
Lec 1 : Entropy & Mutual Information

Yangon How



Entropy. For a discrete RV X taking value in X with put P,

its entropy H(X) (or H(p)) is defined as

H(X)=XP(x) log,s

Remarks 1 . OCH(X) [log(X) (H(X) =logP(x)) = log(X) by Jensen
-

2. H(X) can be finite or infinite when Ix1 = 0

3. For continuous (ow general) RVs
,

need to find a measure M

st
.

X has a densityf writ
. M .

and define the offerentialentropy

h(x) = Syf(x) log(x)dm(x)
*

usually
↑

lower-case h value depends on the choice of M

4. Base of log : for IT applications (only this lecture)
,

take

log = logy (bits] :

For other applications (all later lectures)
, log = loge (nats).

Why entropy ? Sharron (1948) shows that entropy characterizes the

Fundamentallimitofsource coding
.

&urce coding problem (for the ii .

d. case)

Given
: Dan input alphabet X (e.g.

all English letters(a.
b
.

.
. .

, z])

② a known puf p on X (i
. e .

the source distribution

Targe : find a map (i. e
. codelf : X -> 10

.
13*:

=90 . 13"
,

such that

① it's quelydecodable
,

i. . e
.

based on the concatenation

(f(xi) , .
"

, f(x)) ,
one can uniquely decode m and (X ...... Xn) +XM

② the expected codelength ETS(f(X)]=xP(x)e(f(x) is minimized
m

e()
: length of the codeword (in bits)



Example. IfSaba uniquely decodable
,

e . g. 100101) decodes into bab

(b) The code a + 0, b - 1
,

2 -> 10 is NOT uniquely decodable
,

e
. g. 10 decodes into eitherc or ba

(c) The code a + 10
,

600
,

C-11 is uniquely decodable and has a

smaller expected codelength 2 ·4 + 1 : E + 2 · # = 1 . 5 bits < 1
.
75 bits for (a)

.

Given a length profile Pexxex
,

is there a uniquely decodable code f
with 1(f(x) = ex ?

Theore(KratMcMillanofficient condition is

2-
*

= 1
. (Kraft inequality )

#
. (Sufficiency) First note that for a full

binary free (i . e. a binary tree where each mode ⑧
depth = 0

has O or 2 children)
,

then ·a depth = 1

[2-depth() = 1
. · depth = 2

Leaf node
~ depth = 3

BecauseEx2-ex = 1
,

one can construct a full 010 oll

binary tree st . X & fall leaf nodes) A full binary tree with

and depth(x) = ex
.

FXeX
.

codewords (1 , 00
,

010 , 011

Now use the coding schere in the example ,

which results in afix code,

i .
e

. no codeword is a prefix of the other. Easy to show that (Exercise

prefix codes are uniquely decodable
·



(Necessity) WLOG assume IX1200 and emax : = maxx
Use a tensor power trick : for uniquely decodable code f.

-((f(x,x) + ... + l(f(xn()
2

concatenation
-

- e( (f(x, ) .

. - -

, f(xn))
2(x22Ee

of concatenated codewords of total let e)

- . 21 (by uniquely decodable assumption

= memox

=>2- (mem E

Using Kraft inequality , we obtain the following characterization of the

smallest expected codelength.

#Source coding theorem for uniquely decodable code (

H(X) unigutidecodable EIECf(XS]
< H(X) +

# (Upper bond) ex = Flogs) satisfies Kraft inequality ,
and

xP(x)(x < p(xs(log + 1) = H(x) + 1
.

(Lower bound) Easy to show via Lagrangian multipliers that

SPe & = Eplxylog, = H(X) E



Remark : 1
.

The gap between H(X) and H(X) +I could be significant (e. g .

when

H(X) = 1
.
5 bits) . However

,

in practice ,
the alphabet X is usually

"super-symbols" ,
e . g . X = Pa.

.... z3250 instead of Sa.
.

. .

, z] .
In such

cases
,

H(X)> I bit.

2. Information theory is usually good at proving "robust" results even if

a small error probability can be tolerated ; in contrast ,
the above

combinatorial argument fails to do so
.

See more details below.

#Symptoticequipartition property LAEPS
.

Another
way

to write the entropy is

H(X) = Ex-p[logs]
&* Warning : some of you might not be used to seeing the distribution p

to appear in BOTH the expectation AND the function (

Therefore , if X
..

.... Xn
*

i p
.

LLN leads to (if H(x) < 2)

logixEll = H(X)
,

as a + 0
.

=> Faxo
,
P(p(X:, Xn) = [2

- n(H(x) + 2)
,

y
-(((x) -

a(j) - 1 as n+ 0.

-

call thisget T& (typical set]

The typical setTh satisfies that=> ILLAEPP((X,
-,XeTES-1 ,

as nec

② (l-o(k)2u(H(x)
- c)

- (TY) = 2(H(x) + a)



In other words
.

AEP states that for X,
.

. ...
X. p

,
the joint

distribution of X ...... Xu is "roughly" a uniform distribution over = 2nH(P)

typical sequences.

->coding theorem with error probability
.

encodemDiagram :

X
.. ..., X. -> Ye 50

. 13
* Encoder

, (*,
.

. . -

.
x

_)

with a block error guarantee (P)(X ..
..

.. X1 ) # (*,. ... Xn)) = S.

Im
.

① Achievability :
E (encoder , decoder) s .

t
.
Ell(Y)] = H(P) + o(

and S =
o (1).

② Converse : if 8 = 0(1)
.

then ANY (encoder. decoder) pair satisfies

· ETe(Y)] = H(P) - 0(k) .

# (Achievability) Consider an encoder-decoder pair that enumerates all

typical sequences in T2 and ignores all others. Then by AEP,

error prob.

= P((X. . . Xn) T2) -> 0

e(Y) =loga (Trl -

> n(H(P) + 1) deterministically .

Since <30 is arbitrary ,

the achievability follows.

(Converse) Fix any as 0. Define two sets

A = ((X , .

. . .

.
X. )

=
f(Y) > n(H(p) - 29)]

B = E(X... X
a ) : (X.X) = (...

-.
: 13

.

then

1) Th B) > 1-8 - OC13 by HEP and union bound
.



Moreover
,

1 TERB1A) = 13(x , ,

. . .x) To n B : 11Y(x
. .

. . .

. xn)) = n(H(p) -2a)3)

=> (Sy + 90 . 13*. e(y) = n(H(p) -2a)3)
↑

by defr . of B
, if (X. : =, Xn)

,
(X

,

...

· xi) EB are different,
one must have Y(X..... X . ) # Y(XY 1

-

, Xn)

n(H(p)-2a)

2k < 2 . 2
n(H(p) -22)]

=

=> PITEMBRA") < 2CH(P)-) . /TFUBRA" < 2 . 2
- 2

·

*

by AEP

Therefore , PITnAnB) > 1-8-o(K-2 . 2-hs = 1- 0(1)

=> EleLY>] < (H(P)-2a) · P(A) > (1-0(k) · (H(P) - 2a)

by Marker's inequality. Since 20 is arbitrary ,
the converse follows.E

-itentropy and mutual information .

Similar to H(X) = Ex[loge] ,
can also define

H(X. Y) = Ex
,y[log,5] (joint entropy

H(Y(X) = Ex
,y[log]

= H(X, Y) - H(X) ( conditional entropy)

I(X , Y) = H(X) + H(Y) - H(X, Y)

= H(Y) - H(Y(X)

= Ex,[log S (mutual information



Lemma I(X ; Y) < o (non-negativity of mutual info.
-

or equivalently ,
H(X) > H(X1Y) (conditioning reduces entropy )

# There is a one-line proof using convexity/KL divergence (next lecture)
,

but let's present a proof using typicality/AEP that will be useful later.

DefineTX,
I

Th (X
,
Y) = & (x , y] : /log2x. y)

- H(X
,

Y) ) => 2) ,

andPoint typical set Tr = T& (X) 1 T& (Y) ~ TE(X
,
Y3

.

For [X
., Y. ) ..

--

,
(Xr

, Ye] "iPxy .

LLN + union bound yields

P((x ,Y)[Tr) 21
,

from which one deduces that I Tr/ (1-0(13) 2CH(X , Y) -

a)

Next draw (X
,

Y
.
)

.

...

,
(X

.. Y.
) PxPy .

Then

1 P(( x"YETh)

= Z
(x -

y)(T)((Y = x
, Y = y)

n(H(X,
Y)- c) - n(H(x) + 9)

. 2
-n(H(y)+ 9)

> (l-o()) 2 · 2

= (1- o(1))2
-v((X : Y) + 3a)

=> I(X : Y) + 3230 ,
and I(X ; Y) 30 by taking a - 0%

A



This is a fundamental inequality to prove other inequalities , e
. g.

DH(X, . , X . )= H(XIX") -> H(X)

② If Pyx= Pyilx: ,
then

1 (x" : Y") = H(Y) - HLY"IX)

= H(Y)- H(Y: /Xi) (H(Y"x) = Ellog]
=Ellog]

H(Y : )- H(Y: /Xi

= I(Xi ; YiS

③ If Px= &Xi
,

then

I (x" ; Y = H(X) - H(X"/YY

= [H(Xi) - H(X"Y")

> [H(X : ) - EHIXilY) (by x)

-> IH(Xi) - [H(Xi 1Yi] I conditioning reduces

= I I(Xi : Y: ) entropy)

Remark : All inequalities that can be show via

& monotoricity : H(X) =H(X
, Y]

② submodularity : H(XA) + H(XB) > H(XAUB) + H(XALB)

are called_ Mhannon-typeinequalities
.

Why mutual information ? Shannon (1948) shows that it characterizes

the fundamental firit of -ommunications/channel coding and Messycompression

(later this lectural (skipped ; related to"mutual info method"

for statistics later)



channelcoding problem.

Diagram : Message encoder Channel input
->

me Unif (91 ,
.... MS) x" EXY

↓ channel->
known and given by nature

PYIX
-> n channel uses are independent

i . e. Pyx = TPrXi
decoder Channel output

mesl, .... My =

y + ye

Goal : Given a (blocks error probability guarantee Plm * m) = S.

aim to send as many messages as possible , or equivalently,
maximize the rate of communication

Re = M (bits per channel use

~
Heft(channelCitysix) = max I(X : Y)

,
with Pxy = PxPyx

PX

1 In other words
, given the transition probability PylX from X to

Y
,

design an input distribution PX s.
t

. [(X ; Y] is maximized

Examples. O Binary symmetric channel (BSC) :

.
"I

PyX : xi[i])
I(X ; Y) = H(Y) - H(Y(X) = 1-hc(s)

,
with equality iff Px = [t,]

.

↑
binary entropy function

helas = alogat + 21-clogna.



② Binary erasure channel (BE2) :

Y

O I ↓

8PyX : xi[" 1 -]
I (X ; Y) = H(x) - H(X(Y)

= H(x) - P(Y +H
- PY =(1)

= H(X)

= (l-2) H(X) = 1-2
,

with equality iff Px = [t
,
:]

.

#Sharon'schannelcoding thereFixanydecoder)
s

.

t.

P(m = m) -> 0 as n 0
.

② (Week) converse : if Rn > C + S
,

then F (encoder.
decoder)

.

liminf P(m + m) > 0
.

n-

(Strong converse : limit Plmm) = 1 : see Let 4)
11 ->

In other words
,

the maximum rate of communication is (asymptotically
the channel capacity !

#chievability: random coding & typicality.

xi ya
& -- y

&

·-
·



~

Handom codebook : generate Xis
,

-

- Xim) "Id por

Encoder:forMessagemem, send Xin
m , y) is joint typical (see defe.

on page 8) ; if none or not unique , report failure.

#nalysis :
WLOG assume that the true message is m = 1.

Then m = m if :

① (X
,

Y) is joint typical ;

② None of (Xi2) ,
Y)

.
.... (xims , Y) is joint typical .

By LIN
,

P(D) = 1-0(1) .

Reversing the analysis on Page 8
,

since (Xi
.
YS-P* p Lindependent ! ).

↑ ( (xi2)
,y joint typical) = 2

-n([(X: Y) - 39)
Y

so union bound gives P(B), 1-M . 2
-n(I(X: Y) - 32)

. If lojM< n([(XiY) - 43
then

P(z) > 1 - e
-

= 1 - o(1)
.

Therefore , ↑ (m = 1) = P(0and() = 1 - 0(1)
.

E

Remark : 1
.

Random coding was a remarkable idea at the time
,

when algebraic
codes were more popular. This also motivated the entire field of

probabilistic methods
.

2. This coding scheme is computationally expensive. First efficient codes which

attains the Shannon limit were found in 2000's
, including the

spatially coupled LDPC code and polar code
.



W
converse:Fan inequality

,
a

are robust to errors

tenma.Data ProcessinginequalityforM (i. e
. Pxyz = PxPyxPz(y) ,

the

I(X : Y) > [2X : z)

# Shannon-type inequalities :

I (X ; Y) - [(X : z) = H(X(z) -H(XlY)

= H(X(z) - H(X/Y, 2) (By Markov)

= I(X : Y(z) > 0. E

#hand'sinequality) If X-Unif (IM)

P(X #Y))1-log
If

.

Let E = 1/ X * Y' . Then

H(X(Y) = H(XIY , E)+ES2
= PLE =1) E= 1) + PLE =

O).E=) + log2

= H(X) = log M
-
> PIX #Y) - logM + log 2 .

On the other hand
.

H(X(Y) = H(X) - I(X : Y)

= logM - [(Xi Y)
. (X-UnifIMS)

rearranging yields the claim. En

2 In Lea 2
,

we'll see more "principled" proofs of Faro's inequality)



To apply Fano's inequality , if Rn > C + S

~m - x - y- m)

Page 9

·
establishing the weak converse. E


