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Lifetable.

Example dataset of an Age n d
-

insurance
company ,

where : 30 Ro di

3/ n3/ de
& Ri = # of policy holders at age i i : i

· di : # of deaths 89 Mag dog

Target : estimate the "survival function" Si = P(Xi)

Notations :

· X :
a typical lifetime of a population (random variable )

· Si = IP(X > i) : survival function
· hi: hazard rate

, defined as

d .
- Hi = Et

-E .

Model : for if $30 ...., 893
,

a sample of size ni is drawn from a

ditional population with X3i
,

where di of them die within

one year.

Log-likelihood : eCheo
,

"

. has= )diloghi + (ni -di) log(1-hi).

MLE for 4i. * 0 = 4=



MLE for Si: 5
= (1- Ej) .

Similarly, for i <j ,
one can estimate

P(X3j(x :) = (1 - Ex)
.

One year's data suffices to learn the survival functions

Censoreddata .

An example survival data after Transform into a lifetable ;

a clinical trial :

=>
ys n d e

↑ 64
.

73 +, 160
,

160 , 185 +, t R
,

di E

1101. 1412 +.... ) tz na de la

(a+: still alive after a days) · i

to Mm du La

Notations :

· di . # of observed deaths at day to after the trial

· Li: # of lost followups at day to after the trial

· hi :
# of individuals known to have survived at the beginning of day ti

ni =

.
(dj + 2j)

& for convenience
,

we assume that deaths & lost followups cannot happen

simultaneously ; i. e. for every is either dico
,

or li = 0 3

Target : estimate the survival function S(t) = P(X > -



Kaplan-Meierestimator
.

k
.

= PX = tilXB ti)=
(t= (1 - Ki)=; -G

A Kaplan-Meier survival curre :

surrival
N

T
- -days

Privation: empirical likelihood
.

Let f be the pdf/pmf of X. and SH) = P(Xst)

log-likelihood (5) = )dilog)f(ti)) + lilog(SHil)
↑ ↑

likelihood of likelihood of
dying at +i surviving until ti

(An implicit assumption : probability of getting censored does not depend on

the survival function)

Maximum value of f(ti) given S : f(ti) -
> S(ti)-S(it)

Empirical likelihood : assume that I has jumps only at

Sti , . "

, th]



empirical log-likelihood (S) = (dilog (Si-Six) + lilogSi)
(Write Sii= S(i))

Maximizing over 1 = S
, 352 ... Sh+ 30

Es Maximizing over h ,.. ka E [0 , 13
.

where

hi = In Si Si = 31- 4j) .

Now empirical log-likelihood (h)
= dilog(k . T1-4j3) + li log t ,

<1- hj)

I Ldiloghi + (di + li) log(1- hj)

= (diloghi + (dx + (i) log)( -hi)
( swapping the sum I = 5)

= dilogdi + (Ri -di-li) log(1-hi)
I recall that ni= (dp + (k) (

di
Fo.

C
. for ki => hi Me, = #

(because either di = 0
,

or li =0)

=>
i

= j-4j) = (1-
=> Y(t) =max +=, ) !

Note : empirical likelihood is a special case of the nonparametric
maximum likelihood (NPMLE).



-roportionalhazards model (Cox model)
.

Question : what if different individuals have different features ?

Data
: a collectionof3350i.34

with Eden Edi. . i

· ci : censored time of individual i

· ti = min Sci
,
did : death/censored time

,
whichever is earlier

(right censoring)
· Di = 1(di < (i) : 1 if not censored, O if censored

(true death)

· 6. ERP
: feature vector of individual i

.

Continuous- time hazard rate

h(t) = density of (X = + /X +> = # Unconditionsex

=> gS(t) = H =
- 3 = - h(t)

=> S(t) = exp) - S
.

h(s)ds)
.

Proportionalhazards model

BTx
h(t(x) = e ht

baseline hazard

log ratio : lights = BT (, - e

Target : estimate &t RP .



Partial likelihood
--

The Cox model is solved by maximizing the following partial likelihood
:

=! is

where :

· Pi : 0 := 1) represents the occurrences of true deaths

· Ri :
the set of individuals at risk when i dies

,
i. e.

Ri = 4j : + > til

· each term represents the probability of "i first dies among all individuals

in the risk set R:

"

· no baseline hazard hit) in partial likelihood

Privation: profile likelihood

elikelihood [SclUltikli) , ifoe

4 ↑ if : = 0

target nuisance

(Implicit assumption : Ci and di are independent

conditioning on Xi)
= [exp(-qH(t) (2 TPL(ti)

*

:]
(H(t) : = S

.

"h(s)ds)

Profilelikelihood
.

PL(p) = syPL(B,
h)



Computation of profile likelihood in Cox model :

1
. Using empirical likelihood to assume that

h is supported on it , - , ta3 & H(ti) =, Ex+
h(tj)

=> B.
k = T [expfe8

,Etch(tj) /q
>B h(ti)

::

]

2. F. O
. C. for hIti) :

= - t,

B 4
= o if h(ti) > 0

Go if h(ti) =0

=> hiti) = 3I
ifso if o : =

3. A cracial identity : for above h,

# expl-exTPE ,

h(tj)

-expletine
-

=
*

=I



4. Plug back to LB .
2) :

PL(p) = supL(p ,
h)

&seco:
e

agreeing with the partial likelihood.


