
Information Theory: Problem Set

General instructions:

• Please hand in your homework via Gradescope (entry code: KDPE8G) before 11:59
PM.

• Numbered exercises are taken from the book “Information Theory: From Coding to
Learning” by Y. Polyanskiy and Y. Wu, available online at https://people.lids.

mit.edu/yp/homepage/data/itbook-export.pdf.

• Unless otherwise specified, all logarithms (including those in entropy, mutual informa-
tion, and KL divergence) are in base e.

Homework 1 (Due on Oct 1, 2025)

Required problems:

R1. I.13

R2. III.19

R3. (a) Show that I(X;Y ) ≥ I(X;Y |U) for a Markov chain U −X − Y . Conclude that
I(X;Y ) is concave in PX for fixed PY |X .

(b) Show that I(X;Y ) ≤ I(X;Y |U) if X and U are independent. Conclude that
I(X;Y ) is convex in PY |X for fixed PX .

R4. Prove Tao’s inequality: for random variables X, Y, Z with X ∈ [−1, 1] almost surely,

E|E[X|Y ]− E[X|Y, Z]| ≤
√
2I(X;Z|Y ).

Optional problems (solve three of them):

O1. I.49 (Note: the claimed limit 1/
√
1− τ is incorrect and should be replaced by

e−τ/2−τ2/4

√
1− τ

− 1. )

O2. I.51

O3. I.53

O4. I.59

O5. I.63

O6. III.28
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O7. Shearer for sums. Let X, Y, Z be independent random integers. Prove that

2H(X + Y + Z) ≤ H(X + Y ) +H(X + Z) +H(Y + Z).

O8. Pinning lemma. Let (X1, . . . , Xn) be {±1}n-valued random vector. For 2 ≤ k ≤ n, let
S be a uniformly random subset of [n] of size k, and i, j ∈ S be two uniformly random
draws from S without replacement. Define the quantity

fk = E[I(Xi;Xj|XS\{i,j})].

(a) Prove that
∑m

k=2 fk ≤ log 2.

(b) Deduce that for m ≥ 0, there exists a subset T ⊆ [n] with |T | ≤ m such that

E[Cov(Xi, Xj|XT )
2] ≤ 2 log 2

m+ 1
.

Here the expectation is taken over the randomness in both the uniformly random
pair (i, j) ∈

(
[n]
2

)
and XT .

O9. Coin weighing. There is an unknown subset X ⊆ [n]. You must choose in advance k
subsets S1, . . . , Sk ⊆ [n], and receive the cardinalities |X ∩ Si| for all i ∈ [k]. We wish
to determine the smallest number k needed to recover the unknown subset X.

(a) Prove that if k ≤ 1.99n/ log2 n and n is sufficiently large, any strategy cannot
guarantee the recovery of every subset X ⊆ [n].

(b) Propose a successful strategy if k ≥ 3.17n/ log2 n and n is sufficiently large (here
the constant is chosen such that 3.17 > 2 log2 3).

(c) (challenging and not graded) Prove (b) with 3.17 replaced by 2.01.

O10. Information bound on variance. Let X1, . . . , Xn be i.i.d., and (ϕt)t∈T be a collection
of functions ϕt : X → [0, 1]. For t ∈ T , let σ2(ϕt) = Var(ϕt(X1)) be the true variance,
and

s2n(ϕt) =
1

n

n∑
i=1

ϕt(Xi)
2 −

( 1
n

n∑
i=1

ϕt(Xi)
)2

be the sample variance. Show that for any C > 0 and random index T , it holds that

E
[ s2n(ϕT )

max{C, σ2(ϕT )}

]
≤ I(T ;Xn)

nC
+ 2.

(Hint: use E[eX ] ≤ E[1 + 2X] ≤ e2E[X] for X ∈ [0, 1].)
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Homework 2 (Due on Nov 1, 2025)

Required problems:

R1. VI.8

R2. VI.14, Part (a) - (c)

R3. Suppose X1, · · · , Xn ∼ Bern(p) with unknown p ∈ [0, 1]. Using the two-point method,
argue that if there is an estimator T such that

sup
p∈[0,1]

Pp (|T (X)− p| > ε) ≤ δ

with ε, δ ∈ (0, 1/4), then

n ≥ c · log(1/δ)
ε2

for a universal constant c > 0. (Hint: 1− TV ≥ 1
2
exp(−KL).)

R4. Let X1, · · · , Xn be i.i.d. drawn from a discrete distribution P = (p1, · · · , pk), the
learner aims to estimate the entropy H(P ) =

∑k
i=1 −pi log pi. With a slight abuse of

notation, we also use the same letter P to denote the free parameter (p1, · · · , pk−1),
which belongs to the parameter set Pk = {(p1, · · · , pk−1) ∈ Rk−1

+ :
∑k−1

i=1 pi ≤ 1} with
a non-empty interior in Rk−1.

(a) For a fixed P in the interior of Pk, find the expression of the Fisher information
I(P ) and the inverse Fisher information I(P )−1 in the above model with n = 1.
(Hint: for I(P )−1, use Woodbury matrix identity.)

(b) Use the local asymptotic minimax theorem to show that for any P0 in the interior

of Pk and any sequence of estimators Ĥn based on n samples, it holds that

lim
C→∞

lim inf
n→∞

n · sup
P∈Pk:∥P−P0∥2≤C/

√
n

EP [(Ĥn −H(P ))2] ≥ VarX∼P0(logP0(X)).

(c) Find a suitable P0 in (b) to conclude that

lim inf
n→∞

n · inf
Ĥn

sup
P∈Pk

EP [(Ĥn −H(P ))2] ≥ c · log2 k,

where c > 0 is a universal constant.

Optional problems (solve three of them):

O1. I.65 (In Part (c), n should be d)

O2. I.66

O3. VI.14, Part (d)
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O4. VI.16

O5. VI.17

O6. Monotonic CLT. Let X1, X2, . . . be i.i.d. random variables with E[X1] = 0,Var(X1) =
1, and h(X1) > −∞. Let Sn =

∑n
i=1Xi and Tn = 1√

n
Sn.

(a) Let S∼i = Sn −Xi, and ρi be the score function of S∼i, where we recall that the

score function for a random variable X with density f is ρ(x) = (log f)′ = f ′(x)
f(x)

.

Show that the score function ρ of Sn is ρ(Sn) = E[ρi(S∼i)|Sn].

(b) Prove the following lemma: for independent Z1, . . . , Zn and functions f1, . . . , fn
such that fi depends only on Z∼i and E[fi(Z∼i)] = 0, it holds that

E

( n∑
i=1

fi(Z∼i)

)2
 ≤ (n− 1)

n∑
i=1

E[fi(Z∼i)
2].

(Hint: ANOVA decomposition.)

(c) Show that if J(X1) < ∞, the Fisher information satisfies J(Tn) ≤ J(Tn−1).

(d) Show that the differential entropy satisfies h(Tn) ≥ h(Tn−1).

O7. Bernoulli EPI: Mrs. Gerber’s Lemma. Let h2(p) = −p log p− (1− p) log(1− p) be the
binary entropy function, and h−1

2 : [0, log 2] → [0, 1
2
] be its inverse.

(a) Show that for any fixed p ∈ [0, 1], the function v 7→ h2(h
−1
2 (v)∗p) is convex, where

p ∗ q = p(1− q) + (1− p)q denotes the convolution.

(b) Use (a) to show that for any (X,U) with X ∈ {0, 1} and Y = X ⊕ Bern(p),

H(Y |U) ≥ h2

(
h−1
2 (H(X|U)) ∗ p

)
.

(c) Use (b) to show that for any Xn ∈ {±1}n and Y n = Xn ⊕ Bern(p)⊗n,

H(Y n)

n
≥ h2

(
h−1
2

(
H(Xn)

n

)
∗ p
)
.

O8. Tree-based lower bound. This problem proves another lower bound for the test error of
testing multiple hypotheses. Let T = ([m], E) be an undirected graph with vertex set
[m] and edge set E, and be a tree in the sense that T is both connected and acyclic.

(a) Show that for any real numbers x1, · · · , xm, it holds that

m∑
i=1

xi −max
i∈[m]

xi ≥
∑

(i,j)∈E

min{xi, xj}.
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(b) Use the result in Part (a), show that for probability distributions P1, · · · , Pm,

min
Ψ

1

m

m∑
i=1

Pi(Ψ ̸= i) ≥ 1

m

∑
(i,j)∈E

(1− TV(Pi, Pj)),

where the minimum is over all possible tests Ψ : X → [m].

(c) Evaluate the terms on both sides of (b) under Pi = N (i∆, 1) and a line tree with
edge set E = {(1, 2), (2, 3), · · · , (m− 1,m)}, and show that they are equal.

O9. VC class with small oracle risk. We have a function class F with VC dimension d, and
n training data (x1, y1), · · · , (xn, yn) drawn from an unknown joint distribution PXY ,
with Y = {0, 1}. Define the following class P(F , ε) of joint distributions where the
best classifier has an error at most ε:

P(F , ε) =

{
PXY : inf

f⋆∈F
PXY (Y ̸= f ⋆(X)) ≤ ε

}
.

So ε = 0 corresponds to the well-specified case, and ε = 1 corresponds to the misspec-
ified case. Define the minimax excess risk R⋆(F , ε) over P(F , ε) as

R⋆(F , ε) = inf
f̂

sup
PXY ∈P(F ,ε)

E
[
PXY (Y ̸= f̂(X))− inf

f⋆∈F
PXY (Y ̸= f ⋆(X))

]
.

Show that for all ε ∈ [0, 1],

R⋆(F , ε) = Ω

(
min

{√
d

n
· ε+ d

n
, 1

})
.

O10. Bias-variance analysis for orthogonal polynomials. The concept of orthogonal polyno-
mials is useful not only in proving lower bounds, but also in constructing and analyzing
unbiased estimators. Let (Pθ)θ∈[θ0−ε,θ0+ε] be a one-dimensional family of probability
distributions with the following local expansion:

Pθ0+u(x)

Pθ0(x)
=

∞∑
m=0

pm(x; θ0)
um

m!
, ∀|u| ≤ ε, x ∈ X .

In addition, assume that the quantity
∑

x∈X Pθ0+u(x)Pθ0+v(x)/Pθ0(x) depends only on
θ0 and uv, for all u, v ∈ [−ε, ε]. In class we showed that {pm(x; θ0)}m≥0 are orthogonal
in L2(Pθ0), i.e.,

EX∼Pθ0
[pm(X; θ0)pn(X; θ0)] = Am(θ0) · 1(m = n)

for some constants {Am(θ0)}m≥0.

(a) Show that for X ∼ Pθ0+u with u ∈ [−ε, ε],

EX∼Pθ0+u
[pm(X; θ0)] = cmu

m

for some constant cm independent of u. Find the expression of cm using Am(θ0).
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(b) Suppose the same local expansion and orthogonality condition also hold under
θ0 + u, and

pm(x; θ0) =
m∑
ℓ=0

b(m, ℓ, θ0, u) · pℓ(x; θ0 + u), ∀|u| ≤ ε, x ∈ X ,

Show that

EX∼Pθ0+u
[pm(X; θ0)

2] =
m∑
ℓ=0

b(m, ℓ, θ0, u)
2 · Aℓ(θ0 + u).

(c) Show that in the Poisson model X = N, Pθ = Poi(θ),

b(m, ℓ, θ0, u) =

(
m

ℓ

)
(θ0 + u)ℓum−ℓ

θm0
.

Homework 3 (Due on Dec 1, 2025)

Required problems:

R1. II.20

R2. VI.25

R3. Let A ∈ Rm×n be a random matrix with i.i.d. N (0, 1) entries. The operator norm of
A is defined as ∥A∥op = maxv∈Sn−1 ∥Av∥2, where Sn−1 denotes the unit sphere in Rn.

(a) Let U = {u1, . . . , uM} and V = {v1, . . . , vN} be an ε-net (under the ℓ2 norm) for
Sm−1 and Sn−1 respectively. Show that for ε < 1/2,

∥A∥op ≤ 1

1− 2ε
max

u∈U ,v∈V
u⊤Av.

(b) Deduce from (a) that E∥A∥op ≲
√
m+

√
n.

(c) Show a matching lower bound E∥A∥op ≳
√
m+

√
n using Sudakov minoration.

R4. Recall that M(A, d, ε) denotes the maximum number m of points x1, · · · , xm such that
d(xi, xj) ≥ ε for every i ̸= j ∈ [d].

(a) Let A be the set of all non-decreasing functions f : [0, 1] → [0, 1]. Show that for
ε ∈ [0, 1], there exist universal constants c1, c2 > 0 such that

logM(A,L2([0, 1]), c1ε) ≥
c2
ε
.

(b) Now let A be the set of all convex functions f : [0, 1] → [0, 1]. Show that for
ε ∈ [0, 1], there exist universal constants c1, c2 > 0 such that

logM(A,L2([0, 1]), c1ε) ≥
c2√
ε
.
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Hint: you may try to break into several small intervals, find two possible function
constructions in each interval, and concatenate them. Use the Gilbert–Varshamov
bound in class.

Optional problems (solve three of them):

O1. VI.19

O2. VI.24

O3. VI.26 (A typo in the problem: the inequality should be

1

n− |T | − 1

∑
i ̸=j∈T c

D(νXi,Xj
∥µ(σT )

Xi,Xj
) ≥

(
2− c

n− |T | − 1

)∑
i∈T c

D(νXi
∥µ(σT )

Xi
).

Additional hint: for any function h : 2[n] → R and S ∼ Bern(τ)⊗n, show that

d

dτ
E[h(S)] =

n∑
i=1

E[h(S ∪ {i})− h(S)],

d2

dτ 2
E[h(S)] =

∑
i ̸=j

E[h(S ∪ {i, j})− h(S ∪ {i})− h(S ∪ {j}) + h(S)]. )

O4. Redundancy bound with general Beta mixing. Let Pθ = Bern(θ), and θ ∼ Beta(α, β)
follow a Beta distribution. For xn ∈ {0, 1}n, let Q(xn) = Eθ[P

⊗n
θ (xn)], and n0, n1 be

the number of 0’s and 1’s in xn (with n0 + n1 = n).

(a) Let B(α, β) be the Beta function. Show that

max
θ∈[0,1]

P⊗n
θ (xn)

Q(xn)
=

n
n0
0 n

n1
1

nn

B(α+n0,β+n1)
B(α,β)

.

(b) By Stirling’s approximation 1 ≤ Γ(z)/(
√
2πzz−1/2e−z) ≤ e

1
12z for z > 0, show that

max
θ∈[0,1]

DKL(P
⊗n
θ ∥Q) ≤ max

θ∈[0,1]
max
xn

log
P⊗n
θ (xn)

Q(xn)
≤ max

{1
2
, α, β

}
log n+Oα,β(1).

In other words, there is a range of parameters for the Beta prior that can achieve
the optimal regret up to first order.

O5. Last-iterate convergence for Hellinger. For probability distributions P1, . . . , Pm on the
same space X , let QXn = 1

m

∑n
i=1 P

⊗n
i be the Yang–Barron type mixture. Show that

for X1, . . . , Xn−1 ∼ P1 and a universal constant C,

E[H2(P1, QXn|Xn−1)] ≤ C
logm

n
.

O6. Jeffreys prior.
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(a) I.57, Part (a)

(b) Let π be a prior on Θ ⊆ Rd with density π(θ), and θ0 ∈ int(Θ). Let (Pθ)θ∈Θ be a
family of distributions, with Fisher information matrix I(θ) at θ = θ0. Show that
for Q = Eθ∼π[P

⊗n
θ ], by Laplace’s method and the local behavior of KL divergence

by Fisher information, one has the approximate upper bound

DKL(P
⊗n
θ0

∥Q) ≤ d

2
log

n

2π
− log

1

π(θ0)
+

1

2
log det I(θ0) +O(1).

Therefore, choosing π(θ) ∝ (log det I(θ))−1/2 (known as the Jeffreys prior) achieves
a redundancy upper bound d

2
log n+O(1) assuming regularity conditions.

O7. Redundancy of uniform family. Let P = {Unif(0, θ) : θ ∈ [1
2
, 1]}. Show that Red(P⊗n) ∼

log n by proving redundancy upper and lower bounds. Explain the difference from the
usual relation Red(P⊗n) ∼ 1

2
log n.

O8. Branching number. For a countable rooted tree T where each vertex has a finite degree,
a flow is a function f : V (T ) → R+ such that fu =

∑
v∈children(u) fv for all vertices u.

The branching number br(T ) is defined as the supremum of λ ∈ R such that there
exists a flow f with fu > 0 for some u, and fu ≤ λ−d(u) for all vertices u, where d(u)
denotes the depth of u.

(a) Show that for broadcasting on tree T , if each edge represents a channel PY |X with
ηKL(PY |X) ≤ η, then the model has non-reconstruction when br(T )η < 1.

(b) For p ∈ [0, 1], let Tp be the connected component containing the root in a random
graph where each edge of T is removed independently with probability 1− p. Let
pc = pc(T ) ∈ [0, 1] be the critical (percolation) probability:

pc = sup{p ∈ [0, 1] : P(Tp has infinitely many vertices) = 0}.

Show that br(T ) ≤ p−1
c . (Hint: for p > br(T )−1, construct a flow {fu} and

define Mn =
∑

u∈V (Tp):depth(u)=n fup
−n. Show that {Mn} is a martingale, and that

supn E[M2
n] < ∞. Therefore Mn → M∞ in L1.)

(c) Show that br(T ) ≥ p−1
c . (Hint: show that if p < br(T )−1, find a sequence of cuts

{Cn} of T such that

lim
n→∞

E[number of edges in Tp crossed by the cut Cn] = 0;

the max-flow min-cut theorem might be useful.)

(d) Conclude that if the offspring distribution of a branching process has meanm > 1,
then given the event that this process does not become extinct, the corresponding
Galton–Watson tree T has branching number m almost surely. (Hint: recall that
the extinction probability in a branching process with m > 1 is the unique solution
in [0, 1) to the equation x =

∑∞
i=0 pix

i. How about the probability that T has
branching number at least λ, for different choices of λ?)
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O9. FI curve. For a joint distribution PXY and t > 0, define

FI(PXY , t) = sup{I(U ;Y ) : I(U ;X) ≤ t, U −X − Y forms a Markov chain}.

(a) Show that t 7→ FI(PXY , t) is concave, and
d
dt
FI(PXY , t)|t=0 = ηKL(PX , PY |X).

(b) Using EPI and Bernoulli EPI (Mrs. Gerber’s lemma in HW2 O7), find the ex-
pression of FI(PXY , t) in the following two scenarios:

i. (X, Y ) is zero-mean and jointly Gaussian with correlation ρ ∈ [−1, 1];

ii. (X, Y ) is zero-mean and jointly Bernoulli with correlation ρ ∈ [−1, 1].

(c) Conclude that in both scenarios, the maximal correlation between X and Y is |ρ|.

O10. SDPI for Fisher information. Let (Pθ)θ∈Θ⊆Rn be a family of distributions, with score
function sθ(·) and Fisher information matrix I(θ).

(a) Show that for θ −X − Y , the score function for Y is sYθ (y) = E[sθ(X)|Y = y].

(b) If Pθ is a discrete pmf ( 1
2n

+ θ1,
1
2n

− θ1, . . . ,
1
2n

+ θn,
1
2n

− θn), show that

sup{trace(IY (0)) : θ −X − Y, |Y| ≤ ℓ} ≍ min{n(ℓ− 1), n2},

where IY (θ) denotes the Fisher information matrix for Y , and ℓ ∈ N.
(c) If Pθ = N (θ, In), show that

sup{trace(IY (0)) : θ −X − Y, |Y| ≤ ℓ} ≍ min{log ℓ, n},
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