[-\lambda, \infty)$:

TV $\left(\mathbb{E} \text{Poi}(\lambda + U), \mathbb{E} \text{Poi}(\lambda + U)\right) \leq \frac{1}{2} \left(\sum_{m=0}^{\infty} \frac{\Delta_m^m}{1 \cdot V^m}\right)^{\frac{1}{2}} \Delta_m := \mathbb{E}[U^m] - \mathbb{E}[V^m]$

If in addition E[V]=0 and |V| ≤ M, then

$$\chi^2(\mathbb{E}[P_{0i}(\lambda+U)]) \mathbb{E}[P_{0i}(\lambda+V)]) \leq e^{M} \sum_{n=0}^{\infty} \frac{\Delta_n^2}{n! \lambda^n}$$

Pf. Exercise.

Example 2.1 (Generalized uniformity testing)
$$X_1, \dots, X_n \stackrel{i.i.d.}{\sim} P = (P_1, \dots, P_n)$$
. Aim to test:
 $H_0: P = U_n if(S)$ for some $S \subseteq [k]$

Target: sample complexity for a reliable test is $\Theta(\frac{\sqrt{k}}{\epsilon^2} + \frac{k^{2/3}}{\epsilon^{+13}})$.

Pf of lower bound
$$\Omega_{n} = \Omega(\frac{\sqrt{k}}{\epsilon^2})$$
 follows from wifernity testing (Exemple 1.2)

2 For
$$n = \Omega(\frac{k^{2/3}}{s^{4/6}})$$
, assume Poissonization, where the observations are $\bigotimes_{i=1}^{k}$ Poi(np:).

Construct two product priors: under Ho, Pi, ..., Px ~ Law(U)

under Hi: Pi, ..., Px ~ Law(V)

•

(2)

- Note that: 1) Under Ho, P. E fo, 1+c2/, so (P.,..., Px) is generalised uniform.
 - 2 Under H1, (P1, ..., Pk) is $\Omega(c)$ -for from generalized uniform w.h.p.
 - 3 E[U] = E[V] = k, so under both H. and H., (p,..., px) is a pmf in expectation. Additional arguments need to be made to ensure that it suffices to consider "approximate pmfs". but we're omitting them here.

Now by the Poisson mixture result,

$$\chi^{2}\left(\mathbb{E}\left[P_{0};(n \cup)\right] \parallel \mathbb{E}\left[P_{0};(n \vee)\right]\right) \leq e^{\frac{n^{c}}{k}} \sum_{m=3}^{\infty} \frac{4\epsilon^{4} \left(\frac{n}{k}\right)^{2m}}{m! \left(\frac{n}{k}\right)^{m}} = O\left(\frac{n^{3}\epsilon^{4}}{k^{3}}\right)$$

$$= \frac{k^{2/3}}{\epsilon^{4/3}} \geq \frac{\sqrt{k}}{\epsilon^{2}} \iff k \geqslant \frac{1}{\epsilon^{4}}, c_{0}$$

$$n \leq \frac{k^{2/3}}{\epsilon^{4/3}} \implies n \leq k \implies \frac{n}{k} \leq 1.$$

$$\leq \exp\left(O\left(\frac{n^3 \varepsilon^4}{k^2}\right)\right) = O(1)$$

$$\Rightarrow n = O\left(\frac{k^{2/3}}{\xi^{4/3}}\right). \quad (3)$$

Remark. This construction matches the first two moments of
$$(U, V)$$
.

Can be match more? No!

Let v be another prob. measure supported on (0,00) s.t.

$$\mathbb{E}_{r}[X^{m}] = \mathbb{E}_{v}[X^{n}]$$
 for all $m=0,1,\dots,2k-1$.

Then M= K

$$\underbrace{Pf} \quad 0 = \mathbb{E}_{\mu} \left[\left[\left[\left(X(X - X_{k-1})^2 - \left(X - X_{k-1} \right)^2 \right) \right] \right] \ge 0 \implies \text{supp}(\nu) \le \left\{ \sigma_{\lambda} X_{\lambda_{k-1}} \right\}^2 \right] \ge 0 \implies \nu = \mu.$$

Example 2.2 (li-norm estimation) X~N(O. I.) with ||O|| = 1.

Target:

inf sup $\mathbb{E}_{\theta} \mid T - \|\theta\|_1 \mid \simeq n \cdot \frac{\log \log n}{\log n}$

Pf of lower bound Idea: test between Ho: 11011, ≤ po us. Hi: 11011, ≥ pi

(assign $\theta \sim \mu_{\bullet}^{\bullet}$) (assign $\theta \sim \mu_{\bullet}^{\bullet}$)

Desired properties: $(N_{\infty} \times N(0,1) || \mu_1 \times N(0,1)) = O(\frac{1}{n}).$

2 M. (H.) + MI (H.) = O(1).

We design (po, pi, mo, m.) for these properties separately.

D: If No, M, match the first K moments, then

$$\chi^{2}(\mu_{0} * N(0,1) \parallel \mu_{1} * N(0,1)) \leq O(1) \cdot \sum_{m=k+1}^{\infty} \frac{2^{m+1}}{m!} \leq \left(\frac{D(1)}{k}\right)^{k}.$$
by shifting μ_{1}

if necessary

To make it $O(\frac{1}{n})$, choose $k \approx \frac{\log n}{\log \log n}$

ρo = n. En. (81) + ω(5). 2 Chase

 $\rho_1 = n \cdot \mathbb{E}_{\mu_1} |\theta_1| - \omega(\sqrt{n}).$

Since under Mon. 11011, concertrates around n. Epol (91) with fluctuation O(Vn),

Chebyshev's inequality gives Mon(H.), Mon(H.) = o(1).

3) It remains to solve the following optimization program:

 $\int \max \quad \mathbb{E}_{\mu_1} |\theta_1| - \mathbb{E}_{\mu_2} |\theta_1|$ st. μ_0, μ_1 supported on [-1,1], $\mathbb{E}_{\mu_1} [\theta_1^m] = \mathbb{E}_{\mu_2} [\theta_1^m]$ for $0 \le m \le K$.

There is a duality result between monert matching & best polynomial approximation.

Thm. Let I = R be a compact set, and f be continuous on I. $V^* = \begin{cases} \max & \mathbb{E}_{\mu_1} [f(x)] - \mathbb{E}_{\mu_2} [f(x)] \\ s.t. & \text{supp}(\mu_1), \text{supp}(\mu_1) \subseteq I, \text{ with matching } K \text{ first monents} \end{cases}$ $E^* = \inf_{P: dy P \le K} \sup_{x \in I} |f(x) - P(x)|$ Then V^{*} = 2⋅E^{*}. Pf. The direction $V^* \le 2E^*$ is easy (exercise). For the hard direction $V^* \ge 2E^*$, consider $F = span\{1, x, \dots, x^k, f(x)\}$. Define a linear functional L on F with L(x") = 0 V m=0,1,..., K $L(f) = E^*$

Then | LI := sup | Lh | is I. To see it, let P*(x) be the best approximating polynomial,

by definition of Pt.

by Riesz representation, $Lh = \int_{I} h \, d\mu$ for a signed measure μ .

by Riesz representation,
$$Lh = \int_{I} h d\mu$$
 for a signed measure μ .
 V Tardon decomposition $\mu = M + -M -$, then $Ll = 0 \implies M + (I) = M - (I)$

Apply Jordan decomposition $\mu = \mu_+ - \mu_-$, then $L = 0 \Rightarrow \mu_+(I) = \mu_-(I)$ $\Rightarrow \mu_+(I) = \mu_-(I) = \frac{1}{2}$.

Also,
$$L(x^n) = 0 \Rightarrow \int x^n d\mu_+ = \int x^n d\mu_-$$
 for all $m = 0, \dots, k$.

Finally, choose $\mu_1 = 2\mu_1$, $\mu_2 = 2\mu_-$, we get $E^* = Lf = \mathbb{E}_{\mu_+}[f] - \mathbb{E}_{\mu_-}[f] = \frac{1}{2} (\mathbb{E}_{\mu_-}[f] - \mathbb{E}_{\mu_-}[f]).$

By approximation theory, the uniform approximation error of
$$|\theta|$$
 by span $\{1, \dots, \theta^k\}$ is $\Theta(\frac{1}{K})$. So we get $\rho_1 - \rho_2 = \Omega(\frac{n}{K}) = \Omega(n \frac{\log \log n}{1 - j n})$.

Combining D-3 gives the target lower bound.

(2)

Special topic: dualizing Le Cam (Polymskiy & Wn' 2019)

Setting: $\theta_1, \dots, \theta_n \stackrel{\text{i.i.d.}}{\sim} \pi$. $X_i \mid \theta_i \stackrel{\text{i.d.}}{\sim} P_{\theta_i}$, observations: (X_1, \dots, X_n) (in other words, $X_i \dots, X_n \stackrel{\text{i.i.d.}}{\sim} E_{\theta_n \pi}[P_{\theta_i}] = \pi P$)

Tayet: estimate α linear functional $T(\pi)$, and characterise

$$r^* = \inf_{\widehat{\tau}} \sup_{\pi \in \Pi} \mathbb{E}_{\pi} \left[\left(\widehat{\tau}(X_{n}, x_{n}) - T(\pi) \right)^{2} \right]$$

(A related setting: $X_i \mid \theta_i \stackrel{\text{ind.}}{\sim} P_{\theta_i}$, where $(\theta_i, \dots, \theta_n)$ is an individual sequence. The target is to estimate $T(\pi_{\theta}) = \frac{1}{n} \sum_{i=1}^{n} h(\theta_i)$, which is linear in $\pi_{\theta} = \frac{1}{n} \sum_{i=1}^{n} \theta_{\theta_i}$.

Note that this covers the setting of fractional estimation such as linnorm estimation in Example 2.2. A similar result holds in this setting; see paper)

Thm. If T is linear and TT is convex, under regularity conditions,

$$\frac{1}{7} \left\{ \chi^2 \left(\frac{1}{\sqrt{h}} \right)^2 \leq r^* \leq \delta_{\chi^2} \left(\frac{1}{\sqrt{h}} \right)^2 \right\}$$

where Sx2(t) is the x2 modulus of continuity:

Remark, ① δ_{X^2} is the best separation constant subject to the χ^2 inditinguishability constraint, and $r^* \ge \frac{1}{2} \delta_{X^2} (\frac{1}{4\pi})^2$ trivially follows from Le Can's two-point method

① The upper bound shows that for linear T. Le Can's nethol can be "dualized" to get statistical upper bounds.

Pf of upper bound. Try $\widehat{T}(X_i,...,X_n) = \frac{1}{n} \sum_{i=1}^n g(X_i)$ for some function $g: X \to R$.

By bics-variance analysis,

$$\sup_{x \in \mathbb{R}} \mathbb{E}_{\pi} \left[(\hat{T} - T(\pi))^2 \right] = |T(\pi) - \pi P_{\mathfrak{I}}|^2 + \frac{1}{n} V_{\pi \pi P}(\mathfrak{I}).$$

Therefore, it suffices to show that

$$\frac{\inf_{\mathfrak{I}} \sup_{\pi} |T(\pi) - \pi P_{\mathfrak{I}}| + \frac{1}{\sqrt{n}} \sqrt{n} |T(\pi)|}{L(\pi, \mathfrak{I})} \leq \delta_{\chi^{1}}(\frac{1}{\sqrt{n}}).$$

Ideally we'd like to apply minimax duality to LLT.g). Note that

- · L(T,g) is convex in g =
- · JVarp(g) is concave in T: but
- · IT(π)-πPJI is convex in π.

To mitigate the last issue, write

$$L(\pi,g) \leq \sup_{\pi'} \sup_{0 \in \mathcal{J} \subseteq \mathcal{I}} \left(T(\pi) - \pi P_g \right) - \mathcal{J} \left(T(\pi') - \pi' P_g \right) + \frac{1}{\sqrt{n}} \sqrt{\operatorname{constant}}$$

= Sup

$$\pi_2 \in \{3\pi: \pi \in \pi\}$$
 $(T(\pi) - \pi P_3) - (T(\pi_2) - \pi_2 P_3) + \frac{1}{\sqrt{n}} \sqrt{Var_{\pi p}(g)}$
 $Concave in (\pi, \pi_n)$ thanks to linearity of T

Therefore, we may apply minimax theorem to get

$$\inf_{J} \sup_{\pi} L(\pi,g) \leq \sup_{\pi \in \Pi} \inf_{g} (T(\pi) - \pi P_{J}) - (T(\pi) - \pi_{i} P_{J}) + \frac{1}{\sqrt{n}} \sqrt{n_{\pi} P_{i}(g)}$$

=- ~ if To \$ T, by choosing g = c → t ~

=
$$\sup_{\pi,\pi'\in\Pi}\inf_{g}T(\pi)-T(\pi')+(\pi'-\pi)p_g+\frac{1}{\sqrt{n}}\sqrt{Var_{\pi p}(g)}$$
.

Recall that $\chi^2(\pi'P\|\pi P) = \sup\{|(\pi'-\pi)Pg|^2 : Var_{\pi P}(\mathfrak{I}) \leq 1\}.$

So if $\chi^{\epsilon}(\pi' P \| \pi P) > \frac{1}{n}$, then $\exists g_{\bullet}$ with $Var_{\pi P}(g) \leq 1$ and $(\pi' - \pi) Pg_{\bullet} < -\frac{1}{\sqrt{n}}$.

Now choosing g = cgo with c→ = gives that inf (T'-T)Pg + \(\sqrt{Var}_{\pm P}(g) = - \infty.

On the other hand, if $\chi^2(\pi'P\Pi\pi P) \subseteq \frac{1}{n}$, then inf $(\pi' - \pi)Pg + \frac{1}{n}\sqrt{Var_{\pi P}(g)} = 0$. Therefore,

 $\inf_{T} \sup_{\pi} L(\pi, g) \leq \sup_{\pi, \pi' \in \Pi} \left\{ T(\pi) - T(\pi') : \chi^{2}(\pi' P \| \pi P) \leq \frac{1}{n} \right\}$ $\leq \delta_{\chi^{2}} \left(\frac{1}{(n)} \right).$

Example (Fisher's species problem) Let Xi, ... Xn ~ prof p supported on IN.

Let m=nr, and hypothetically draw X1,..., Xm ~ p, aim to estimate

Q: Characterize $r^* = \inf_{\Omega} \sup_{v \in \Gamma} \mathbb{E}_{\Gamma} \left[\frac{1}{n^*} (\hat{U} - V)^* \right]$

$$\uparrow^* = \begin{cases} \Theta(\frac{1}{n}) & \text{if } r \leq 1, \\ \widetilde{\Theta}(n^{-\frac{2}{r+1}}) & \text{if } r > 1. \end{cases}$$

Pf of upper bound First we make some simplifications:

- ① Poissonization: the histograms $N_x = \sum_{i=1}^n \mathbb{1}(X_i = x) \sim \text{Poi}(np_x)$, and $N_x' \sim \text{Poi}(mp_x)$ are independent Poisson RVs.
- ② Replace by expectation: can show $U \approx EU$ wh.p., so it's equivalent to estimate $E[U] = E[\sum_{x} 1(N_{x}=0, N'_{x}>0)] = \sum_{x} e^{-nPx} (1-e^{-mPx})$.
- The support size of p is at most O(n). In this case, let $0x = np_x$ and $\pi \sim Unif(f0x^y)$, then $\frac{1}{n} E[W]$ is equivalent to

 $E_{\pi}[h(\theta)] = E_{\theta \wedge \pi}[e^{-\theta} - e^{-(l+r)\theta}].$ By the previous result, it suffices to show that $P = P_0$:

$$S_{\pi^2}(\frac{1}{\sqrt{\pi}}) = \sup \left\{ \left| \mathbb{E}_{\pi^-\pi} \left[h(\theta) \right] \right| : \chi^2(\pi^\prime P \| \pi P) \leq \frac{1}{n} \right\} \lesssim n^{-\min\left(\frac{1}{2}, \frac{1}{1+n}\right)}$$

Let $t = \frac{1}{\sqrt{n}}$. Since $\chi^2 \le t^2$ implies $TV \le t$, we have

$$S_{x^{2}}(t) \leq \sup \left\{ \left| \int h d\Delta \right| : \|\Delta\|_{TV} \leq 1, \|\Delta P\|_{TV} \leq t \right\}$$

where $\Delta = \pi' - \pi$ is a signed measure. To upper bound this quantity, we use complex analysis. Let

$$f_{\Delta}(z) = \int_{\mathbb{R}^d} e^{ab} \Delta(da)$$
 (Laplace transform)
 $f_{\Delta P}(z) = \sum_{n=0}^{\infty} z^n \Delta P(n)$ (z-transform)

then

$$\int_{\Delta P} (z) = \sum_{m=0}^{\infty} 2^m \int_{\mathbb{R}^n} e^{-\alpha} \frac{a^m}{m!} \Delta(da) = \int_{\mathbb{R}^n} e^{-\alpha(2-1)} \Delta(da) = \int_{\mathbb{R}^n} (2-1),$$

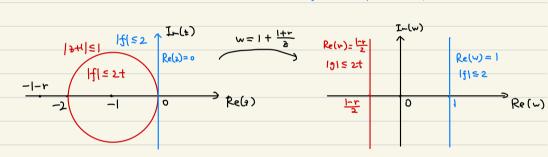
Finally,

$$\begin{split} \left| \int_{\mathcal{O}} (z) \right| & \leq \int_{\mathbb{R}_+} |\Delta| (\mathrm{d} a) \leq 2 & \text{for } \mathrm{Re}(z) \leq 0 \,, \\ \left| \int_{\mathcal{O}} (z) \right| & \leq \sum_{m=0}^{\infty} |\Delta P(m)| \leq 2t & \text{for } |z| \leq 1 \,. \end{split}$$

$$|f_{\alpha P}(z)| \leq \sum_{k=1}^{\infty} |\Delta P(k)| \leq 2t$$
 for $|z| \leq 1$

Consequently

$$\int_{X^2} (+) \leq \sup_{Q} \int |f_0(-1) - f_0(-1 - r)| \cdot \|f_0\|_{H^{\infty}(Re_{\frac{1}{2}} \leq 0)} \leq 2 \cdot \|f_0\|_{H^{\infty}(Q-1)} \leq 2t$$



1) If
$$r \le 1$$
, then $|f(-1) - f(-1-r)| \le 4t$ as $-1-r$ lies in the disk $D-1$.

2) If $r \ge 1$ use the confirmal way $f(x) = g(1+\frac{1+r}{r})$ By Hadaved three-line

2) If
$$r>1$$
, use the conformal map $f(z) = g(1 + \frac{1+v}{2})$. By Hadamard three-line

$$|f(-|-r)| = |g(-r)| \le ||g||_{H^{\infty}(Rev = \frac{|-r|}{2})} ||g||_{H^{\infty}(Rev = 1)} = O(t^{\frac{2}{1+r}})$$

$$\Rightarrow |f(-|-r) - f(-|r|)| = O(t^{\frac{2}{1+r}} + t) = O(t^{\frac{2}{1+r}}) \text{ as } t = \frac{1}{\sqrt{n}} \le 1.$$

$$\Rightarrow |f(-1-r)-f(-1)| = O(t^{\frac{1}{1+r}}+t) = O(t^{\frac{1}{1+r}}) \text{ as } 1 = \frac{1}{1+r} \le$$

(2)