Information Theory: Problem Set

General instructions:

- Please hand in your homework via Gradescope (entry code: KDPE8G) before 11:59 PM.
- Numbered exercises are taken from the book "Information Theory: From Coding to Learning" by Y. Polyanskiy and Y. Wu, available online at https://people.lids.mit.edu/yp/homepage/data/itbook-export.pdf.
- Unless otherwise specified, all logarithms (including those in entropy, mutual information, and KL divergence) are in base e.

Homework 1 (Due on Oct 1, 2025)

Required problems:

- R1. I.13
- R2. III.19
- R3. (a) Show that $I(X;Y) \ge I(X;Y|U)$ for a Markov chain U X Y. Conclude that I(X;Y) is concave in P_X for fixed $P_{Y|X}$.
 - (b) Show that $I(X;Y) \leq I(X;Y|U)$ if X and U are independent. Conclude that I(X;Y) is convex in $P_{Y|X}$ for fixed P_X .
- R4. Prove Tao's inequality: for random variables X, Y, Z with $X \in [-1, 1]$ almost surely,

$$\mathbb{E}|\mathbb{E}[X|Y] - \mathbb{E}[X|Y,Z]| \le \sqrt{2I(X;Z|Y)}.$$

Optional problems (solve three of them):

O1. I.49 (Note: the claimed limit $1/\sqrt{1-\tau}$ is incorrect and should be replaced by

$$\frac{e^{-\tau/2-\tau^2/4}}{\sqrt{1-\tau}} - 1. \qquad)$$

- O2. I.51
- O3. I.53
- O4. I.59
- O5. I.63
- O6. III.28

O7. Shearer for sums. Let X, Y, Z be independent random integers. Prove that

$$2H(X + Y + Z) \le H(X + Y) + H(X + Z) + H(Y + Z).$$

O8. Pinning lemma. Let (X_1, \ldots, X_n) be $\{\pm 1\}^n$ -valued random vector. For $2 \le k \le n$, let S be a uniformly random subset of [n] of size k, and $i, j \in S$ be two uniformly random draws from S without replacement. Define the quantity

$$f_k = \mathbb{E}[I(X_i; X_j | X_{S \setminus \{i,j\}})].$$

- (a) Prove that $\sum_{k=2}^{m} f_k \leq \log 2$.
- (b) Deduce that for $m \geq 0$, there exists a subset $T \subseteq [n]$ with $|T| \leq m$ such that

$$\mathbb{E}[\operatorname{Cov}(X_i, X_j | X_T)^2] \le \frac{2 \log 2}{m+1}.$$

Here the expectation is taken over the randomness in both the uniformly random pair $(i, j) \in {[n] \choose 2}$ and X_T .

- O9. Coin weighing. There is an unknown subset $X \subseteq [n]$. You must choose in advance k subsets $S_1, \ldots, S_k \subseteq [n]$, and receive the cardinalities $|X \cap S_i|$ for all $i \in [k]$. We wish to determine the smallest number k needed to recover the unknown subset X.
 - (a) Prove that if $k \leq 1.99n/\log_2 n$ and n is sufficiently large, any strategy cannot guarantee the recovery of every subset $X \subseteq [n]$.
 - (b) Propose a successful strategy if $k \ge 3.17n/\log_2 n$ and n is sufficiently large (here the constant is chosen such that $3.17 > 2\log_2 3$).
 - (c) (challenging and not graded) Prove (b) with 3.17 replaced by 2.01.
- O10. Information bound on variance. Let X_1, \ldots, X_n be i.i.d., and $(\phi_t)_{t \in \mathcal{T}}$ be a collection of functions $\phi_t : \mathcal{X} \to [0, 1]$. For $t \in \mathcal{T}$, let $\sigma^2(\phi_t) = \operatorname{Var}(\phi_t(X_1))$ be the true variance, and

$$s_n^2(\phi_t) = \frac{1}{n} \sum_{i=1}^n \phi_t(X_i)^2 - \left(\frac{1}{n} \sum_{i=1}^n \phi_t(X_i)\right)^2$$

be the sample variance. Show that for any C > 0 and random index T, it holds that

$$\mathbb{E}\left[\frac{s_n^2(\phi_T)}{\max\{C, \sigma^2(\phi_T)\}}\right] \le \frac{I(T; X^n)}{nC} + 2.$$

(Hint: use $\mathbb{E}[e^X] \leq \mathbb{E}[1+2X] \leq e^{2\mathbb{E}[X]}$ for $X \in [0,1]$.)

Homework Set Page 2 of 9

Homework 2 (Due on Nov 1, 2025)

Required problems:

R1. VI.8

R2. VI.14, Part (a) - (c)

R3. Suppose $X_1, \dots, X_n \sim \text{Bern}(p)$ with unknown $p \in [0, 1]$. Using the two-point method, argue that if there is an estimator T such that

$$\sup_{p \in [0,1]} \mathbb{P}_p\left(|T(X) - p| > \varepsilon\right) \le \delta$$

with $\varepsilon, \delta \in (0, 1/4)$, then

$$n \ge c \cdot \frac{\log(1/\delta)}{\varepsilon^2}$$

for a universal constant c > 0. (Hint: $1 - \text{TV} \ge \frac{1}{2} \exp(-\text{KL})$.)

- R4. Let X_1, \dots, X_n be i.i.d. drawn from a discrete distribution $P = (p_1, \dots, p_k)$, the learner aims to estimate the entropy $H(P) = \sum_{i=1}^k -p_i \log p_i$. With a slight abuse of notation, we also use the same letter P to denote the free parameter (p_1, \dots, p_{k-1}) , which belongs to the parameter set $\mathcal{P}_k = \{(p_1, \dots, p_{k-1}) \in \mathbb{R}^{k-1}_+ : \sum_{i=1}^{k-1} p_i \leq 1\}$ with a non-empty interior in \mathbb{R}^{k-1} .
 - (a) For a fixed P in the interior of \mathcal{P}_k , find the expression of the Fisher information I(P) and the inverse Fisher information $I(P)^{-1}$ in the above model with n = 1. (Hint: for $I(P)^{-1}$, use Woodbury matrix identity.)
 - (b) Use the local asymptotic minimax theorem to show that for any P_0 in the interior of \mathcal{P}_k and any sequence of estimators \widehat{H}_n based on n samples, it holds that

$$\lim_{C \to \infty} \liminf_{n \to \infty} n \cdot \sup_{P \in \mathcal{P}_k: \|P - P_0\|_2 \le C/\sqrt{n}} \mathbb{E}_P[(\widehat{H}_n - H(P))^2] \ge \mathsf{Var}_{X \sim P_0}(\log P_0(X)).$$

(c) Find a suitable P_0 in (b) to conclude that

$$\liminf_{n \to \infty} n \cdot \inf_{\widehat{H}_n} \sup_{P \in \mathcal{P}_k} \mathbb{E}_P[(\widehat{H}_n - H(P))^2] \ge c \cdot \log^2 k,$$

where c > 0 is a universal constant.

Optional problems (solve three of them):

O1. I.65 (In Part (c), n should be d)

O2. I.66

O3. VI.14, Part (d)

Homework Set Page 3 of 9

- O4. VI.16
- O5. VI.17
- O6. Monotonic CLT. Let $X_1, X_2, ...$ be i.i.d. random variables with $\mathbb{E}[X_1] = 0$, $\mathsf{Var}(X_1) = 1$, and $h(X_1) > -\infty$. Let $S_n = \sum_{i=1}^n X_i$ and $T_n = \frac{1}{\sqrt{n}} S_n$.
 - (a) Let $S_{\sim i} = S_n X_i$, and ρ_i be the score function of $S_{\sim i}$, where we recall that the score function for a random variable X with density f is $\rho(x) = (\log f)' = \frac{f'(x)}{f(x)}$. Show that the score function ρ of S_n is $\rho(S_n) = \mathbb{E}[\rho_i(S_{\sim i})|S_n]$.
 - (b) Prove the following lemma: for independent Z_1, \ldots, Z_n and functions f_1, \ldots, f_n such that f_i depends only on $Z_{\sim i}$ and $\mathbb{E}[f_i(Z_{\sim i})] = 0$, it holds that

$$\mathbb{E}\left[\left(\sum_{i=1}^n f_i(Z_{\sim i})\right)^2\right] \le (n-1)\sum_{i=1}^n \mathbb{E}[f_i(Z_{\sim i})^2].$$

(Hint: ANOVA decomposition.)

- (c) Show that if $J(X_1) < \infty$, the Fisher information satisfies $J(T_n) \le J(T_{n-1})$.
- (d) Show that the differential entropy satisfies $h(T_n) \ge h(T_{n-1})$.
- O7. Bernoulli EPI: Mrs. Gerber's Lemma. Let $h_2(p) = -p \log p (1-p) \log (1-p)$ be the binary entropy function, and $h_2^{-1} : [0, \log 2] \to [0, \frac{1}{2}]$ be its inverse.
 - (a) Show that for any fixed $p \in [0, 1]$, the function $v \mapsto h_2(h_2^{-1}(v) * p)$ is convex, where p * q = p(1-q) + (1-p)q denotes the convolution.
 - (b) Use (a) to show that for any (X, U) with $X \in \{0, 1\}$ and $Y = X \oplus Bern(p)$,

$$H(Y|U) \ge h_2 \left(h_2^{-1}(H(X|U)) * p \right).$$

(c) Use (b) to show that for any $X^n \in \{\pm 1\}^n$ and $Y^n = X^n \oplus \text{Bern}(p)^{\otimes n}$,

$$\frac{H(Y^n)}{n} \ge h_2\left(h_2^{-1}\left(\frac{H(X^n)}{n}\right) * p\right).$$

- O8. Tree-based lower bound. This problem proves another lower bound for the test error of testing multiple hypotheses. Let T = ([m], E) be an undirected graph with vertex set [m] and edge set E, and be a tree in the sense that T is both connected and acyclic.
 - (a) Show that for any real numbers x_1, \dots, x_m , it holds that

$$\sum_{i=1}^{m} x_i - \max_{i \in [m]} x_i \ge \sum_{(i,j) \in E} \min\{x_i, x_j\}.$$

Homework Set Page 4 of 9

(b) Use the result in Part (a), show that for probability distributions P_1, \dots, P_m ,

$$\min_{\Psi} \frac{1}{m} \sum_{i=1}^{m} P_i(\Psi \neq i) \ge \frac{1}{m} \sum_{(i,j) \in E} (1 - \text{TV}(P_i, P_j)),$$

where the minimum is over all possible tests $\Psi: \mathcal{X} \to [m]$

- (c) Evaluate the terms on both sides of (b) under $P_i = \mathcal{N}(i\Delta, 1)$ and a line tree with edge set $E = \{(1, 2), (2, 3), \dots, (m 1, m)\}$, and show that they are equal.
- O9. VC class with small oracle risk. We have a function class \mathcal{F} with VC dimension d, and n training data $(x_1, y_1), \dots, (x_n, y_n)$ drawn from an unknown joint distribution P_{XY} , with $\mathcal{Y} = \{0, 1\}$. Define the following class $\mathcal{P}(\mathcal{F}, \varepsilon)$ of joint distributions where the best classifier has an error at most ε :

$$\mathcal{P}(\mathcal{F}, \varepsilon) = \left\{ P_{XY} : \inf_{f^* \in \mathcal{F}} P_{XY}(Y \neq f^*(X)) \le \varepsilon \right\}.$$

So $\varepsilon = 0$ corresponds to the well-specified case, and $\varepsilon = 1$ corresponds to the misspecified case. Define the minimax excess risk $R^*(\mathcal{F}, \varepsilon)$ over $\mathcal{P}(\mathcal{F}, \varepsilon)$ as

$$R^{\star}(\mathcal{F},\varepsilon) = \inf_{\widehat{f}} \sup_{P_{XY} \in \mathcal{P}(\mathcal{F},\varepsilon)} \mathbb{E} \left[P_{XY}(Y \neq \widehat{f}(X)) - \inf_{f^{\star} \in \mathcal{F}} P_{XY}(Y \neq f^{\star}(X)) \right].$$

Show that for all $\varepsilon \in [0, 1]$,

$$R^{\star}(\mathcal{F}, \varepsilon) = \Omega\left(\min\left\{\sqrt{\frac{d}{n}\cdot\varepsilon} + \frac{d}{n}, 1\right\}\right).$$

O10. Bias-variance analysis for orthogonal polynomials. The concept of orthogonal polynomials is useful not only in proving lower bounds, but also in constructing and analyzing unbiased estimators. Let $(P_{\theta})_{\theta \in [\theta_0 - \varepsilon, \theta_0 + \varepsilon]}$ be a one-dimensional family of probability distributions with the following local expansion:

$$\frac{P_{\theta_0+u}(x)}{P_{\theta_0}(x)} = \sum_{m=0}^{\infty} p_m(x; \theta_0) \frac{u^m}{m!}, \qquad \forall |u| \le \varepsilon, x \in \mathcal{X}.$$

In addition, assume that the quantity $\sum_{x\in\mathcal{X}} P_{\theta_0+u}(x) P_{\theta_0+v}(x) / P_{\theta_0}(x)$ depends only on θ_0 and uv, for all $u, v \in [-\varepsilon, \varepsilon]$. In class we showed that $\{p_m(x; \theta_0)\}_{m\geq 0}$ are orthogonal in $L^2(P_{\theta_0})$, i.e.,

$$\mathbb{E}_{X \sim P_{\theta_0}}[p_m(X; \theta_0)p_n(X; \theta_0)] = A_m(\theta_0) \cdot \mathbb{1}(m = n)$$

for some constants $\{A_m(\theta_0)\}_{m\geq 0}$.

(a) Show that for $X \sim P_{\theta_0+u}$ with $u \in [-\varepsilon, \varepsilon]$,

$$\mathbb{E}_{X \sim P_{\theta_0 + u}}[p_m(X; \theta_0)] = c_m u^m$$

for some constant c_m independent of u. Find the expression of c_m using $A_m(\theta_0)$.

Homework Set Page 5 of 9

(b) Suppose the same local expansion and orthogonality condition also hold under $\theta_0 + u$, and

$$p_m(x;\theta_0) = \sum_{\ell=0}^m b(m,\ell,\theta_0,u) \cdot p_\ell(x;\theta_0+u), \qquad \forall |u| \le \varepsilon, x \in \mathcal{X},$$

Show that

$$\mathbb{E}_{X \sim P_{\theta_0} + u}[p_m(X; \theta_0)^2] = \sum_{\ell=0}^m b(m, \ell, \theta_0, u)^2 \cdot A_{\ell}(\theta_0 + u).$$

(c) Show that in the Poisson model $\mathcal{X} = \mathbb{N}, P_{\theta} = \mathsf{Poi}(\theta),$

$$b(m,\ell,\theta_0,u) = \binom{m}{\ell} \frac{(\theta_0 + u)^{\ell} u^{m-\ell}}{\theta_0^m}.$$

Homework 3 (Due on Dec 1, 2025)

Required problems:

- R1. II.20
- R2. VI.25
- R3. Let $A \in \mathbb{R}^{m \times n}$ be a random matrix with i.i.d. $\mathcal{N}(0,1)$ entries. The operator norm of A is defined as $||A||_{\text{op}} = \max_{v \in S^{n-1}} ||Av||_2$, where S^{n-1} denotes the unit sphere in \mathbb{R}^n .
 - (a) Let $\mathcal{U} = \{u_1, \dots, u_M\}$ and $\mathcal{V} = \{v_1, \dots, v_N\}$ be an ε -net (under the ℓ_2 norm) for S^{m-1} and S^{n-1} respectively. Show that for $\varepsilon < 1/2$,

$$||A||_{\text{op}} \le \frac{1}{1 - 2\varepsilon} \max_{u \in \mathcal{U}, v \in \mathcal{V}} u^{\top} A v.$$

- (b) Deduce from (a) that $\mathbb{E}||A||_{\text{op}} \lesssim \sqrt{m} + \sqrt{n}$.
- (c) Show a matching lower bound $\mathbb{E}||A||_{\text{op}} \gtrsim \sqrt{m} + \sqrt{n}$ using Sudakov minoration.
- R4. Recall that $M(A, d, \varepsilon)$ denotes the maximum number m of points x_1, \dots, x_m such that $d(x_i, x_j) \geq \varepsilon$ for every $i \neq j \in [d]$.
 - (a) Let A be the set of all non-decreasing functions $f:[0,1] \to [0,1]$. Show that for $\varepsilon \in [0,1]$, there exist universal constants $c_1, c_2 > 0$ such that

$$\log M(A, L_2([0,1]), c_1 \varepsilon) \ge \frac{c_2}{\varepsilon}.$$

(b) Now let A be the set of all convex functions $f:[0,1] \to [0,1]$. Show that for $\varepsilon \in [0,1]$, there exist universal constants $c_1, c_2 > 0$ such that

$$\log M(A, L_2([0, 1]), c_1 \varepsilon) \ge \frac{c_2}{\sqrt{\varepsilon}}.$$

Homework Set Page 6 of 9

Hint: you may try to break into several small intervals, find two possible function constructions in each interval, and concatenate them. Use the Gilbert-Varshamov bound in class.

Optional problems (solve three of them):

- O1. VI.19
- O2. VI.24
- O3. VI.26 (A typo in the problem: the inequality should be

$$\frac{1}{n-|T|-1} \sum_{i \neq j \in T^c} D(\nu_{X_i,X_j} \| \mu_{X_i,X_j}^{(\sigma_T)}) \ge \left(2 - \frac{c}{n-|T|-1}\right) \sum_{i \in T^c} D(\nu_{X_i} \| \mu_{X_i}^{(\sigma_T)}).$$

Additional hint: for any function $h: 2^{[n]} \to \mathbb{R}$ and $S \sim \text{Bern}(\tau)^{\otimes n}$, show that

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \mathbb{E}[h(S)] = \sum_{i=1}^{n} \mathbb{E}[h(S \cup \{i\}) - h(S)],$$

$$\frac{\mathrm{d}^{2}}{\mathrm{d}\tau^{2}} \mathbb{E}[h(S)] = \sum_{i \neq j} \mathbb{E}[h(S \cup \{i, j\}) - h(S \cup \{i\}) - h(S \cup \{j\}) + h(S)].$$

- O4. Redundancy bound with general Beta mixing. Let $P_{\theta} = \text{Bern}(\theta)$, and $\theta \sim \text{Beta}(\alpha, \beta)$ follow a Beta distribution. For $x^n \in \{0, 1\}^n$, let $Q(x^n) = \mathbb{E}_{\theta}[P_{\theta}^{\otimes n}(x^n)]$, and n_0, n_1 be the number of 0's and 1's in x^n (with $n_0 + n_1 = n$).
 - (a) Let $B(\alpha, \beta)$ be the Beta function. Show that

$$\max_{\theta \in [0,1]} \frac{P_{\theta}^{\otimes n}(x^n)}{Q(x^n)} = \frac{\frac{n_0^{n_0} n_1^{n_1}}{n^n}}{\frac{B(\alpha + n_0, \beta + n_1)}{B(\alpha, \beta)}}.$$

(b) By Stirling's approximation $1 \le \Gamma(z)/(\sqrt{2\pi}z^{z-1/2}e^{-z}) \le e^{\frac{1}{12z}}$ for z > 0, show that

$$\max_{\theta \in [0,1]} D_{\mathrm{KL}}(P_{\theta}^{\otimes n} \| Q) \leq \max_{\theta \in [0,1]} \max_{x^n} \log \frac{P_{\theta}^{\otimes n}(x^n)}{Q(x^n)} \leq \max \left\{ \frac{1}{2}, \alpha, \beta \right\} \log n + O_{\alpha,\beta}(1).$$

In other words, there is a range of parameters for the Beta prior that can achieve the optimal regret up to first order.

O5. Last-iterate convergence for Hellinger. For probability distributions P_1, \ldots, P_m on the same space \mathcal{X} , let $Q_{X^n} = \frac{1}{m} \sum_{i=1}^n P_i^{\otimes n}$ be the Yang-Barron type mixture. Show that for $X_1, \ldots, X_{n-1} \sim P_1$ and a universal constant C,

$$\mathbb{E}[H^2(P_1, Q_{X_n|X^{n-1}})] \le C \frac{\log m}{n}.$$

O6. Jeffreys prior.

Homework Set Page 7 of 9

- (a) I.57, Part (a)
- (b) Let π be a prior on $\Theta \subseteq \mathbb{R}^d$ with density $\pi(\theta)$, and $\theta_0 \in \operatorname{int}(\Theta)$. Let $(P_{\theta})_{\theta \in \Theta}$ be a family of distributions, with Fisher information matrix $I(\theta)$ at $\theta = \theta_0$. Show that for $Q = \mathbb{E}_{\theta \sim \pi}[P_{\theta}^{\otimes n}]$, by Laplace's method and the local behavior of KL divergence by Fisher information, one has the approximate upper bound

$$D_{\mathrm{KL}}(P_{\theta_0}^{\otimes n} || Q) \le \frac{d}{2} \log \frac{n}{2\pi} - \log \frac{1}{\pi(\theta_0)} + \frac{1}{2} \log \det I(\theta_0) + O(1).$$

Therefore, choosing $\pi(\theta) \propto (\log \det I(\theta))^{-1/2}$ (known as the Jeffreys prior) achieves a redundancy upper bound $\frac{d}{2} \log n + O(1)$ assuming regularity conditions.

- O7. Redundancy of uniform family. Let $\mathcal{P} = \{ \operatorname{Unif}(0, \theta) : \theta \in [\frac{1}{2}, 1] \}$. Show that $\operatorname{Red}(\mathcal{P}^{\otimes n}) \sim \log n$ by proving redundancy upper and lower bounds. Explain the difference from the usual relation $\operatorname{Red}(\mathcal{P}^{\otimes n}) \sim \frac{1}{2} \log n$.
- O8. Branching number. For a countable rooted tree T where each vertex has a finite degree, a flow is a function $f: V(T) \to \mathbb{R}_+$ such that $f_u = \sum_{v \in \text{children}(u)} f_v$ for all vertices u. The branching number br(T) is defined as the supremum of $\lambda \in \mathbb{R}$ such that there exists a flow f with $f_u > 0$ for some u, and $f_u \leq \lambda^{-d(u)}$ for all vertices u, where d(u) denotes the depth of u.
 - (a) Show that for broadcasting on tree T, if each edge represents a channel $P_{Y|X}$ with $\eta_{KL}(P_{Y|X}) \leq \eta$, then the model has non-reconstruction when $br(T)\eta < 1$.
 - (b) For $p \in [0, 1]$, let T_p be the connected component containing the root in a random graph where each edge of T is removed independently with probability 1 p. Let $p_c = p_c(T) \in [0, 1]$ be the critical (percolation) probability:

$$p_c = \sup\{p \in [0,1] : \mathbb{P}(T_p \text{ has infinitely many vertices}) = 0\}.$$

Show that $\operatorname{br}(T) \leq p_c^{-1}$. (Hint: for $p > \operatorname{br}(T)^{-1}$, construct a flow $\{f_u\}$ and define $M_n = \sum_{u \in V(T_p): \operatorname{depth}(u) = n} f_u p^{-n}$. Show that $\{M_n\}$ is a martingale, and that $\sup_n \mathbb{E}[M_n^2] < \infty$. Therefore $M_n \to M_\infty$ in L^1 .)

(c) Show that $\operatorname{br}(T) \geq p_c^{-1}$. (Hint: show that if $p < \operatorname{br}(T)^{-1}$, find a sequence of cuts $\{C_n\}$ of T such that

$$\lim_{n\to\infty} \mathbb{E}[number \ of \ edges \ in \ T_p \ crossed \ by \ the \ cut \ C_n] = 0;$$

the max-flow min-cut theorem might be useful.)

(d) Conclude that if the offspring distribution of a branching process has mean m > 1, then given the event that this process does not become extinct, the corresponding Galton-Watson tree T has branching number m almost surely. (Hint: recall that the extinction probability in a branching process with m > 1 is the unique solution in [0,1) to the equation $x = \sum_{i=0}^{\infty} p_i x^i$. How about the probability that T has branching number at least λ , for different choices of λ ?)

Homework Set Page 8 of 9

O9. F_I curve. For a joint distribution P_{XY} and t > 0, define

$$F_I(P_{XY}, t) = \sup\{I(U; Y) : I(U; X) \le t, U - X - Y \text{ forms a Markov chain}\}.$$

- (a) Show that $t \mapsto F_I(P_{XY}, t)$ is concave, and $\frac{d}{dt}F_I(P_{XY}, t)|_{t=0} = \eta_{KL}(P_X, P_{Y|X})$.
- (b) Using EPI and Bernoulli EPI (Mrs. Gerber's lemma in HW2 O7), find the expression of $F_I(P_{XY}, t)$ in the following two scenarios:
 - i. (X,Y) is zero-mean and jointly Gaussian with correlation $\rho \in [-1,1]$;
 - ii. (X,Y) is zero-mean and jointly Bernoulli with correlation $\rho \in [-1,1]$.
- (c) Conclude that in both scenarios, the maximal correlation between X and Y is $|\rho|$.
- O10. SDPI for Fisher information. Let $(P_{\theta})_{\theta \in \Theta \subseteq \mathbb{R}^n}$ be a family of distributions, with score function $s_{\theta}(\cdot)$ and Fisher information matrix $I(\theta)$.
 - (a) Show that for $\theta X Y$, the score function for Y is $s_{\theta}^{Y}(y) = \mathbb{E}[s_{\theta}(X)|Y = y]$.
 - (b) If P_{θ} is a discrete pmf $(\frac{1}{2n} + \theta_1, \frac{1}{2n} \theta_1, \dots, \frac{1}{2n} + \theta_n, \frac{1}{2n} \theta_n)$, show that

$$\sup\{\operatorname{trace}(I^Y(0)): \theta - X - Y, |\mathcal{Y}| \le \ell\} \asymp \min\{n(\ell - 1), n^2\},\$$

where $I^{Y}(\theta)$ denotes the Fisher information matrix for Y, and $\ell \in \mathbb{N}$.

(c) If $P_{\theta} = \mathcal{N}(\theta, I_n)$, show that

$$\sup\{\operatorname{trace}(I^Y(0)): \theta - X - Y, |\mathcal{Y}| \le \ell\} \asymp \min\{\log \ell, n\},\$$

Homework Set Page 9 of 9