Lec 3: f-divergence

larju	Han	

Defn (f-divergence, Csiszar'63)

Let $f: (0, \infty) \to \mathbb{R}$ be convex with f(1) = 0. The f-divergence

between two distributions P and Q on the same space is

$$D_f(P | Q) = \mathbb{E}_Q \left[f(\frac{dP}{dQ}) \right].$$

Remark: 1. Some define additionally assumes that f'(1) = 0. This is WLOG, f(x) and f(x) + c(x-1) give the same f-divergence.

2. If $\frac{df}{da} = 0$, define f(0) := f(0+);

If $P \not\leftarrow Q$, define $D_f(P|Q) = \int_{q=0}^{q} qf(\frac{P}{q}) d\mu + f(\infty)P(q=0)$.

with $f'(\infty) := \lim_{x \to \infty} \frac{f(x)}{x}$.

Examples
$$| \mathbf{f}(\mathbf{x}) = \frac{1}{2} | \mathbf{x} - \mathbf{1} |$$
; $P_{\mathbf{f}}(P|Q) = TV(P, Q) = \frac{1}{2} \int |dP - dQ|$
(total variation (TV) distance)

$$\star 2$$
: $f(x) = (\sqrt{x} - 1)^2$: $D_f(P|Q) = H^2(P,Q) = \int (\sqrt{4} - \sqrt{4}Q)^2$

(squared Hellinger distance)

$$\star 4: f(x) = (x-1)^{2}: D_{f}(P||Q) = \chi^{2}(P||Q) = \int \frac{(dP-dQ)^{2}}{dQ}$$

(x2 divergence)

5.
$$f(x) = \frac{1-x}{2(1+x)}$$
: $P_f(P||Q) = LC(P, Q) = \frac{1}{2} \int \frac{(dP-dQ)^2}{dP+dQ}$

(Le Cam distance)

6.
$$f(x) = x \log x + (x+1) \log \frac{2}{x+1}$$
 : $P_f(P||Q) = JS(P,Q) = P_{KL}(P||\frac{P+Q}{2}) + P_{KL}(Q||\frac{P+Q}{2})$

(Jensen-Shamon divargence)

 $\frac{P+}{D_{f}}(P \parallel Q) = \mathbb{E}_{Q}\left[f(\frac{dP}{dQ})\right] \geq f\left(\mathbb{E}_{Q}\left[\frac{dP}{dQ}\right]\right) = f(1) = 0$

② $(P, Q) \mapsto D_{f}(P|Q)$ is jointly convex.

Pf. For convex f, the perspective transform $\mathbb{R}^{2}_{+} \ni (x, y) \mapsto y f(\frac{x}{y})$ is also convex.

Check Hessian: $\begin{bmatrix} \frac{1}{y} f^{*}(\frac{x}{y}) & -\frac{x}{y} f^{*}(\frac{x}{y}) \\ -\frac{x}{y^{2}} f^{*}(\frac{x}{y}) & \frac{x^{2}}{y^{2}} f^{*}(\frac{x}{y}) \end{bmatrix} \succeq 0$.

③ Data processing inequality. $D_{f}(Px \parallel Qx) \geq D_{f}(Py \parallel Qy)$ Px

Py|X

Qx

Pf. Follow from joint convexity (similar to the KL proof)

Why f-divergence? Binary hypothesis testing

Recall the simple hypothesis testing problem:

Null Ho: X~P

Alternative $H_1: X \sim Q$ Test: $T: X \rightarrow \{0,1\}$ Type I error: P(T(x)=1)Type II error: Q(T(x)=0)

 $\frac{Thm}{T} \cdot \left(P(T(X)=1) + Q(T(X)=0) \right) = 1 - TV(P, Q)$

(2)

Pf. Easy to show $TV(P,Q) = \sup_{A} P(A) - Q(A)$ (\leq) Take $T(x) = 1(x \notin A)$ for A attaining the supremum;

(≥) Take A = {T(X)=0}.

Remark: ① TV(P,Q) = 0: P = Q, totally indistinguishable ② TV(P,Q) = 1: $P \perp Q$, perfectly distinguishable

(Important quantity for establishing minimax lower bounds later)

3 TV(P.Q)<1: partially indistinguishable

Why not just TV?

① TV(P,Q) can be hard to compute ② TV does not <u>tensorise</u>; e.g. TV(P°,Q°) ≤ nTV(P,Q) is the best possible inequality in general, but is often loose.

Example How large is $TV(Bern(\frac{1}{2})^{\otimes n}, Bern(\frac{1}{2}+\delta)^{\otimes n})$?

Using $TV(P^{\otimes n}, Q^{\otimes n}) \leq nTV(P, Q)$: $n\delta$ upper bound

Using Pinsker's inequality: $TV(P^{\otimes n}, Q^{\otimes n}) \leq \sqrt{\frac{1}{2}}D_{KL}(P^{\otimes n}||Q^{\otimes n})$ $= \sqrt{\frac{n}{2}}D_{KL}(P^{\otimes n}||Q^{\otimes n}) = O(\sqrt{n\delta})$!

Popular f- divergences that tensorize:

Remark (optional): All of them follow from the tensorization of Rayi divergence i.e. $D_{\lambda}(TP_{i}||TQ_{i}) = \sum_{i} D_{\lambda}(P_{i}||Q_{i})$, with

$$D_{\lambda}(P||Q) \triangleq \frac{1}{\lambda-1}\log \mathbb{E}_{\alpha}[(\frac{dP}{dQ})^{\lambda}].$$

For $\lambda = \frac{1}{2}$, 1.2, D_{λ} corresponds to H^2 , KL and χ^2 .

Similarities and differences between f-divergences

Locally χ^2 - like , when f''(1) exists and $P \approx Q$.

$$D_{f}(P|Q) = \mathbb{E}_{a} \left[f\left(\frac{dP}{dQ}\right) \right]$$

$$\approx \mathbb{E}_{a} \left[f\left(\frac{dP}{dQ}\right) + f'(1)\left(\frac{dP}{dQ} - 1\right) + \frac{f'(1)}{2}\left(\frac{dP}{dQ} - 1\right)^{2} \right]$$

$$= \frac{f''(1)}{2} \chi^{2}(P|Q),$$

In parametric models: Fisher information: if $(Pe)_{0\in\Theta}$ is a "regular" parametric model with $\theta\in\mathbb{R}^d$, then for $h\in\mathbb{R}^d$ and $t\approx 0$:

$$\chi^{2}(P_{\theta+4h} \parallel P_{\theta}) = \int \frac{(f_{\theta+4h} - f_{\theta})^{2}}{f_{\theta}} \chi(\lambda_{x}) \qquad (\text{assure } \frac{dP_{\theta}}{d\mu} = f)$$

$$\approx t^{2} h^{T} \int \frac{(\dot{f}_{\theta})^{2}}{f_{\theta}} \chi(\lambda_{x}) \qquad (\dot{f}_{\theta}(x) = \frac{\partial f}{\partial \theta}(x))$$

where I(0) ER dxd is the Fisher information:

$$I(\theta) = \int \frac{(\dot{f}_{\theta})^{2}}{f_{\theta}} dy = \mathbb{E}[(\nabla_{\theta} \log f_{\theta}(x))(\nabla_{\theta} \log f_{\theta}(x))^{T}]$$

$$= \mathbb{E} \left[- \nabla_{\theta}^2 \log f_{\theta}(X) \right].$$

f-divergence as "average statistical information"

In binary hypothesis testing, if $P(H_0) = \pi \in (0,1)$, then the Bayes error is

$$B_{\pi}(P, Q) = \inf_{T} \left(\pi P(T(X)=1) + (1-\pi) Q(T(X)=0) \right)$$

$$= \left((\pi dP \wedge (1-\pi)dQ) \quad (x \wedge y := \min\{x, y\}) \right)$$

The statistical information is the difference between a priori and a porteriori Bayes Isses:

 $I_{\pi}(P,Q) = \pi \wedge (I-\pi) - B_{\pi}(P,Q).$

which is a f-divergence with $f(t) = \pi \wedge (1-\pi) - (\pi t) \wedge (1-\pi)$.

Than (Liese & Vajda '06). For any f-divergence, I a measure It on (o,1) s.t.

 $D_{+}(P|Q) = \int_{Q}^{L} I_{\pi}(P,Q) \Gamma_{+}(d_{\pi}) . \forall P, Q.$

Remark; every fudivergence is an "average" statistical information, with

different weights on Tr.

Pf. f(t) = 0, and WLOG assume f'(t) = 0. Then

$$f(t) = \int_{1}^{t} (t-x) f''(dx) \qquad (For f \in C^{2}, f''(dx) = f''(x) dx;$$

$$\frac{deck}{dx} \int_{1}^{t} (x-t \wedge x) f''(dx) \qquad \text{in general, any convex function gives}$$

$$+ \int_{1}^{t} (t-t \wedge x) f''(dx) \qquad \text{rise to a "measure" } f''(dx)$$

Define $\widetilde{f}(t) = \int_{0}^{t} (x - t \wedge x) f''(dx) + \int_{0}^{\infty} (1 - t \wedge x) f''(dx)$, then

 $\mathbb{E}_{\mathbf{a}}[(f-\hat{f})(\frac{dP}{d\mathbf{a}})] = \mathbb{E}_{\mathbf{a}}[\int_{0}^{\mathbf{a}}(\frac{dP}{d\mathbf{a}}-1)f'(d\mathbf{x})] = 0.$ On the other hand.

 $| \wedge \times - \uparrow \wedge \times = (| + \times) \left(\frac{1}{1+x} \wedge \frac{x}{1+x} - \frac{\uparrow}{1+x} \wedge \frac{x}{1+x} \right) = (| + \times) \int_{\frac{1}{1+x}} (+).$

$$\int_{0}^{\infty} (1+x) \underline{I}_{\frac{1}{1+x}}(P,Q) f''(dx) = \mathbb{E}_{Q} \Big[\int_{0}^{\infty} (1+x) f_{\frac{1}{1+x}}(\frac{dP}{dQ}) f''(dx) \Big]$$

$$= \mathbb{E}_{Q} \Big[\int_{0}^{\infty} (1+x) f_{\frac{1}{1+x}}(\frac{dP}{dQ}) f''(dx) \Big] = \mathbb{E}_{Q} \Big[\int_{0}^{\infty} (1+x) f_{\frac{1}{1+x}}(\frac{dP}{dQ}) f''(dx) \Big]$$

Bo

and Py(TT) is the pushforward reasure of (1+x)f"(dx) by the map

Different guarantees on contiquity

Def (contiguity) $\{P_n\}$ is contiguous w.r.t. $\{Q_n\}$ (written as $\{P_n\} \triangleleft \{Q_n\}$) if $Q_n(A_n) \rightarrow 0$ implies $P_n(A_n) \rightarrow 0$.

Clearly, $TV(P_n, Q_n) \rightarrow 0$ implies $\{P_n\} \triangleleft \{Q_n\}$.

In comparison, KLIPull Qn) & C already establishes contiguity, as

$$P_n(A_n) \log \frac{P_n(A_n)}{eQ_n(A_n)} \leq KL(P_n || Q_n) \leq C$$
 (see Lec 2)

 $\chi^2(P_n||Q_n) \le C$ leads to an even stronger guarantee:

$$\frac{(P.(A_{-}) - Q_{n}(A_{n}))^{2}}{(Q_{n}(A_{n})(1 - Q_{n}(A_{n}))} \stackrel{PPI}{\leq} \chi^{2}(P_{n}||Q_{n}) \leq C$$

$$\Rightarrow$$
 $P_n(A_n) \leq Q_n(A_n) + \sqrt{C \cdot Q_n(A_n)}$.

Therefore, different f-divergences have different powers in establishing contiguity results, due to different growth of f(t) as $t\to\infty$. In this context, a popular choice is to upper bound $\chi^2(P_n||Q_n)$, known as the "second moment method" in random graph theory & property testing (Lec 8).

Dud representations of f-divagence.

Similar to KL. f-divergences also admit dual representations.

Det (convex conjugate): for a convex function f on R, its convex conjugate is defined as

$$f^*(y) = \sup_{x} (xy - f(x)).$$

②
$$f^{**} = f$$
;

The following result is then immediate:

Thr.
$$D_f(P|Q) = \sup_{g: E_{\alpha}[f^* \circ g] < \infty} E_{\beta} g - E_{\alpha}[f^* \circ g].$$

$$\frac{Pf}{D_f(PllQ)} = \mathbb{E}_Q \left[f(\frac{dP}{dQ}) \right] = \mathbb{E}_Q \left[\sup_{\gamma} \gamma \frac{dP}{dQ} - f^*(\gamma) \right]$$

Example | (TV); When
$$f(x) = \frac{1}{2}|x-1|$$
, $f^*(y) = \begin{cases} y & \text{if } |y| \leq \frac{1}{2} \\ \text{if } |y| > \frac{1}{2} \end{cases}$, so

$$TV(P,Q) = \sup_{\|g\|_{\infty} \leq \frac{1}{2}} \mathbb{E}_{pg} - \mathbb{E}_{ag} = \frac{1}{2} \sup_{\|g\|_{\infty} \leq 1} \mathbb{E}_{pg} - \mathbb{E}_{ag}$$

Example
$$2(KL)$$
, When $f(x) = x \log x$, $f^*(y) = e^{y-1}$, so

A way to recover Donskar-Varadhan is

$$= \sup_{g} \left(\mathbb{E}_{p} [g] - \inf_{a \in \mathbb{R}} \left(\mathbb{E}_{a} e^{g+a-1} - a \right) \right)$$

Example 3 (
$$\chi^2$$
): When $f(x) = (x-1)^2$, $f^*(y) = y + \frac{y^2}{4}$, so $\chi^2(P|Q) = \sup_{y \in P} \mathbb{E}_P[y] - \mathbb{E}_Q[y + \frac{y^2}{4}]$

$$= \sup \sup_{J} \mathbb{E}_{p} \left[\lambda(g+c) \right] - \mathbb{E}_{a} \left[\lambda(g+c) + \frac{\lambda^{2}(g+c)^{2}}{4} \right]$$

Corollary (Hannersley-Chapman-Robbins (HCR) lower bound)

In a parametric family (PO)OER, if an estimator of is unbiased, then

In particular, by taking 0'-0, it recovers the Cramer-Rao bound

$$Var_{\theta}(\widehat{\theta}) \geqslant \frac{1}{T(\theta)}$$
.

Example 4 (JS): When
$$f(x) = x \log x + (x+1) \log \frac{2}{x+1}$$
, $f^{*}(y) = \int_{-\infty}^{-\log(2-e^{y})} y \cosh 2x$

$$JS(P,Q) = \sup_{g \leq \log 2} \mathbb{E}_{p} g - \mathbb{E}_{q} \left[\log(2-e^{j})\right]$$

$$h = \frac{e^{j}}{2} \sup_{0 \leq h \leq 1} \mathbb{E}_{p} \left[\log h\right] + \mathbb{E}_{q} \left[\log(1-h)\right] + \log 2.$$

min
$$JS(P, P_{G(2)}) = \min_{X \in P} \sup_{X \in P} [l_{oj} D(X)] + \mathbb{E}_{2 \sim N}[l_{oj} (1 - D(G(2)))]$$

Generator distribution

discriminator

Joint range: given two f-divergences, how to prove inequalities between them?

(For example, is there a general paradigm to prove Pinsker's inequality $2 \text{ TV} (P,Q)^2 \leq D_{KL}(PHQ)$?

Def (Joint range): Fix two f-divergences $D_f(P|Q)$ and $D_g(P|Q)$.

Define: $R = \{(D_f(P|Q), D_g(P|Q)): P, Q \text{ general prob. measures}\}$ $R_K = \{(D_f(P|Q), D_g(P|Q)): P, Q \text{ prob. measures on } [K]\}$.

Example (TV vs. KL):

Joint range / Pinsker's inequality

Thm (Harrenoës-Vajda'11) R= conv(R2) = R4.

Implication: to establish inequalities between Df and Dj. suffices to prove them for P = (p, 1-p) and Q = (q, 1-q)!

Pf (of a simpler case $P \ll Q$)

① R \subseteq conv(R₂): Fix any point (D_f(P||Q), D_g(P||Q)) \in R. Then $L = \frac{dP}{dQ}$ is a RV in $[0, \infty)$ with $\mathbb{E}_{Q}[L] = 1$, and $(D_{f}(P||Q), D_{g}(P||Q)) = (\mathbb{E}_{Q}[f(L)], \mathbb{E}_{Q}[g(L)])$.

Next consider the set C of all prob. measures on [0, 0) with mean 1.

For $\mu \in C$, we associate a point (Enf(L), Eng(L)) $\in \mathbb{R}^{2}$.

Clearly C is convex, and
extremal points of C = { distributions with mean | and support size }.

(i.e. all points x that cannot be expressed as $x = \lambda y + (1-\lambda) a$ with $y, a \in C$, $\lambda \in (0,1)$ In fact, if A_1, A_2, A_3 form a partition of $[0, \infty)$, and $M = \lambda_1 \mu_1 + \lambda_2 \mu_2 + \lambda_3 \mu_3$. $\lambda_i > 0$, supp $[\mu_i] \subseteq A_i$.

Then the probability and mean constraints only require

 $\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 1, \\ \lambda_1 m(\mu_1) + \lambda_2 m(\mu_2) + \lambda_8 m(\mu_3) = 1, \end{cases}$

which is a line containing (1, 1, 1, 1). So u cannot be an extremal point.

Now by Chaquet-Bishop-de Leeuw, any MEC can be written as a convex combination of extremal points of C, i.e. R = conv(R2).

Thm (Choquet-Bishop-de Leenu): if C is a metrizable convex compact subset of a locally convex topological vector space, then C = conv(extremal(C)).

② $conv(R_2) \subseteq R_4$: by Caratheodory theorem below, any point of $conv(R_2) \subseteq R^2$ (which is connected) can be written as a convex combination of 2 points of R_2 , which belongs to R_4 .

The (Caratheodory): Let $S \subseteq \mathbb{R}^d$ and $x \in conv(S)$. Then there exists $S' = \{x_1, \dots, x_k\}$ s.t. $x \in conv(S')$, with

my

○ k ≤ d +1 in general;
 ○ k ≤ d if S has at most d connected components.

Examples of inequalities:

2 TV vs. KL:

① TV vs. H^2 : $\frac{H^2}{2} \leq TV \leq \sqrt{H^2(1-\frac{H^2}{4})}$ (also the joint range)

TV2 < - KL

 $TV \leq 1 - \frac{1}{2} \exp(-KL)$

3 KL vs. X^2 : KL \subseteq log(1+ X^2) (also the joint range)

Special topic: chain rule for H2

$$\frac{\text{Thn (Jayran'09)} \ \text{For all} \ P_{X^n}, \, Q_{X^n}:}{H^2(P_{X^n}, \, Q_{X^n}) \leq C \sum_{i=1}^n \mathbb{E}_P \left[\ H^2(P_{X_i \mid X^{i-1}}, \, Q_{X_i \mid X^{i-1}}) \right],}$$
 with $C = \prod_{i=1}^n \frac{1}{1-2^{-i}} \approx 3.46$.

The proof is surprisingly combinatorial. First, it suffices to prove the case $n=2^k$: for general $2^{k-1}< n \le 2^k$, can consider $P_{2^k}=P_{X^n}\otimes P_o^{2^k-n}$. $Q_{2^k}=Q_{X^n}\otimes P_o^{2^k-n}$. The proof was several properties of H^2 .

Lemma 1 (L2 geometry). For arbitrory distributions P. Pm:

$$\frac{1}{m}\sum_{1\leq i\in j\leq m}H^2(P_i,P_j)\leq \sum_{i=1}^mH^2(P_i,P_o).$$

Pf. This result holds for all L2 distance;

$$\frac{1}{m} \sum_{1 \leq i \leq j \leq m} || P_i - P_j ||^2 \leq \sum_{i=1}^{m} || P_i - P_* ||^2.$$

In fact,
$$2 \cdot LHS = \frac{1}{m} \sum_{i,j=1}^{m} ||P_i - P_j||^2$$

$$= \frac{1}{m} \sum_{i,j=1}^{m} ||P_i - P_o - (P_j - P_o)||^2$$

$$= \frac{1}{m} \sum_{i,j=1}^{m} (||P_i - P_o||^2 + ||P_j - P_o||^2 - 2 \langle P_i - P_o, P_j - P_o \rangle)$$

$$= 2 \cdot RHS - \frac{2}{m} ||\sum_{i=1}^{m} (P_i - P_o)||^2 \leq 2 \cdot RHS.$$

Finally, note that

$$H^2(P, Q) = \int (\sqrt{P} - \sqrt{Q})^2$$

is indeed on L2 distance.

Now for A = [n], define interpolations

$$P^{A} = \frac{1}{\left(\prod_{i=1}^{n} \left(P_{x_{i} \mid X^{i-1}} \right)^{1(i \notin A)} \left(Q_{x_{i} \mid X^{i-1}} \right)^{1(i \notin A)} \right)}$$

Then P = Pxn, P[n] = Qxn.

Lemma 2 (cut-paste property) Let a.b.(, $d \in \{0.1\}^n$ be the indicators of sets A.B.C.D $\subseteq [n]$. If a+b=c+d. then $H^2(P^A.P^B)=H^2(P^C.P^D)$

Pf. $H^{2}(P^{A} \cdot P^{B}) = 2 - 2 \int \int P^{A}P^{B}$ = $2 - 2 \int \int \frac{1}{1-1} P^{1-\alpha_{i}+(-b_{i})}_{X_{i}|X^{i-1}} \frac{\alpha_{i}+b_{i}}{\alpha_{X_{i}|X^{i-1}}}$

$$= 2 - 2 \int \sqrt{\prod_{i=1}^{n} p_{x_i|x_{i-1}}^{i-c_i+1-d_i} Q_{x_i|x_{i-1}}^{c_i+d_i}} = H^2(p^c, p^p)$$

1/2

and all edges perpendicular to (1.i).

Lenna 3 (1-factorization of cliques) For even n. the complete graph Kn can be decomposed into (n-1) edge-disjoint perfect matchings.

(i.e. round-robin tournaments)

A geometric construction.

Put node I in the center

of a regular polygon with (n-1)

vertices. Use color i for (1,i)

Completing the proof. For
$$n=2^k$$
, prove by induction on $m=0.1,...,k$ that for any partition $A_1,...,A_{2^m}$ of $[n]$ (each of size 2^{k-m}):
$$\frac{2^m}{\sum} H^2(P^{Ai},P^{\emptyset}) \geqslant C_m \cdot H^2(P^{(n)},P^{\emptyset}).$$

with
$$c_m = \frac{m}{|\underline{I}|} (1 - 2^{-i}).$$

Base m= 0: trivial.

Induction from M-1 to M:

$$\frac{2^{m}}{\sum_{i=1}^{m} H^{2}(P^{Ai}, P^{A})} \xrightarrow{\geq \frac{1}{2^{m}} \sum_{1 \leq s \leq t \leq 2^{m}} H^{2}(P^{As}, P^{At})}$$

$$= \frac{1}{2^{m}} \sum_{1 \leq s \leq t \leq 2^{m}} H^{2}(P^{As \cup At}, P^{At})$$

$$= \frac{3}{2^m} \sum_{\alpha=1}^{2^m-1} \sum_{(s,t) \in E_\alpha} H^2(p^{A_s \cup A_t}, p^{\phi})$$

where each
$$E_a$$
 is a perfect notching of K_2m . By induction hypothesis,
$$\frac{2^m}{\sum_{i=1}^n H^2(p^{A_i} \cdot p^{\phi})} \ge \frac{2^m-1}{2^m} c_{m-1} H^2(p^{C-3} \cdot p^{\phi}) = c_m H^2(p^{Cn3} \cdot p^{\phi}).$$

Conclusion: choosing m=k yields

$$H^2(P^{[n]}, P^{n}) \leq \frac{1}{C_{n}} \sum_{i=1}^{n} H^2(P^{ii}, P^{n})$$

$$= \frac{1}{C_k} \sum_{i=1}^{n} \mathbb{E}_{p} \left[H^2(P_{X_i|X^{i-1}}, Q_{X_i|X^{i-1}}) \right]$$

$$= \frac{1}{C_k} \sum_{i=1}^{k} \mathbb{E}_{P} \left[H^2(P_{X_i|X^{i-1}}, Q_{X_i|X^{i-1}}) \right]$$