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~

tatistical decision theory.

&tistical model : a family of distributions (Poloe

(parametric : dim10) < O ; nonparametric : dim(D) = 0 ;

semiparametric : D = #
,

x @2 with dim /D) < 0
,

dim(82) = 0)

&servation: Xw40 ,
with anunknown Of D.

Decisionrule/estimator :
a (possibly random) map

E : X -> A (called "action space")

Les : a given function L : Q XA - R
+

#isk(expected loss) : The risk of an estimator & under Lis

~ (= 0) = Ex-po[((0 , (x))]
.

-

usually abbreviated
as Eg

Although originally proposed by Wald for statistical estimation
,

this framework is

also general enough to encapsulate many other scenarios.

Eple(Density estimation)
-

X
.. .... X.If

,
so O-f. Po = for

Different losses capture different goals ,
such as

Density at a point : <If ,
a) = (a- f(0)

Global estimation : (2(f .
a) = S1f(x)- a(x)RdX

Functional estimation : Ls(f.
a) = la - Shif(dx) .

Example(Linear regression) .

X
.. .... Xn either fixed or random design

PyX satisfies #[Y(X] = ( 0
.

X >

Lusses include :

Estimation error :
L. (0 ,

) = 118 - O112

Prediction error : 22(0
.
) = ExcPx[(< 0

.
x) -( ,X)*]

.



Example(learning thoory] (X.. Y. ) , .... (Xr
. Ye) - PxY

Loss to capture excess risk w
.
r .
t

.
a given function class J :

L(Pxy
· Y) =Pxy [(Y- f(x))] -irE Ex[SY-f(x))"]

Example(optimization] Parameter : function f to be minimized

Action : a query strategy X ++
= P(x+, y+

Observation : queries xT and answers yT Ce . g . ye = f(x+) + i +)

Loss : L(f, X ++) = f(x++) - minf .

&parison of estimators

riskr(8 ,, 8)
For an estimator E

,
recall that

its risk r( ; 8) is a function of 0. #ros

r(83 ; 0

How to compare two estimators,
and E ?

-O

& Option I :
E is inferior to E

, if r(E : 0) > r( 8,; a) for every 0 0
..

and r(E : 0) > r/ ; 0) for some 0
.

· In this case
.

Gr is called admissible
· However

, admissibility is a weak notion :
even Do is admissible

② Option I : given a probability distribution(4) on O
,

look at the weighted
- average n+

(5) = S +(a) r( : 0)d0

most ·it is called thePrior
common

↓
· the minimizer of EV1) is called the Besestimator under.

&
③

Optionlook at thee riskmaxa



Define r = inf 1) = inf FontrIG , O] (Bayes risk)

r
*

= inf
*()=sp (minimax risk)

we have :

Ihm*t

r
*

= sup under regularity conditions

(minimax theorem
,

and the maximizert
*

is calledtheLast favorable prior)

# Sup r1 : a) Ex-[r( : 07] (max > average) => r
*

> rI

For the other direction
,

recall that a randomized estimator E is a probability
distribution pl . IX] over actions

,
we have

SP = spif ForExEarpHx)((0 , a) (affine in both it and p)

= if SP EarEx Earp(x) ((0. a) (by Sion's minimax theorem

= inf sup ExEamp(x)L(0 ,
c) = r

*

#

Finding the Bayes estimator is stisticallyeasy :
the prior (0) induces a

joint distribution #10)Pp(X) On (D , X)
,

which therefore admits the Mosterior

π(0(x) + (0)po(x) .

Then the Bayes estimator is the barycenter of LOIX) under L
,

i . e
.

n(X) = arguin Eortc(x)[L(0 . a)]
.

However
,

the Bayes estimator can be-mputationallyhard.

Finding the minimax estimator can be tisticallyhard
,

and is only feasible

for a few examples (see later)
.

Therefore ,
one is often interested in asymptotically

minimax estimators (second part of Lecture) or rateroptimal results
, i. e

. find t

st # (E) - (r
*

for some constant ( (next few lectures)



Emple(Binomial) Let X-BIn .
O) and L10a) = 10-a)"

.

To find the least favorable prior , try(a) < &
*" (1-016+ (Betalb

, b))

then posterior is (0(X) < +(0) O
*

(1 -x)"
-Y

= Ob+X +

y -pyb+n - x -1

(Beta(b+X
,

b+ n -x))

and the Bayes estimator is

(x) = En[0x]=
The risk function of t is

r( = 0) = Eol-0) = Bias + Var

= (-0)+
= mb

[b2 + (n - 4320C-03] .

By choosing b= we have

ri:=it
Therefore, = attains the worst-case risk r

*

( * )=s ,

and

) = r() = r = r

*

=-

Example(GLM)
.

Let X-N10,
I

. )
.

L(0
,
a) = P(Q- a) where p : R -> Re is

a continuous and --shaped loss (i
. e

. p(x) = p(-x) and p is quasi-convex) .

Claim :
E = X is the minimax estimator

,
with risk r

*
= Elp(z)) ,

zvNI . 1:)

If: Try prior i = N(0,In)
,

then

Postero
= Ex[P(z)]

. (by Anderson's lemna below)

Let + + 0 gives r
*

> E[p(z)] .

Ei



#ma(Anderson) If X-NCo · 2) and P is bowl-shaped ,
then

minaeRE[p(X+ a)] = E[p(x)].

If
.

Let Ke = Sx : P(X) [c] .

Since p is bowl-shaped . Ka is convex
,

and K = -K.

Then Elp(X + 113 = [P(p(x+ a)0c)d

= j(1 - P(X + a + k , )) da

-> S8(1-1(X(Kc))do (see below)

= E[p(X)]
,

where P(X(ka) = P(X = &(k + a) + t(k - a))(k + 1 = k> by convexity)

+Ka + a) P(X[Ka- (X hasalogconcave
distributora

=Ka+ a)P(Xt - ka)
= IP(X(Kc + a) (distribution of X is symmetric around of El

Fmjek-La Can classical asymptotics : X 1.
"

.
X- ~Po with n - 0.

-egularmodels : differentiable in quadratic mean[QMDS

R (QMD) : A statistical model (Poloto is called to be QMD at O if

there exists arefunction Sp(x) S
.
t

.

S[con-To-thsoojda = ollIhII")
,

where M is any dominating measure for (40)
,

and po=

Note : D When his Fans is differentiable everywhere ,

then

so(x)=O= logP

② Since Stan-FoJdu = HYPoth
,

Po) <2
,

QMD implies that

the Fisherinformation [IO) : = Eo[SoS] exists
.



#Historyasymptotic theorems
: Fisher's program :

① The MLE satisfies(8.

- &) & No
.
[CO7")

.

where ICO) is the Fisher information matrix of (Po)0.

② For any
other sequence of estimators [Tn) with

/T
-

- 0) - No
. [0)

.

FRED
,

thenIo1 [(0)"
.

(In other words
,

the MLE attains the asymptotically smallest variance) .

While D is true under mild regularity conditions
.

@ is unfortunately not true

as witnessed by Hodges' estimator (1951).

Hedgesestimator

.LetX "XNO,
cont is

if In an
- "4

.

It's easy to show that
E-0) & /No . D if o

if 0 = 0

so in Fisher's program doesn't hold when 0 = 0.

Hodges' example shows that cautions need to be taken when defining the "optimality"

of the MLE or inverse Fisher information .

It then took statisticians ~20 years to

find the right definitions, through the following angles :

1) Hodges' estimator is not "regular" (restricting the class of estimators)

2) the set of violations has Lebesque measure O ("superefficiency" occurs rarely)

3) the performance of Hodges' estimator is bad when On-"4 (a large asymptotic

local risk)



AtcollectionofSymptotic theorems

-tionTh Let(Pobe
AMD

. IfT-founder PardTs i

(T-
- + (0 + #) fo Lo under P . HER

ThenI a probability measure No sit.

La = No
,
+HOTIla"4(a) * Mo. Y O

where * denotes the convolution (M * -(A) = Juldx> v(A-x)(

convolution makes the distribution more "noisy"

mosteverywhere convolution thm
.

Under all above conditions except for
the regularity of STn]

,
then

La = No
, 34(OT 110)" -410) * Mo for Lebesgue almost every 0.

Localasymptotic minimax (LAM) than
.

For every continuous and bowl-shaped loss

P, and any sequence of estimators &Tn].

m limitSup Fo[P(T
- Po+)] Etp1z3]

with zvN10
,
74(8)T1/07 - 4(0))

.

(this is a lower board on the minimax risk of the local family (Pootn
under the lossL10

,
a) = Plota-H(OK). (

The proofs rely on the asymptotic equivalence between models (Potun=

and the GLM (NCh . [SO)"))Inac : see special topic of this lecture.



=special case of LAM via Bayesian Cramer-Rao

BayesianCR in14Trees inequality[
Let Of [a . b)

,

and it() be a differentiable prior density on [a .
b) with

(a) = (b) = 0
.

and J(i) = So do ·
Then for any

EnEl-0]+ 5(n)
-

) Compare with the usual CR EOTCE-0)"]=to) for unbiased 5)

#. EnFo[(o -0) zollog (c) po(x))]

= (x9 18- 0)G0(π(4)p0(x))dOu(dx)

= SxST(0)pp(X)dOu(dx) (integration by parts (

= 1
.

Then BCR follows from Canchy-Schwarz and

EnFo[Go(log(0)pa(x)"] = ENT) +EEo[(]
+2FFFWx

= Gofu(dx)po(x) = 0
.

= J(n) + # [I(0)]
.

E

#ticricteBe differentiPriordesityis a
EEo[IIE-OlK] > TrICETICOS + J(n))"] .



# Similar to the 1-D proof ,
can show VK = 1 : - d

.

#Eo[(@ -Ok) Tolog(π (03p0(X))] = 2 (1-th basis rector)
.

Let [ = El Jolog(π(0) po(X)) Tolog(+10) Po(X)"] = En[ICO] + J(t)
, by

Cauchy-Schwarz we have

EnFoT(Oi-On)2) >Supe E

-etiring LAM from BCR when +(0) = 0
. p(x) = 11x112.

First
, note that if T (0)=cos+b) ,

then(a) =(b) = 0
.

and

5)i) = J sid=
& Exercise : show that this choice of it minimizes the value of J(). (

Next
, choosing the above its on [Oi-E

.

Oi+] ,

BCR gives

infsup Ea[-]
-> inf Ens[-(ot]
-> TrICEnTla]I)"] (Fisher info. for X...

"

.
X-wPo is

n . [(0) (

= Tr(I(O)") as nec and 2 - 0
.

assuming that OH I(0) is continuous at 0.



Applicationof LAM :
Since the global minimax risk is always lower bounded by

the local minimax risk
,

so LAM gives -ymptotic lower bounds on r

Emple(Binomic. RevisitThePreviousexample
X-BIn

R
The

-> inf sup Ft[2-(t +E] (c + 0 as n - a)
↑ 14

=
This is consistent with the exact expression of r=+is

Example(nonparametric entropy estimation) Let X.....Xe 5 ,
a density on [0 . 1) .

The target is to estimate the differential entropy hif) = S : - f(x)logf(x)dx
under the squared loss

.

Challenge : This is not a finite-dimensional model
,

so LAM doesn't directly apply

Solution : Consider a one-parameter subfamily (fo + +g) /+ -

> a
:

then

I(0)=', h forty
+=

=
- S: <l + log fo(x))g(x)dx.

LAM applied to this subfamily at +=o gives

r [ ax)" (f ! (l + logf. (x))g(x)dx)= (+0 .9)

We can maximize this lower bound w . r.

t
. g. Since Sg = 0 (as foreg is a density).

Cauchy-Schwarz gives

v(fo . g) = ().x)"(S! (logfo(x) + h(f-1)g(x)dx)

= So fo(x) (logfo(x)+ hifo))"dx = S: fo(x) log fo(x)dx-hifo)" :

where equality holds when g(x) = fo(x) (logfo(x) + h(fol) .



Therefore , r Folk sup() : fologto(xdx-hIf]

Pros and cons for asymptotic theorems :

· Pro 1 : plug-and-play bound for essentially all statistical models

· Pro 2 : exact constant for the asymptotic risk

· Con 1 : bounds are asymptotic , assuming n - x while I fixed

· Con 2 : bounds are for asymptoticvariance
,

while for high-dimensional
scenarios As can be the dominating factor .

This is the reason to study techniques for non-asymptotic lower bounds in the next

few lectures
.

Secialtopic:as distancebetweenstatisticalmod,a
For two models (Polo and (Golo with the same parameter set G

how to compare the strengths between them ?

) Throughout let's assume thatG is a finite set

↓efdeficiencymodelNo is called -deficient wrt
.
Noa

& bounded loss L(0 . a) [0 . 1] ;

& (randomized) estimator Ev under N
.

E estimatorEn under M s
.

t.

r(m ; 0) = r(Q : 0) + 2
.

VOED
.



ImmRandomization criterion) The following are equivalent :

P M is 2-deficient wrt N ;

& for every finite action set A ,
bounded loss ((0. c) To

. 1] ,

and prior

# on
, the Bayes risks satisfy rI(M) = rF(N) + 2 :

③ there exists a kernel K from X to Y S .

t
. TV(KPr

.
Qo) = 2

.
VOED

.

(KPo(y) = &Po(x)k(y(x))

# D = & : trivial
.

& => D : upon observing X under M
, apply the Kernel K to simulate Y

and apply the estimator EN(Y)
② = B : Let A = ① and Ev(y) = Y :

sup sup inf Eon[Ex-PoEarK(x)- EauQo] [(10, a)] < C
.

DL1 K

This objective is linear in K(IX) and GHCO)L10a)Yo
.
EA , by minimax tha.

SupEo[Ex-pape- Ear][La]
-

= max TV ( KPo · Qo] E
⑰

#(LeCam'sdistance) For finite models M = (Polo and N= (Q1)00

define Le Cam's distance as

- (M,N) = minds : M is a deficient to N
,
N is adeficient to M) .

Example(sufficiency) For M = (Poloto and a function T = TCX)
, define the

T induced model N = (T#Po)00
. By randomization criterion

,

4 (M,
N) = 0 E M and N are mutual randomizations

=> both O-X-T and O-T-X are Markov chains

=> T is a Efficientstatistic for X
.

(Factorization Thm : T is sufficient E) Po(X) = g(x)h(0 . T) for some g .
h)



For a sequence of models (Mrinx and (N. J
. 1 ,

how to showamptotic equivalence
X(M.. N.) + o as n+ 0 ?

&th(standard model) Let M = SP
., "4m) be a finite model

,
and:= P.

Then T(x) = (Ef(x)..... (x)) is sufficient and lies on Omi= SuERY :
Tu=n)

Capplying factorization thm to Pi(x) = p(x)Ti(x)
So M is equivalent to the Trinduced model N = /M..

. . -

.Mn) with E = Ti.

wheremisthedistributionoTundkotedarddistributorit

Implication : standard model unifies all statistical models of size m to standard

distributions M on Om.

Im
. If unEm ,

then D(Mn
,

1) - 0.

# By & in the randomization criterion
, suffices to check

/(M)-rius) E0 .

In a standard model
.
rI(M) = into EniTL(i . <T))]

= info En[iTiL(i<T1)]
= En[if (C .

T]
,

C : = conv((tiLliaSatA)
.

Since f(T) = inf <C
.
T > is bounded by m and -Lip under Ill ,

(M) - rims) = sup lEuf-Erf) -> 0.
Ilfllom

If(x)-flyslalx-yll , (Dudley's metric metrizes

weak convergence
( ↳

Now we're ready to present the main result.



Ihm
.

Let Mn = S Pin
.

"Pmn)
,

n> 1
,

and M= P, -

, Pm)·

Let Le =(ii) and =( ..)
Suppose M is "homogeneous" ,

i . e . P: and Pj are mutually absolutely continuous.

Then
Law(\n/P.n) - Lar)(1P ,

) => @/Me
,
M) + 0.

(In other words
,

weak
convergence of likelihood ratios implies asymptotic equivalence(

#
. Suffice to show that the standard distributions M.- M .

Also . note that Law (Ln/Pin) is unchanged when moving to the standard model .

By compactness of Om = PueR : Pu = m) and Prokhorov's Thm
,

it suffices to show

that if Mr, E v along some subsequence ,

then v = M.

For 5 = (su:; Sm) with Sixo and S :< 1
,
then fs(L)= is a

continuous function of1 . In addition · for s = 1-Esi 10
.

1 .

Ep
.
[fss] = Ep

,

[ ... L ) Hide Epi ,
So the

sequence of RVS fs((u) is uniformly integrable . Therefore , by weak convergence,

#[TT... ] = Ep. [fs(L)] = lim Ep
..
[fs(hal] .

On the other hand
,

as MrEr . FrEfsChe] = EmpITY-. TE] -> EnITY-- -TE]
.

so

EnITH ...T] = ErITY-Ti]
,

Visco, Si = 1.

By uniqueness results for MGFs
,

this implies thati= -
,

where in represents the

restriction of M to Dm = Sx***. X : >0
,
1Tx = m)

,
i

.
e. (A) = M(ARDM) .

Since M is homogeneous , we haveM = M ,

and(0)=(i) =M(0) = 1.

Since v is a probability measure .= V
. Therefore , M = r. El



Finally ,
we show that if (Poloco is QMD

,
then for any finite set I.

Un = Spe is asymptotic equivalent to M = YN(h ,
[(80)"SheI

·

This is calledcalasymptotic normality
.

# Check the likelihood ratio. In the limiting Gaussian model
.

log(2) =IOZ-EIOh ,

with IE-No .I

For the product model
.

Let Wri = 2) P(xi) - 1)
,

then

↳ (x) = 2 (+)=- )

By QMD
. Ep[(Wei-hS(X : 3)") = d)

,
thus

Var(Wihso(X:) n . o(t) = 0(k) .

and EWri = -n)) -Fold--TETSos]h = -FhTIlh
Moreover

,W= hisaxis) + op(1) = thso(Xi) soo(Xish + op(K

↳ hTI(8)h by LLN.

Therefore ,1 ()= Xis)-EIh + op E
-

& No
,
[10.7) by CLT

.

Combining Anderson's lemma and the limiting Gaussian model above
,

and extending
the previous definitions to general models by taking the supremum over all finite submodels,

we arrive at the local asymptotic minimax theorem.


