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Lefr
.

(KL Divergence)
For two probability distributions P. Q over the same space ,

the Kullback-Leibler

divergence (or the relative entropys of P w .
r

.
t

.
Q is

Dm(PlIQ) = [p[log(s] if PaQ

o
.

W
.

Remark : 1
.

The above defn . covers both discrete and continuous cases
,

i
. e.

Dia(P1IQ) =Eplog if p . q are prefs

and
Dizz(4((Q) = Sp(x)logdu(x) if p. g are pdfs wr

.

t . M.

2. This is a fivergence rather than a distance
,

i. e. Dan(PlQ] #Dim(Q1IPS

For this reason
,

we write Drz(PIIQ] instead of DilP
.
Q)

.

3. IT origin : Pr(PIQ) is the "redundancy" of using & for source coding
while the true distribution is P :

Pm(P1Q)

= expected-

codelength
for source P

Basicproperties
.

#party 1 : Drz (P1IQ)30
,

with equality iff P = Q
.

If
Din(PlIQ) = Ep[loga) = Ep[-log-logEp] = 0

.
En

Note : this gives the usual proof of

[(X ; Y) = Ep [logS = Di(PyPxR

Also
, equality holds iff Pxy = PxPy

,

i . e
.

X and Y are independent -



Trope: Dis joint cne xlogt over Ri
,

whose Hessian is [Yy * ] 30 · #

#Perty (Charle:DEPxlQxsIf

= Epye [log]

=Fr
#processing inequality (PPI) : an important property of 12 divergence

If ,
then Dkz(PxlQx) > Dan(Py1lQy]

Ci . e
.

distributions become "closer" after processing (

#
.

(Method 1 : convexity) Verify that

Faxy[ * ]= (exercise)

Then Dr(4y1lQy) = Etay[log
= FayEaxy[*xlog] (Jensen's on xlogx )

= Eax[log) = D((Px(Qx)



(Method 2 : chain rule) Let Pxy = PxPylx
. Qxy = QxPylX

,

Dm(Px(lQx) = D(z)Px(lQx) + ExxxIQ
= Dxz(Pxy1lQxy)

= Dix (Py(lQy) + Ep, [Dk(PXyQx(y)-

-> Dizz(Py1lQy) El

#elicationsofDPmutual information : if X-Y-E .
then

I(X ; Y) > [(X : z)

If

PYXPAPX(by
Marka

=> I(X : Y) = D(z)Pxy1lPxPy) = DilPxellPxPz) = [(Xi 2)

m

② Fano's inequality : if X-Unif ([M])
,

then

P(X # Y) > 1 - Y+
#

.XLxy)Becex-Uniflis)
=> I(X ; Y) = D

> (Pxy1lPxPy]

-> Draz (Bern(P(X = Y)) 1) Berr(t)

= (l-P(XFY)) log
*)

+ P(X* Y) log
-> (1- P(X F Y)) logM - log2 Em



③ Contiguity : - event A : PLA) log - DLP1Q)

(so if DRIPIQS = O21s
,

ther Q(A) + o => P(A) +> O)

If ↑ X A) Ber
=> Dm(PlIQ) = Dra(Bere(PLA))IlBern(QLAs)] > PLA) log E

-nalrepresentation of KL
. more from distributions to functions

Auker-Varadha
.

Dmx(PlIQ) = SipEpf-logEaLef) .

where the sup is taken over all functionsf with Ea[et] < 0.

If (5) Take f = log
(3) By replacingf by f-2 ,

WLOG can assume Ealef] = 1
.

In this case
,

& (dx) = ef(x)Q(dx) is also a distribution
.

So

D(x(41lQ)- Epf = Ep[log] = Ep[log
= Da(PI) o El

Ebbsvariationalprinciple Sup Epf
- D((pQ)

If
.

(2) Take P(dx)=
(3) By Donsker-Varadhan

.

Em

Both results have numerous applications in practice .



#plication 1 : transportation inequalities
.

Example1 .
1

. Restricting Donsker-Varadhan to f=g
with IIglla-1 :

Dkz(PlIQ) > sup
x + R

II glla· by Heflinsee

IIgllol

= ↓LSP Epigj-EIg]

=2. TVLP
.

QS"
,

which is Pinsker's inequality (see next lecture
,

also for an alternative proofs

Example1 .2/Bobkor& Gotze) : The following are equivalent :

& FaTeX(f-Eaf)) < expl* a) for all

Entuction f
and R,

② W.( P . Q) - EDLIQ) holds for all P
.

-

Wasserstein-1 distance :
| f(x) - f(y)) = d(x - y]

inf E(X.) un [d(X ,
YS] for a given metric d.

#Eπ(P
.
Q]

= sup Epf-Eat .

f : 1-Lip

# . (D = E) DinPlIQ) ? RAEpf-log FaTe"f]
f : 1-Lip

-> S REpf-Eaf) - Ed
f: 1-Lip

= Epf-Eaf) =W

(8)PlogEa[eXy-Fat)) SPE25

= E



Pelication2 : variational inference

Setting :
a family of distributions polx"y" where both

Po(X and polyix") are tractable

Problem : estimate O given only y"(X not observable : missing data/latest variables)

Difficulty : Poly") = J Polx poly"x]dx"often not log-concave or tractable

LowerBondCELBEx-[log
If. Gibbs variational principle

=> log poly") = log Epoxy elg
Polyix)

=

Sup Eq [log Poly"x]
- Din(g 1148

= ELBO E

Example2
.

1 (Ising models
.

P(y = E expl Ajits + [biyi) .

YESF13

Variational inference of logz :

logz = log (2 #y-Unif(g)*(Aixiti+ biyi))

= nlog2 + Sup (Ep[Ajit + [biti) - Dan (pllUnif(SE)
=

Sup Ep[ . Ajitj+ biyi] + H(p).

Relaxing to p= Bern/pi) and optimizing over (P.,

"

, Pr) yield a treatable

lower bound
.



Example2
.

2 (EM algorithm) : air to find the MLE

argmax log poly") =

argmax Sup Exing[log
&

Successive maximization :

· Estep : fix O = OH)
,

the maximizer is gl(X)=(xly")

· M Step : fix q : gl ,
the maximizer is factorizable in the

missing data case

g(t+ )
=

argmax Exumq[log Poix", y)]
-

no integral ; tractable

& For example ,

in exponential families polx, y) < exp((0 . T(x
. y>) - AlOs)

,

E-step corresponds to the computation of M: E Ex-Pat ((yi)
[T(Xi · Y: >] ,

and M-step corresponds to the usual MLE computation JAI0
*

) = E
,

M:

EarpleLB(VAE)
: given images Y, Ye ,

ain to find a generative at
X : ~NIo

,
1)

, Y : vN(Ma(xi) ,
ro(xi)1)

-m

parametrized by neurd nets

Using ELBO :

max log poly > max
max E-g[logd -

another Gaussian

9p(yi) = N(Mp(yi) . OP(yi) 1)

Idea of VAE : D Replace Exingp by empirical mean of simulated samples

Xij ~ NIMply: 3
. UPLy: >1)

. j =1
,

2 , .., M :

② Compute To by the explicit expression of logpolx", y") ;

③ Compute To by the reparametrization trick :

- #x- N(ma,
2)
[f(x)] = XpEcuNG,E) [f(Mp + 209)]

= EarNlosIs[Tpf(mp + +pa)]

= Jpf(mp + 509)
.



#elization3 : adaptive data analysis
.

Problem :
data X d.

p ,
a class of functions (4+: X-R)

For each given of ,
we have

PrPt : = + P+ )X:) Ep[G(Xi)] =: Pot

What happens to Pro+ if the index T depends on the data X ?

Earple3
.

1 (Russo & Zou'l6] If each ot issub-Gaussian under P
,

then
1 E[PoP+

] - EIPP+>31 - TS

Remark : D If IIT : X") = 0
,

i. e
.

T is independent of X
,

then P-PT is urbiased for POT.

② If TE (1 , .... m]
,

then I)X" : T] -
> H(T) = logm ,

and the
upper boardga can be shown via union bound

# Define two distributions : PX
, T : the joint distribution in the problem

&: T
= Px-PT : an auxiliary distribution where

X andT are independent
Then #[P. O + ] = Epyn+

[=P+ (xi)]

E[PP+] = Fax, +
[+ P+ (xi)]

Dorsker-Varadhan => I(X" : T) = Dri(PX+ 11 QX:+)

-

>SuEX

-
by sub-Gaussian assumption

-

>Su XLEPP -EIPP+5)-

= LEIP-+ ]-EPPr]S" El



Explication4 : PAC-Bayes

#Bayes inequality
.

Let X-P
,

and consider a class of functions (fo : X + 1)
·

Fix any prior distribution it of 0
.

Then wp.
5 1-8 Lover the randomness in X),

for all distributions p over 0
.

#prp[fo(x) - +(0)] = Di(p(n) + log ,

where +(0) : = log Exupefo(x)

Remark : 0 The exception setdependson it
,

but not on 0.

② This inequality holds for all p ,

which generalizes the union bound

where p is usually taken to be a point mass p = 80
. .

③ By taking P = Poix to be a data-dependent distribution
,

we'll have

#
10 . x) - Pox[fo(X) - +(0)] = if Epy [Dia(Pa 11i]

= [10 : X) (exercise ! )

# By Markov's inequality , suffices to prove

#x-p[syp exp(EOrp[fo(X) - 410s] - DialplIn))] < 1
.

By Gibbs variational principle ,

the LHS is

Ex-p[exp(log Eo-+
e
fo(x) -

+(a))]

= Ex-pEorTefo(x) - +(0)]
= Forn[eto-+10) = 1 Em



Why call it PAC-Bayes ? Come from the following application in statistical

learning theory :

Example4
.

1
.

Let f : X + [0 , 13
,

X
.,

.... Xu p

Pf := f(Xi) , Pf : = Excp[f(X3] .

For fixed f ,
sub-Gaussian concentration (Hoeffding's inequality) gives

(Puf-Pf( = Enlogg up . > 1-8
.

By PAC-Bayes , fix a prior it
,

then wp. 1-8
, for any P:

Efrp[X(Pef-Pfj" -log Exe XP-Pf() -
> Diz(plli) + log+

->Gaussi42

Choosing X = En gives Efrp[(Pef-Pfig+log

PAl-Bayes also has surprising applications to concentration inequalities , by

choosing p and it appropriately.

Example4.

2
.

If X ~ NCo , 2)
,

then up .
>1-8

.

1IXI2F+oplog

Remark : Try union board to 1IXIIz =Sup <X
,
v> yourself:

It's very difficult to make covering/chaining arguments give such

sharp bound
,

because of a general shaped I .

One need to invoke Talagrand's

generic chaining to this example ,
but it's very difficult to carry out

.



Pf
.

1X112 = sup <v .
XX .

Ilvllz = 1

To apply PAC-Bayes ,
we construct a priorPr such that #Op.

[C0 . XD] = (v, XY

* natural choice is Pr = NIv,13. Then for i = NLo
, orIS : w

. p .

31-8
.

sup Ep[XCO . X > -logExeXCo .x] - Dizz(prlli) <logt].
IIvllz = -

=
=> sup < (v

,
X) - * (vIv +FTr(I))- -logt ·

1lvIkz

=> <v
.

X > = EIrTEv + @Te(El) + *( + logt) .

Ev
-

EllEllop

Optimizeup . 3 1-8
.

Expla4.
3

.

Let X1.
"

,
X

, be Did with EEX. ] = 0
. EIX , XJ = I

,

and that

rTX
, is rEvrsubGaussian for any VER" .

Lat=XiX. be the sample

covariance. Then wp . > 1-8 .

Il -Ellop = CIIlophos +
where r(I) =I is called the Effectiverac

Remark :
This is the result of [Koltchinskii & Lounizi 175

,

where the key

challenge is to arrive at the fight factor rI]. Our proof is

taken from [Zhirotorskiy'21] via PAC-Bayes -



# (Throughout the proof , C denotes a large universal constant which may change

llE-Illop = sup uT(E - I)v
.

from line to line).

Ilulla
,

Il vllz = /

Consider 10 . 0) ~Pu .
v

: = fufr ,
where fu is the density of

N(u
. ol] conditioned on (x-u)"[(X-u) = =

Clearly 10. 0 -P..
[OTCE-I)0] = uT(E-E) v

,
and

p : = p)zTz+
z =) > 1 - E 1 -E for z-N1o, w]).

Let it = No
,

oF 1) No. 01)· One can compute

Dkz] full No.1)=n
+ log( ) .

so that DrnIPholli) = + Glog(it) .

Now by PA2-Bayes,
w

.p .

31-8
.

sup #10
.-e.[XOTI-730-DulosII ulla

,
Ilvll=1

for x To To
Since OTEP = (NTIn + NOTIlons)" = (Mllop + r)"

, we get

1) E-Illop -> * (Illop + r)" + *( + 2log(p) + logj)
if iTopt

Choose v = ZEllop :
o==) ,

then P
,

and

ll E-Ellop = ((Ellop += (r(z) + logt) , ifR:p



Finally ,

ChoosinE ift
II Ellop iflost

leads to the claimed result .


