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Recall : Shannon-type inequalities ,
i. . e. all entropy inequalities that can be

derived using :

① monotonicity : H(X) -
> H(X, Y

② submodularity :[(X ; Y(z) > o

This lecture will cover some non-Shannon-type inequalities.

Lettdifferential entropy) . For a RV X with a densityf on RO
,

its differential

entropy is defined as

h(x) : = h(f) = = Spd-f(x)logf(x)dx .

Note : D h(X) [ RVSIS] ·

In particular , it can be negative.

② hlaX) = hix) + loga , for a tR
.

③ h(X) [hIX
,Y)longer holds. However

,
it's still true that

I(X = Y) = h(x) + h(Y) - h(X
,
Y)30

.

Exple .

If X - N(M.
1)

.
then f(x) =F expl-2(x-M+

+

(x-1)
, so

h(x) = Ex-f[(log((2nddettz)) + z(x-m)z
+

(x-1)]

=> Elog(Iite)+ log det I
.

Easy fact (maximum entropy principle) : If Cor(X) = I
,

then h(X) < h(No, 2).

If .
0 = Dr (4x1INLEX ,

[7) = - h(x) + h(N)o,
[)) (check ! ).

#Centropy power inequality ,
EPI) For independent RVS X

, Y on R&

2
-h(X + Y)

-> eh(x) + eih()
&

Note :
D Equality holds iff X

, Y are Gaussian
,

and Ex = c [y .

② EPI shows that
, for given values of h(X) and h(Y)

,
h(X+ Y) is minimized

when X
,

Y are Gaussian.



We will present the proof in Stam (1959) .

&our : Fisher information. For a RV X with densityf, the Fisher information is

5(x) : = Sin x

*Recall : Fisher information I(O) in Les 3 : for Y-Po.

1(0) : = I10) : = SEPs dx

They are connected via I10) = J(X) when Y = 0 + X.

Introparties : D J(ax)=JIX

& DPI :
1" (0) @IY(8) if O-X-Y is a Markov chain.

(Pf :
* 10) = &im x*

(10to11Pyle) =in ** Px0t 114x10) = 140)(

#m IStan) For independent Xi
,

X2 :

x+x)

or equivalently ,
(a+ b) " J(X ,

+ Xc) = aJIx,
) + bJ(x2)

·

Va
.
boo

·

# Write Y,
= aP + X

, Ye = bo + Xc
,

then

I
*

(0) = [Y(0) = J(& ) =J(X , )
.

Therefore ,
(a+ b) j(X,

+ Xc) = [* +Yo(0)**
(0) = a2J(X) + 65(X). En

#h(de Bruijn)
.

For EvN1o . 1) independent of X
.

then for aso
,

h(x + raz) = [J(X + raz)
.

# Let Pc = P * N(o , a) be the density of X + Jaz
,

then

= P (*)



To see (*)
, just note that for any test function f.

Epa[t] = lim Elf(X+z)-f(X+z]

- en * ETf(X+ Jaz +z) - f(X+Faz)]
, z'independent copy

of z

= lin Elf'(X + Jaz) . z'+f"(x+ z) . yzk + o(b)]

= Epa[f"] = ESfPa . (integration by parts)

Therefore ,

* h(X +z) = - f(l + logpa)= (1 + logpa)pa"

= (integration by parts)

= J(X + raz).

&ofEPLet X* Nof(N) ,
Yx = Y *No

[e2h(xx)) = Ze2h(Xx)j(Xx)f(x)
,

we have

= (e2h(X) J(Xx)f(x) + eab(x)5(4x)g'(x)
- (e2h(Xx)-2h((x))J(Xx+Yx)(f(x) + g'(x)))

.

Choosing f(x) = e
2h(Xx)

g'(x) = q2h(Yx)
,

then

IeChiyo,
A X- d

·
both Xx and Yx are "more and more Gaussian"

,
the ratio -> 1 .

Therefore ,
this ratio at x= 0 must be E1

,

which is the EPI.



② General & > 2 by induction :

h(x1 + yd) = h(xd+
+ yd+

) + b(X+ ya(xd+
+ yd+

)

-> h(Xd+
+ yd +

) + h(Xd + Yd(xd+, y
**

) (conditioning reduces entropy)

-> log(ethix
&

)
+ eh(Y

"

")) Cinduction hypothesis)

++
,y+ log) e2h(Xa(x1

+
= x

++
)

+ e
22(Yaly

+
= yd+

))(X+ Y)

=log)e[h(XeX
&

)
- encaly) by convexityof

(x, y) + log(e* + eY)

-> Eloglehx*)+L(XIX
*

)
+ ehly

*
) +h(Yelya))

by convexity of (X
, y) - logle" + eY) again

= Elog)eh(x) + e@h(Y))
.

En

Example
.

Let X
.. Xz

,

"- be vid
..

FIX] = 0
,

VarlX
, ) = 1

,

and HlX13-00
.

Let Tn =Xi be the standardized sum. Then by EPI.

h) Tron) =h) Xi)

-> log)e2hTm) eahT(

= log)e2h(TnIT

In other words
,

the sequence an : = ne2h(tn) is super-additive :

Antman + Am
.

Yn
,

m
.

Moreover
,

Since Var(Tu) = 1 ,
the maximum entropy principle implies

h(Tn) => 'log(zite) ,
so that zie

.

Therefore an must have a limit
, i. e. h(T. ) -h*, and

Dae(PTNLok) = - h(T)+ log(2a) - D*

Barron (1986) shows that D
*

= 0
,

a result known as the entropisCLT
.



-formationand estimation in Gaussian model

Let X be a general RV

Yv = FX + E
,

ZwN1o.
1) independent of X

> 0 : SNR parameter

Imm (I-MMSE

* IX : Yp)= E[(X-E[X1Y0]("] =: Emmse(X 1Yv)

Note : 1
. Perhaps the most surprising part is that this is anquality.

2. mace(X (Y) = ELIX-EIX1Y)K] = mir ELIX-f(YT
is called the minimum mean squared error for estimating X based on

Y
.

There are several proofs for the I-MMSE formula ,
but the most

generalizable one is via SDEs :

A more general result : if dY+= X + d+ + dB+, + Eto
.
T]

·

the

[IXT ; YT) = [S][(X+ -E[X= /Y
+])]dt .

To see how it implies the I-MMSE formula,
take X-EX

.

Then It is

a sufficient statistic of YT for estimating X
,

i. e.

ILXT : YT) = [ (X : Y i)
· EIXelY

"

] = EIX1Y+ ]
.

Moreover. = FX + No
, 1)

,
so the SNR parameter is T

-

The proof of the general result uses the filtering theory for BMs .



&ma 1
.

For dY+= f(t)dt + dB+ with flt) adapted to the filtration F then

logT=3- Eff

Intuition. For to and small 20
,

the conditional distribution of Seto-3+ 19t is

S NIS
**

f2sds , a) under Pyt

N(o. 0) under Pp+

so the log-likelihood ratio is ↓gfsids . (3+to-5t)- *fsds)
= f(t)(3++o

- S + ) - Ef(t)?
.

Summing up gives [fiti) (Seto-5t:
) -Efitis", S. fitid]+ -zSflidt.

(Think : where did we use that f is adapted to JS ? )

Lemma2
.

For dY+= X+ d++ dB+, then

B
+

= Y+
- SE[Xs/Y]ds

is a BM adapted to F

LA major difference is that X+ could be an unknown signal not adapted to JY ;

however
,

EIX+ 1YT] is always adapted to FY

# Clearly B is adapted to FY
.

In addition
,

& = S. (Xs - E[X, (Y(j)ds + B+

is an FY-adapted martingale , satisfies Bo = 0
,

and has quadratic variation to

By Levy's criterion. B is a BM
.

E

(Think : B+ is a BM ; but is it adapted to FY ? (



Rithpo [log= [log] - Emplo
For the first term. since XT is given (conditioned) ,

Lemnal gives

#[log] = El Sxide - -xid+]
·

For the second term
.

Lemma 2 tells that Be = Ye - S. ETXs1YJds is a F"- BM
,

So Lemma l again

Log=-y
=> Ello = ElS] EIXelYi]dY- *S : E[X+ /Y+ ]2d+ ].

Therefore ,

I(XT : YT) = E[S] (X+
- E[X+ /Y+])dY+ + &S E[x 1y+" - xi)d+ )

= E[S] ((X+
- E[X+ (Y+ 3)X+

+ E)E[X+ 1y+ 32 - x= ))d+]
= SitE[(X+

- E[X+ /Y+S)"]dt
#

-is the I-MMSE formula useful in statistics ?

Suppose we expect a problem to have a shharp phase transition at SNR = v*

we can try to show that [IX,Yr) (0(k) for all V*(1-s)v
*

(see picture)
mose I(X; Yr]

·

n*



In this case,

#
*

Muse(o) (l-o(s) I(X ; Y+-xv*) = +g -
x

muse(v) dr

VHmmselr) -
is non-increasing ->

I2)*mise(o)+ muse (1- 22)r)

=> muse((1-22)v
*

) <
, (l-0(k) macelos

,
i . e

.

the MMSE does not really drop
before v = r*.

&parison with Fano :
Recall that at a high level

,
Fano's inequality shows that the

estimation error is large when the information [IX : Y) is sa . Surprisingly,

theMom showthathistecaifiis r.
Ihreshold.

#example.

Consider the "sparse" mean estimation problem : Y-NIO . 1)
,

with

On 11-p)8 + PSM . p = ol)
.

#m. If=slogte ,

then

mmse(Oly) > (1-o(13) E[@"] = (1-0(1)] PM2 .

(In other words
,

the muse is essentially attained by the best estimator = PM

without seeing Y
.

)

ketch.LetX-todME ,
then YEY=x +NO. .

I(X ; Yv) = Ellog] = Ellog]-DLPyllQy) for any Q



Choose Qy = N/pF ,
1)

,
then

#[log] = ED(PyIQ) =E
Dix (Py1lQy.

) = o(pr) after some algebra if U < 2(1-c) logt ·

-

=> [IX : Yn) C, VCIO(K) If v < 211-clog

Now using the previous I-MMSE program proves that

mmse(X(Yv) > [lok)VarIX] = Cl-olks]9 if vazlialog
=> muse(OlY) = Ummse(X/Ym) > (10113) pe if most

&

lensorizationof I-MMSE

Ihm
. If Yo= X + NCo

,
In)

,

then

I(X : Yr) = F[lIX-EIXIYull : ) =:muse(XIYr).

# Consider the model where Yi =Xi+ N1o
.

13 for possibly different (V.. . U
.
)

.

their

-IXY=Y ubtracted

from Y: when Xi is known

=IXi : Yei) + FIX : Yi Yi

-
=

O

by 1-DI-MUSE
L

=Immse(X : 1 Y"(

=>I(X : Ye)= I(X : Yilver = Emmse(X(Y)
·



Areatheorem : a related result based on a similar tensorization idea

Consider the communication problem over a BEC) Y =So) .

with

input X Unif(C) = Unif)[xip ... Xim3)
,

with M = e R
.

codebook
How to find a codebook st.HXilY0 wheR=

Dn LEXIT function) hi(s) = H(X : / Y- i) .
it [n]

h(a)= hi(s)
.

temma.=ahil /Yei
.
Y : +? ) + 3H(X: )Yw ·

Y:
=?)

= cH(X: /Yvi) = Chila) ⑫

(hi(a) is the error probability of decoding Xi in the "non-trivial" scenario Y:
=?)

-

H(X (Y()) = nh(s)
.

Lemma Again ,
think ofa independent channels with different erasure probabilities

(2,, -

, E
.
)

.

Then
-

= S

H(XY=HXYiwi)
,

so deitiea

prevt(dH(X(Yi)) = H(Xi)Ywi).

=> H(XY()= H(X: /Yri))s
= - a = c

= nh(s)
.

Em



#reaThm (BEC) : Sih()da = R
.

#
(. Kid= S!HixlYlada-Ho

What does the area this tell us ? For a

h(s)

capacity-achieving code of rate R = C
,

it

must hold that h(E) = olk) when a < -R. IHowever
,

since h(a) El and SJ hls)da = R
.

i

....
it must be the case that h(s) = 1 for every

O

Ritebadin therieving tmustaansition

for the decoding error
.

*pecial topic : any "symmetric" linear code achieves the capacity of BEC

Linear code : C = /Xi
.

"

, Xins] is a linear subspace of F2

& The encoding step of linear codes is easy : just a matrix-vector products

"Symmetry" : for all itk
, jal ,

EES . set. (i) = j , T(k) = I
,

and

# C = ) (m) applies the permutation it to all rectors in C)

#m For every symmetric linear code with -R
,

it attains the

BEC capacity under the bit-MAP decoding .

Cine
. Yifargmax PLxi/Y"

Xi 90
. 17

(In the coding literature ,
this shows that the Reed-Muller code

,

which is symmetric
and admits efficient encoding and decoding algorithms ,

is capacity - achieving.



A

ofingredient:Boolean functioa
① monotone : if xEM and X=X'

,
then eR

② symmetric : if for all i . je[n] ,

EMESu s
.
t. (i) =j and= 1.

Also
, for <To

.
1)

, define a probabilistic object

Pa(t) = P) Bern(s)
* EM)

.

1 By monotoricity , 21Pa(M) is non-decreasing ; for symmetry ,
we shall only

need that all influence functions ofe are the same
,

i. e. [
, (2) = = In (12)

,
with

[i(M) = Pa)X 10 . 13" : (X ... Xi+,
0

,
Xin

,

"

, Xn] Ech and

EX
.. " Xiri

,

I
,
Xit

,

-

, Xn) d (

Let <(f) = max & 5 : Pale) = S]
.

·Ihr .
[(l-6) - a(s) = 0(1)

.

VSzl0z)
.

(This shows that the function
21 palt) has a sharp threshold?

#sketch. A classical result shows that

* Pa(d)= Ii(M) = nI
, C) by symmetry .

It remains to show that nI
,(h) = w(l) whenever Pa(1) E [S

.
1-8)

.

Classical Efron-Stein bound : Pa(t) (1-pa(d)) [Fi(M) only shows nI
.
(H) = &(1)

·

key improvement (KKL theorem) : Eps()(l-pcLt)) [max(I, (d)
:

·"In(2)]
↑ E

essentially the log-soboler
=> n[

, (2) = Alloga) = w(l)
.

inequality on the hypercabe



roofingredient I : area theorem.

For a given linear code C
, define

-& = fall erasure patterns we 90 . 15"" such that wOXv: fails to

decode Xi , for some x = )
2) represents erasure

.

O represents non-erasure)

SinceC is linear
,

WLOG can assume that X = 0
, i. e.

R:
= Sweso , ig" : EXni = w st . (Xi . 1) = 3) .

Then : & Ri is monotone (obvious]

② ii is symmetric (follows from symmetry of C)

③ ps(di) = P(Yni fails to decode X : ) = hi (a)

& hi (s) = h(s) (symmetry of C again)

3 By the previous part , ahh(s) = Pa(i) has a sharp threshold.

↳ In addition
, S Haida = R by area theorem

.

This threshold can only be [*= 1-R
,

i. e
. capacity- achieving !


