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~e deviation in finite alphabet : method of types

Suppose P is a puf on X
.

with 1x100
.

For X
.. .... X. p

, what

is the typical "type" of (X..
"

, Xn) ?

&(type) :
For an "empirical distribution" & on X. let

T = ((x , iXnEX: 1x = x) = Q(x)
. ExeX]

(In other words
.
To is the set of all lengthen sequences with empirical

distribution equal to Q)

Why types ? Types encode all necessary information for P(X")
:

Lemmat. For x* To
.

then P(X) = e-r/P(QP + H(Q)

If
P(x)= P(x)= = x

P(x)

nQ(x)
= xπxP(x) (by defr . of TS

= exp(nZQ(x) logP(x)
= exp( -n(Pk(Q(P) + H(Qx)

⑭

Another intriguing property is that, # of sequences in a given type is

exponential in n
,

but # of different types is only polynomia in n
:

↳differclass



↳emmas Italia Cor /Talaa)
ignoring polynomial factors

If. (Upper bound) 13 QIX" Tocher Tole-UH(Q)
CLower bound) 1 = [QIXETY

- Q(XTO) (mode of a multinomial (n : Q) (
RV is nQ

E Entiy'*. Ital . evahla
-

Em

Collary-P(XT) = e
- 1Pm(QIP>

PE
. By Lenna 1 & 3. Th

The above corollary , together with Lemma 2
,

leads to the following
result known asXanor'stheorem

Im
.

Let 1100 ,

and i be the empirical distribution (type) of X ....: Xnw

a strictly positive P .
LetE be a closed set of distributions with an non-empty interior . Then

P(P = 2) = exp)-nminD(QP)+o
Remark The map Prs arguinD(QPis ②-

called the "information projection" .

# (upper bound) P(43) =[ PIX-TO)I eDQ
(n)'X+e-D(QP

(Lower bound) For any QEE
.

P(X
* - TQ)Fe-Dia(QR -

*

Choose Q-Q and apply continuity of QRDizLQIIP) .



=formation projection , exponential tilting ,

and CGF

A corollary of Sanov's theorem is as follows .

lary
. EnlogXi =) are DKz(QIP)

.

If Ep[X] >V
,

then one can choose Q = P and then RHS = 0
·

Can we find

the minimizer &
*

if Ep[X] < V ?

#exponential tilt) For X- R
,

the exponential tilt of P along X is

Px(dx) = exp(xx - P(x)) - P(dx)
.

wheref(x) = log Epe*X is the cumulat generating function (CGF) of X.

(Note : the family of PPX) is called an "exponential family" in statistics,

where 4(x) is called the "log partition function". In particular,

#x[X] = ↑[x)
,

and X1 4(x] is convex
.

(

"maximumentropy distribution" (

If Ep[X] <V
,

and there exists XER s .

t. Ep[X] = V. Then

min DalQ119) DaelPallPS
Q : Ea[X]-v

Exr - 4(x)

& ↑
*

(r)
.

where ** is the convex conjugate of It.



If
.

Since Ep[X] = ↑10) <U = H'(x)
, by convexity of o we have x00

.

O + E . If Ea[X] 30
,

then

Di(Q114) = Fallog
= Ea[log + log
= Da(QlIPa) + Ea[xX - 4(x)]

Ea[X]sV
and X 0 > Xu - 4(x)

,

and DiLPalIPS = Ep[XX-f(x)] = Xr - 4(x)
.

③ : By assumption . V = Ep[X] = ↑'IX) .
Then

↑*(r)=Sup x
*

v-
*

=sup-(4(x + -x(x)=As
↑*EIR

by convexity of I.

So H
*

(v) = X-H(X) .
E

In other words
,

this result shows that the information projection yields

an exponential filt of P
,

and the value is given by the convex conjugate of
the CGF of P.

-deviation in general alphabets : Cramer's Thm
.

#hir's

ThForPithxx
thes

Dk(QIP)
Q: Ea[X]>

where 4
*

is the convex conjugate of the CGFH(X) = log EpcXX
.

Note :
This generalizes our previous results to arbitrary alphabets .

Also
,

we'll

present two different proofs ,
one probabilistic and one information- theoretic,

to arrive at the quartifies ↑
*(V) and min Dia(Q14) , respectively .

Q: Fa[X] > V

These proofs will better illustrate the connections between different ideas
.



ProbabilisticProf By Chernoff inequality,

P([Xi -1)int expe
= int exp)-n(xV - 4(x)) - exp)- n +*(t))

.

X 0

this step uses Ep[X] > V

(Upper bound) Since #p[X]cUclIXIIa ,
Ex = X(9300 st

. Ep[X] = U+ a
,

where

Pi is the exponential filt of P
. By LLN

,

Px)[X: (0
,

1 + 22)) = 1 - 0(k) asn + 0
.

At the same time
, forIX: + (v,

0 + 2a)
·

& (X.. . . . x) = exp(x[Xi - n + (x)) = exp(n(x(V+ 2a) - 4(x))

=> P(t[X : + (v, v + 29)) > (1-o(k)exp) - n(X(V+ 2a)- 4(x)))
.

Choosing 2- ot completes the proof.

IproofSpen bound) Fix any
Q With Ea[X] -V

.

Then for EESEX-U].

QIEn) -I-oLK by LLN
.

By Lea 2
,

QCEn) logDk(Qy 114x) = D(QP)

=> ↓logcE)=-E = Hock)DQIP

(Lower bound) Note Pyr = Px/Xi has mean -V
,

with

lospe= D((Px- 11Px)
.

We
argue that Dkz( Px11Px)=aixor

Dan(QIIP)
.

In fact ,

Dm(x-1lPXs 10).
convexity

where F := Ex : clearly satisfies Ep[X] = ENTEXi] > U
.

Est



plehypothesis testing. Ho : X-P

Hi : X- Q

For a test T = T(X) E So, 13 (possibly randomized)
, define

S d = PCT = o) (1-Type I error)

B = QLT = 1) (Type I error)

&f
.

Let RIP, Q) denote the set of all achievable points (2
. BSETo, 152

whenT ranges over all possible sets
.

Basicproperties
.

① RLP,
QS is convex (Pf : consider a randomized combination of two tests)

② (c .
a) E RIP

,
Q) (Pf : consider TwBerr(l-c) independent of XS

③ ( . p)tR(P .
Q) Ex (lc

, 1-B) E RLP
,
Q) (Pf : replacing T by 1- T)

* Neynan-Pearson : Likelihood ratio tests (LRT) attain the lower boundary of

RLP,
Q)

, i. e
., for o if log>T

T
*
= 90, 1) if log =5, (randomizedI

I if log T
,

then for any other test T
. <(T) > <(T

* ) => BIT) > BLT
*)

.

# . a(T) > <T
* ) => Ep[T-T

*

) = 0
.

Since Ep[(-eT)(T-T*

)] -o (by distinguishing e-1)

we obtain Ep[Q(T-T*] 0
,

i
. e

., EaTT-T
*
] o = BIT) > PITY)

↑
o

B.toonLRTs



symptotics: Chernoff regime .

Consider &How Poe with n- 0
.

What are all possible

- nEo

values of (Eo
.

E . ) st . Th with (1-d(Tr)
-e 10. 99

asymptotically ?
B(T1) = e

- nE ,
x0

. 99

In other words
,

what are the best tradeoffs between (Eo
.

E. ]
,

the error

exponents on Type I & I errors ?

#Eo-E
, tradeoff) . Assume PKQ and QP. The upper boundary of

all achievable (Eo
,
E, ) pairs is given by

S Eo = Dxz(PxllP)
X [0

, 1]
Ei = Dkn(Px1(Q)

where Px &p
**

Q*

E ,
x

Illustration of (Eo
,
E. ) : PRIPlIQ):

P
.
Dill

for some 1 t[o
, 13

.1
..& Es

DiLQIPS

Collary
.

max windEo
.
E

, ] = -int log gdpdQ
(Eo

,
E, ]

achievable

Note : This quantity ,
denoted by CLP

.

Q)
,

is called the &hernoffinformation.

It can be show that choose x =*
↓

- log(1- *HYP. Q1) => ((P
,

Q) = -2 log (1-* H2(P
.
Q)

.

↑

Spra = Ep[()") > (Ep
-> ISFQ)" if XI

and symmetrically for X*
.



#of corollarForEx[log - 12)

Dr(Px(IQ) = Epx[log] = Ex[(l-xlog-logz]
=> Dz(PxP] - Daz(PxlQ = Ep[log]

.

Let X
*

denote the minimizer of the convex function Xrlog Sp
**

&" on To,
1),

then 0= log(p
**

@
* (x

= x* =Sp***** log = Epplog].

For this X*, we have Drz( *** 1P) = Dr( *** /IQ)
,

and

Dm(*x* (IP) = - logz = - log) p+**** = -in logSpQ

Back to the(Eo
,

E
, ) tradeoff :

Achievability : a sufficient statistic is LtL* log)
so a natural test is T-= 1(LEV) for some threshold VER.

By large deviation :

himlogter) =↑(v) = Dm(P
*

IPS

Elogthor) = +(r) = Da(Q
*

IQ)

where 4p(X) = log Epe"" = log(pl+
-*

(similarly for 4)
,

and

P
*

(dx) = exp)log - 4p(x)P(dx) with Ep[h] = r.

Q
*

(dx) = exp(log-fa(x))Q(x) with Ea[L, ] = V.

Since P*C pltg- *
and Q

*

C p
**- belong to the family (PRxeio

.
D.

we conclude that P
*

= Q
*

= ***, where
*

is the solution to Ex* [logy = 0 .

Therefore , by choosing V appropriately ,
this test asymptotically achieves all pairs

(Eo
.

E . ) = (Dir(Px(IP) , DalPalIQ)) for all X - 50
, 15

.



&verse
. Suppose some test In asymptotically attains d(T

. ) > 1-e-Eo

B(T1) e
- nE

,

#converse (by DPI) : Dia (Berrld) 11 Berr(p)) = nDi (PIQ)

Daz (Berr(B) /l Bern(a)) = +Di (Q11PC

(They are insufficient to establish the Light (Eo
,
E , ) tradeoff !

#rong converse (or the whole likelihood ratio) :
&K O

,

d- uB = P) log(X :) > logv)

B- Q) log(Xi) < logu)

If
.

Let L= log(X :) log(X). The

d- uB = P
*

(Tn = 0) - VQ
*

(Tn = 0

= Epor[(e - v)1(Te = 0))

-
> Egor[(e) - r)1(T=

= 0
,

L > logr)]

= Exo[e1(klogr)] = p
*

(7 > logr) ·

The second is similar
.

E

1 Compared with weak converse
,

the strong converse proposes to keep track of
the whole behavior of L

,
and mimics the large deviation analysis in the achievability

#turning totheconversichooseVendthe lo (i) 0

=> e
- nEo

+=
- n(E,

- a)
> p(log(x) = 0

=> min1Eo
,

E, -@) [410) ,

VO .

If E. DalPallP) + 9
,

E, DreCPQ) + &
,

choose

0 = Dr(PxlIQ) -DmLPnlIP) = Ep[log] (see previous page)

then 410) = DrzLPx(IP) (because X is the solution to Ep[log] = 0)

=> min (Eo
.

E , -O] > 4p
*

/0) + 9
,

a contradiction !



eidtopmain'sregime , strong converse for channel coding , finite blocklength

Stein'sregime : (Ho : X-por

H : X-Q*

E test Te st
.

&(T. ) = 1-3 and B(Tr) = e-nE

What's the largest possible value E* of E ?

From the Chernoff regime with Eo = 0
,

we already know that

E = Dk(P1IQ) + o (1)
.

(Stein's lemmal

Can we also get the next-order term ?

#hm EF = DK(P1Q)- erfe(a) +o

where erfalz) = P(N(1xz) = Jedx ,

VIPIQ) = Varp(logt) (assumed to be <0]

# Lachievability) Consider the test Tn = 1/ log (i) = r)
.

By CLT, loX:) - Di(PQS) No
.

VIPHQ).

so V = nDkLIPIQ)-NPIETerfe" (a) yields <(T. ) -> 1-9 as n = 0
.

For P(Tr) : Qulog(X) r) = e-Ea[exy = e-n

(converse) If EnCD(P1Q)+, then strong converse yields

1 - 2 - dl) = a - e
n (D(P(Q) +E

B [P( log(X : ) > Dm(412) +=

erte
=> C- erfe" (2) + S

.

Ah

Note : If one uses Berry-Esseau bounds
,

then under moment conditions
,

the olit

factor can be improved to 0(i)
.



#nongconverse for channel coding .

Recall from Lea 1 : Message encoder Channel input
->

me Unif (91 ,
.... MS) x" EXY

↓ channel

error probability :
P(m # m) = E ↓ PYIX

↑

decoder Channel output
meSl, .... My =

y- ye

.itFairent t
Px 4x

What happens if E = 0
.
01

, or even 2 = 0
.
999 ?

#th(strong converses. For any fixed SCI
.

R = (1 + o(k))C
.

Remark : This means that the communication problem has a "sharp" threshold on the error

probability. When R30
.
999C

,
then asymptotically one annot achieve a success

probability of 108 ; when R31
.
001C

,
then asymptotically one can suddenly

achieve a success probability of 1-10-8
.

# The communication problem iso binary hypothesis testing ;
instead

,
it is a

recovery problem (i. e. recover the message m from Y"). However
,

a useful

idea is to reduce a recovery problem toA detection : if one can distinguish
between different inputs (recovery) ,

then one can also distinguish from the case

where the input and output are independent. This idea is also frequently

used in statistical problems.



Consider two scenarios (i. e
. joint distributions on m

.
X"

. Y · ) :

Ho : Proxy= Pxm PyxPly

Hi : QmxYom= xmQPly (i . e
. (m , X*)((YY · m)

Then S PCM
=

m and the likelihood ratisis

=
Therefore , by strong converse

.

1-a-P) log-logr)

#technicaldifficulty : PX- is often ot a product distribution

Solution :
When IX100

,
can WLOG assume that all codewords X"have the same

type Po
.

In fact ,
since there are = Cn + 1)' * "

types ,
one can find a

type that changes the error probability to 2 + o(l) while with a rate

change at most Off)
.

When X" has type Po a . s
..

choose Qy = [P(XPYX= X. Then

Ellog] = n[(Po ; Py(x)an)

Var)[log)[Var(log(x)] Var(logjO(r)
#[log:

/X") independent of X
Exercise : [p(x)logp(x) = 2 log' XI

Now choosing V = EM in the strong converse
. Chebysher's inequality yields

logreaC + Om) = R= c +o



-versefor finite blocklength

Is there a next-order upper bound on R !

#m Suppose that the capacity - achieving distribution PE is unique,
and IX1 . 1Y10 .

Under regularity conditions,

R = C - Ferfe"(a) + d) .

with V = Var(log) .

#sketch
. Using the previous analysis ,

and due to the uniqueness of PE
,

we only
need to deal with the input type Po = P*. Then the result follows

from Stein's regime as long as we can show

#[Var/log(X)] = Varllog = V
.

This follows from the following lemma . E

#ma. Any capacity - achieving input P satisfies

Dan (Pyix=all P) = C
.

AxeX

Drz(Pyx= x114, ) = C
.
Exsupp(P* )

.

If
. Olinx-) - IPX)

= Ex- EP)[D(Pyx114].

Choosing PX = S + gives the first claim. The second claim follows from

C = E [D(PyxP)] = C
,

So the equality must hold for x supp(PE) .

#


