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Lleft.If-diverge.sisters vex with fl = 0. The f-divergence
between two distributions P and Q on the same space is

Df(P1(a) = Ealflal].

Remark :
1

. Some defr. additionally assumes that f(l) =0. This is WLOG :

f(x) and f(x) + c(x-1) give the same f-divergence .

2
. If 0

, define f(o) : = flo+) ;

# PXQ , define Pf(PIQ) = Sao9f(Edu + f(s)P(a = 0)
.

with f(0) := lim

Examples. * 1 : f(x)= (x-11 : Pf(P1(Q) = TV(P. Q)=SIdP-dQl

(total variation (TV) distance)

* 2 : f(x) = ((x - 12 : Df(PI(Q) = H2(P. Q) = Scr-Na)"

(squared Hellinger distance (

* 3 : f(x) = xlogx : Pf(p((Q) = P((P/Q) = SdPlog
* 4 : f(x) = (x-12 : DjPlQ1 = X(PI) = Sa

(x2 divergence)
5

. f(x)=)
: Pf(P1Q) = L(P.

as=
(Le Cam distance)

6 f(x) = xlogx + (x +1)log : Df(p((a) = JS(P,
Q) = P(PIP) + DiCQU

/Jensen - Shannon divergence)

Basicproperties. O Pf(P1Q) - 0

If
Df(PIQ) = Ealfl] < FEal]) = f() =

0



② (P, Q) Df(PIQ) is jointly convex
.

# For convex f ,
the perspective transform RE7(X, y) # Yf(F ) is also convex

.

Check Hessian : [F] E

8 Data processing inequality : Df)Px11Qx) > Df(Py1Qy)

ilay
# Follow from joint convexity (similar to the KL proof) En

#divergence? Binary hypothesis testing
.

Recall the simple hypothesis testing problem :

Null Ho : X-P

Alternative Hi : X ~ Q

Test : T : X + 90 , 13

Type I error : P(T(X) = 1)

Type It error : Q(T(X) = 0

Ihm

inf (P(T(X) = 1) + Q(T(x) = d) = 1 - TV(P
, a)

# Easy to show TV(P.
Q) = Sup PLA)-QLA)

(E) Take T(x) = 1(X # A) for A attaining the supremum ;

(3) Take A = [ T(x) = 03 .

En



Remark : D TV(P
, Q) = 0 : P = Q

· totally indistinguishable
② TV(P , Q) = 1 : P -Q

, perfectly distinguishable

③ TV(P. Q) < 1 : partially indistinguishable

(Important quantity for establishing minimax lower bounds later)

#not justI
can be hard to compute

② TV does notEnsorize ; e . g. TV(P& Q
*

) InTVSP
,

Q) is the

best possible inequality in general ,

but is often loose.

Example. How large is TV(Berrlt* Berr(+ 5)
*

) ?

Using TVIP*. Q
*
) In TVIP , Q) : nf upper bound

Using Pinsker's inequality : TV(P* Q
*

) = Fa(p)
=x(P1a) = 0((f) !

Popular f-divergences that tensorize :

D H2 :

1-HTi . TQi) = T(1-H(Pi , Qi)

② KL : DazP: Tai= Dan (PillQ :

③ X :

x TP : (lTQ) + 1 = T(x
*

(P : /(a) + 1) .

Rmark (optional) : All of them follow from the tensorization of Reny : divergences,
i

. e
. DalTPillTQil = FPXPiQi) ,

with

Dallas log Ea[((*] .

For X=
,

1
.

2
.

Do corresponds to H2
.

KL and X2.



Shilaritiesand differences between f-divergences

A
Locally X-like :

when f"(l) exists and P&Q :

D+ (P1Q) = Ea[f(aS]
= Ea[f(D +fl-

= p

= x4P1(Q)
,

Icarametricmodels:Fisherinformationif(oo
is a "regular" paratiis

x(Poten 11P0) = [Fattfor Midx) (assume = f)

= thTSHuds (fo(x)=

=: + hT I (0) b
,

where I/O] @R
&xd

is the Fisher information :

110) = JES An = ElGologfo(x))(ologfo(x))T]

= El-logfo(X)] .

divergenceas "average statistical information"

In binary hypothesis testing , if PCH. )= 10
, 13

,
then the Bayes error is

B
+ (4

,
a) = inf (nP(T(x) = 1) + (1 - +)Q(T(X) =0)

= S(ndPx(1 - +3da)(xxy : = min(x
, y))



theisticalinformation is the difference betweena priori" and "a posteriort

In (P, Q) = (1-) - B+ (P
,
a)

,

which is a f-divergence with fit) = it X ((-+) - (it) x (1- i).

Im(LiesedVajda'06) .

For any f-divergence, a measure

T

a

Df (P1(Q) = S : In (P
. Q) Tf(d) ·

VP.
Q

.

Remark : every fedivergence is an "average" statistical information , with

different weights on it .

If
. f(I) = 0

,
and WLOG assume f'(l) = 0. Then

f(x) = fi(t - x)f"(dx) (For fe(" , f"(dx) = f "(x)dx ;

=

check
S! (X- txx)f" (dx) in general , any convex function gives
+ j(t-xx)f"(dx) . rise to a "measure" f"(dx)

Define F(t) = S. (x-txx)f"(dx) + 911-taxif"(dx) ,
then

Fallf-f)(t)] = Ea[](-1)f"(dx)] = 0
.

On the other hard
,

(xx - txx = (1 +x)- ) = (1+xifi (t) ,

50

5 (+ )[12)f(d = Eal(+ "(dx)]

= FalFle] = EaTf()] = DAPIQ)
,

and Pfli] is the pushforward measure of (1x)f"(dx) by the map

x + (0
,
a)+x

+ (0
,
1

En



#offerentguarantees on contiguity

#ef(contiguity) [Pm] is contiguous writ
. SQ.] (written as [Pm34(Q-3)

if Qn(An) -> 0 implies P: (An) + 0.

Clearly ,
TV(Pn

.
Qn) - 0 implies [PrY4[Q- ].

In comparison .
KL(PullQ.) &C already establishes contiguity ,

as

PaLA) log KL(PlQ) = C (see La2

* (PilIQr) =C leads to an even stronger guarantee :

x *P11Q1) =

=> Pr(An) [Qu(An) + FQulAn)
.

Therefore ,
different f-divergences have different powers in establishing contiguity

results
,

due to different growth of fit) as + - 0
.

In this context
,

a popular
choice is to upper board X(PullQu)

,
known as the "second moment method"

in random graph theory & property testing (Lec 8) .

#d representations of f-divergence .

Similar to KL
, f-divergences also admit dud representations.

#(convex conjugate) : for a convex function f on R
,

its convex

conjugate is defined as

f
*

(y) = Sp(xy - f(x))
.



Properties : D f
*

is convex ;

② f
**

= f ;

③ Young'sinequality : f(x) + f
*

(y) = XY .

The following result is then immediate :

Ihm
Df(P((Q) = Sup Epg-Ea[f

*

og] .

9 : Ea[f
*

og] <c

If.
Dy(Pla) = Ealf() = Fly - t*(y)]

=

Su Ep[g]-Eatf
*

og].

Ele1 (TV)
·

When fix = Ex-11 . F
*

(y) =G , so

TV(P, Q) = sup Epg-Eag = Su Epg-EalIIgllc

Example2(KL)
:

When f(x) = xlogx ,
f
*

(y) = at
,

so

Dm(P1Q) =

sup Epg-Exes"
=

sup Epg-(Eac-1).

As EreS-1 > log Eres ,

this is weaker than Donsker-Varadhan
.

* way to recover Donsker-Varadhan is

Di(P(Q) =

srpsup Epig + a) - EreS

=

SP(Ep[g)-StaMaking a-logans



Example3 (XS :
When f(x) = (x-1"

, f
*

(y) = y+ ,
so

xIPIQ) =

sup Ep[g] -Ealg + #]

=

Sup sup Ep+]-Eg

= supEaS

Ellay-Hammersley - Chapman-Robbins (HCR) lower bound)

In a parametric family (POOR , if an estimator E is unbiased
,

then

Var(E ) <Supe
In particular , by taking 0-0

,
it recovers the Cramer-Rao bound

Vara( 5)o

Ecuple4 (JS) : When f(x) = Xlogx + (x+1 log ·
f

*

(y) = [Seys,
JS(P

,
Q) = sup Epg-Ea[log(2-e9)]

glog2

h=
Sup Ep[logh] + Ea[log(1-h)] + log2 ·

shal

So generative adversarid networks (GAN] aim to minimize

min JS(4
, Pa(z) = min Sup Exp[logD(x)] + EzN[log(1 - DIG(z))))

T ↑ ↑

noise ↑

generatordataction discriminator



=e :given twof-diverge howto proveinequalitiesbetweenthe!
2TV(P.

a)" = Da(PIQ) ? (

#(Joint range) :
Fix two f-divergences Df(P1IQ) and Dg(P1IQ) .

Define : R = & (Df(PIIQ) . Dg(P1IQ)) : P
,

Q general prob . measures]

Rx = S (Df(PIIQ) . Pg(PIIQ)) : P ,
Q prob.

measures on [K] 3
.

Trk .

Mikeinequality

#Harremoes -Vajda' (l) R = conv(R2) = Ra
.

Implication : to establish inequalities between Dy and Dg . suffices to

prove them for P = (p, l-p) and Q = 19. 1-9) !

#of asimplercasPix
any point (D-(P12) . PgIPIQ)) ER.

Then L= is a RV in [0
,
6) with ERIL] = 1

,
and

(Df(PlIQ) · DgIPIQ1) = (Ea[f(L)Y . EaIg(L)])
.

Next consider the set C of all prob .
measures on [0

, 2) with mean 1.

For M + C
,

we associate a point (Emf(L)
. Eng(L) @R=

.

Clearly C is convex
,

and

extreme points of C = 9 distributions with mean I and support size y.
= 2

Ci . e
.

all points that cannot

be expressed as X = Xy + (1-x) z

with y ,
zE2

,
XE10

,
1) (



In fact , if A
.. Az

. As form a partition of [0 . c) ,
and

M = X , m ,
+ x2m + 13Mz .

Xix0 , supp(Mi) & Ai.

Then the probability and mean constraints only require

& x + 1 + X = 1
.

x m (m, ) + X 2m(2) + Xym(Ms) = 1
,

which is a line containing (N
.

Xc
,

X3)
. So M cannot be an extremal point.

Now by Choquet-Bishop-de Leeuw
, any MEC can be written as a convex combination

of extremal points of C
,

i. e. RE conv(R2).

#hoquet- Bishop-de Leenr) : if C is a metrizable convex compact subset of a

locally convex topological vector space ,
then C = conv(extrema(C).

& corv(R1) [ R4 : by Caratheodory theorem below
, any point of conv(R2) [R

(which is connected] can be written as a convex combination of 2 points of R2,

which belongs to R4.

#hm/Carathiodory) :
Let S & R& and x = conv1S)

.

Then there exists

S = Sx
., .... Xk] S

.

t
. X EcomvIS')

,
with

① kid+1 in general ;

② ked if I has at mosta connected components. E

Examples of inequalities :

① TV vs .
H2 : TVE) (also the joint range)

② TV vs
. KL : TV = =k

TV = 1 - texp( - kL)

③ KL vs .

X=: KL[log(1+ X2) (also the joint range)



ltopic : chain rule for H

#layaroForallPR H . Quixi],

with C=zi = 3
.

46.

~
The profisSurprisinglycombinatorid.First, itsufficestorovethee

The proof uses several properties of H2

Leargeometry). For arbitrary distributions P... -

, Pr :

jem H2(Pis4j) H'(Pi
·

Po).

If. This result holds for all L2 distance :

jer 114 :
- Pj/" I Pi-Poll .

In fact .
2 . LHS= 14: -4511

= 11 P :
- Po - (4j- P.

)/

= (14: -Poll + 1145 - Poll - 2(4:
- Po

. 45 -40)

= 2 . RHS-EP :
-Pl = 2 . RHS

.

Finally, note that

H24 . a) = Scr-Nac"
is indeed an L distance. #



Now for A &[M]
, define interpolations

pa= (Px(xi- 1)
+(i) (Qxxi)=A

)

Then PP = Pxn ,

plrs = Qx
·

a2 (cut-paste property) Let a
.

b
. c

,
de90

,
19" be the indicators

of sets A
. B

.

2
.

D < [n]
.
If atb = c + d

.
then H(p*, p

*
) = H"(p? 4

*

)
.

If H2(p A. pB) = 2 -2)B
=z-2)b
= 2-2 = H(44)

&una3factorization of cliques) For even n. the complete graph Kn can

be decomposed into (n-1) edge-disjoint perfect matchings .

(i . e . round-robin tournaments)

Expf n =4

:X
Put model in the center

of a regular polygon with (n-1

#geometric construction

.
op

vertices
.

Use color: for 11 ,
i)

and all edges perpendicular to (1 .
:) .



&pleting the proof. For n = 2"
, prove by induction on m = 0

.
1. ..., k that

for any partition A ..
..., Azm of [n] leach of size 21m)

:

H(p*, 4
*
> Cm · H2(4[2

,
PPC

withCm= (1-2-i) .

:triid
Hrphi , poyLenratzmH(4* ↑*

a
where each Ea is a perfect matching of Kam

. By induction hypothesis,

Hp*. PP)> - ,
Hi(pi

.
p

+
) = ( + (45244)

.

Conclusion : choosing m = K yields

H2(p[r) ,pl) Hi , 4%

= [H(9xx . Axilxi1)]
.


