Lee 1: Recap of Probalility & Statistics

Yanjun Han Sept. 3, 2024 Probability: mathematical model of random outcomes

(Gaussian, Poisson, Markov chains, Brownian motion, ...)

Statistics: given random outcomes, infer the underlying model

(statistical modeling, parameter estimation, testing, confidence interval, regression, --)

Central question for this course: given data x1, ..., xn.

- 1. How to find a mathematical model of Po such that (x,..., x,)~Po?
- 2. How should we infer the unknown parameter 0?

Three classes of models we'll cover:

Parametric: OE Rd finite-dimensional, typically with a linear structure

Seriparametric: $\theta = (\tau, \eta)$, τ : parameter of interest

n: nuisance parameter

Nonparametric: O=f is parametrized by a function

An (incomplete) list of topics we'll cover:

Limit theorems in probability

Surprising fact (origins of probability theory): sums of independent, identically distributed (i.i.d.) RVs have universal behavior.

Law of large numbers (LLN)

X, ... X. i.i.d , E[X] exists, then

 $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \rightarrow \overline{E}X$ as $n \rightarrow \infty$ (in probability & almost surely)

Central limit theorem (CLT)

For iid
$$X_1, --, X_n$$
 with $EX = \mu$, $Vor(X) = \sigma^2$,
$$Z_n = \frac{\sqrt{n}(X_n - \mu)}{\sigma} \xrightarrow{d} N(0, 1) \text{ as } n \to \infty$$

converges in distribution, meaning that

P(2_ <t) -> P(NIO,1) St) for every tER.

Delta method

If g is differentiable & $\sqrt{n}(X_n-\mu) \stackrel{d}{\longrightarrow} 2 \sim N(0.1)$. Then Jn (g(Xn) - g(m)) - g'(m) 2 ~ N(0, g'(m)2)

$$g(X_{-}) = g(p) + g'(p)(X_{-}-p) + o(|X_{-}-p|)$$

$$\Rightarrow \sqrt{n}(3(x-1)-3(x)) = 3'(x)\cdot \sqrt{n}(x-x) + o(\sqrt{n}|x-x|)$$

@

Example
$$g(x) = x^2$$
, $g'(p) = 2p$
 $\Rightarrow \sqrt{n} (\overline{\chi}_1^2 - \mu^2) \xrightarrow{d} N(0, 4\mu^2\sigma^2)$.

Example of how probability is applied to statistics:

Suppose we're watching the US open, where a player is on 1st serve 100 times, and wins 80 of them.

Statistical model: the wins/losses are independent, with an unknown win rate p

LLN: + # wins -> p as n -> a.

Since n=100 is large enough, $\hat{p}=0.8$ is a reasonable estimate of p.

CLT: $\frac{1}{\sqrt{np(4-p)}}$ # wins - pn) \xrightarrow{d} N(0,1) as $n \rightarrow \infty$

 \Rightarrow the estimation error $\hat{p}-p \approx N(0,0.04^2)$, so a 95% confidence interval

for p is p ∈ [] -2.0.04,] + 2.0.04] = [0.72, 0.86]

Estimation: given X., ... Xn ~ Po with a known distribution family 0 -> Po but an unknown parameter 0, the target of estimation is to find 0.

Approach I: estimating equation

Suppose one can find functions F., Fz. -- . Fp s.t.

Then a reasonable estimator $\hat{\theta}_n$ is defined as the solution to

$$\begin{cases} \frac{1}{n} \sum_{i=1}^{n} F_{i}(\theta, X_{i}) = 0 \\ \vdots \\ \frac{1}{n} \sum_{i=1}^{n} \overline{F}_{i}(\theta, X_{i}) = 0 \end{cases}$$

$$\sum_{i=1}^{n} F_{p}(\theta, X_{i}) = 0$$

Analysis: \bigcirc By LLN, $o = \frac{1}{n} \sum_{i=1}^{n} F_{i}(\widehat{\theta}_{n}, X_{i}) \approx \mathbb{E}_{X \sim P_{n}}[F_{i}(\widehat{\theta}_{n}, X_{i})]$

(2) CLT can also be wed to establish the asymptotic normality of $I_n(\hat{\theta}_n - \theta)$

Example:
$$X_1, \dots, X_n \stackrel{i.id}{\sim} N(\mu, \sigma^2)$$
 with unknown (μ, σ^2)
then $E_{\mu, \sigma^2}[X - \mu] = 0 \Rightarrow F_1(X, (\mu, \sigma^2)) = X - \mu$
 $E_{\mu}, \sigma^2[X^2 - \mu^2 - \sigma^2] = 0 \Rightarrow F_2(X, (\mu, \sigma^2)) = X^2 - \mu^2 - \sigma^2$
The estimator (μ, σ^2) solves

$$\begin{cases} \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\beta}_i) = 0 \\ \frac{1}{n} \sum_{i=1}^{n} (X_i^2 - \hat{\beta}_i^2 - \hat{\beta}_i^2) = 0 \end{cases} \Rightarrow \begin{cases} \hat{\beta} = \overline{X} \\ \hat{\beta}^2 = \overline{X}^2 - \overline{X}^2 \end{cases}$$

Approach I: MLE (maximum likelihood estimator)

Def (likelihood)

Suppose X1, ... X. have joint pdf fo(X1, -. X.) (or pmf fo(X1, -. X.)).

Suppose X1, ... X..
The likelihood function is

$$L_{\Lambda}(\theta) = \int_{\theta} (X_{i_1}, \dots, X_{i_n})$$
 (pdf viewed as function of θ)

The log likelihood function is

$$\ell_n(\theta) = \log L_n(\theta) = \log f_{\theta}(X_1, \dots, X_n)$$

$$MLE: \hat{\theta}_{n} = \underset{\theta}{\text{argmax}} L_{n}(\theta) = \underset{\theta}{\text{argmax}} l_{n}(\theta)$$

Example (cont'd):
$$f_{p,\sigma^2}(X_1, ---, X_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(X_i - p)^2}{2\sigma^2}\right)$$

$$\Rightarrow \ell_n(p, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - p)^2 - \frac{n}{2} \log(2\pi\sigma^2)$$

F.O.C.:
$$\begin{cases} \frac{\partial L}{\partial m} = 0 \\ \frac{\partial L}{\partial n^2} = 0 \end{cases} \Rightarrow \begin{cases} \hat{n} = \overline{X} \\ \hat{n}^2 = \overline{X}^2 - \overline{X}^2 \end{cases}$$

Testing: given
$$X_1, \dots, X_n \sim \beta_{\Theta}$$
, we'd like to test between

Ho: $\Theta \in \Theta_0$ vs. $H_1: \Theta \in \Theta_1$ ($\Theta_0 \cap \Theta_1 = \emptyset$)

(null)

(alternative)

Test: a function
$$\Omega \longrightarrow \{H_{\bullet}, H_{\bullet}\}$$
set of outcomes accept reject H.

Test Truth	H.	Н,	Probability Truth	P(output H.)	P(output H,)
H.	Correct	Type I error (folse positive)	H.	l~ «	d (proh of type I error, or (significance) level)
Н,	Type II error (folice negotive)	Correct	H,	B (prob. of type I error)	1- B (power of the test)

Simple hypothesis testing: Ho, E= 00 vs. H, 0=0,

Neyna-Pearson lemma: the likelihood ratio test is optimal output $\begin{cases}
H_{\bullet} & \text{if } \frac{P(X_{\bullet}, -, X_{\bullet}|H_{\bullet})}{P(X_{\bullet}, -, X_{\bullet}|H_{\bullet})} > c \\
H_{\bullet} & \text{if } \frac{P(X_{\bullet}, -, X_{\bullet}|H_{\bullet})}{P(X_{\bullet}, -, X_{\bullet}|H_{\bullet})} \leq c
\end{cases}$

with at
$$\begin{cases} P(X_1, \dots, X_n | H_1) \\ H_1 & \text{if } \frac{P(X_1, \dots, X_n | H_n)}{P(X_1, \dots, X_n | H_n)} \leq \epsilon \end{cases}$$

Composite hypothesis testing: $|\Theta_0| > 1$ and/or $|\Theta_1| > 1$

Unfortunately, no complete picture here. So statisticions have made:

O compromise I: focus only on significance level

@ compromise I: focus only on asymptotic tests (n -> ->)

Idea: find a function $F(\theta, X)$ s.t. $F(\theta, X)$ (asymptotically) follows a known distribution P for every $\theta \in \Theta_0$ (e.g. by CLT):

given a significant level α , find A s.t. $P(A) = 1 - \alpha$;

[evel- α test: reject Ho. $\theta = \theta_0$ if $F(\theta_0, X) \notin A$ (1- α) - confidence interval for θ : $C = \{\theta: F(\theta, X) \in A\}$.

Example. (Fiven X~B(n,p). then CLT gives

$$\frac{X-np}{Jnp(I-p)} \xrightarrow{d} N(b,1) \xrightarrow{a_1} \xrightarrow{n\to\infty}.$$

| evel- α test for Ho: $p = p_0$; reject Ho iff $\left| \frac{X - np_0}{\sqrt{np_0(1-p_0)}} \right| > 2a_{12}$ (1-a)-confidence interval for p: $C = \{p: \left| \frac{X - np}{\sqrt{np_0(1-p_0)}} \right| \leq 2a_{12} \}$.

p-value: every test can be equivalently represented by a p-value (0.1).

and rejects H. iff p-value = a (p-value contains more information than yes/no answers)

Generalized (italihood ratio test: LR = max Ln(8)

Meson Ln(8)

OED. UB.

Wilk's thm, under mild conditions. $-2\log LR \xrightarrow{d} \chi_{\lambda}^2$ under Ho with $d = \dim(\Theta, \cup \Theta_1) - \dim(\Theta_2)$

```
Regression (one of the great ideas in statistics)
```

 $\frac{\text{Cro-1}}{\text{cost}}$: prediction (Given independent/explanatory/predictor variables x_1, \dots, x_{p-1} , predict dependent/response/outcome variable y)

(p: feature dimension; we use p-1 as there's an additional intercept term)

Idea: least-squares: organia = (y: - (po+p,x:,1+...+ βp-1x:,9-1))2

Much more general than it appears by data transformation:

Ex. 1 Suppose $y \approx \sum_{k=0}^{n} \alpha_k x^k$ has a polynomial relationship with x, then for each data point x_i we can define

 $\mathfrak{F}_{i,\,i} = (x_i)_{i,\,i} \quad \mathfrak{F}_{i,\,2} = (x_i^{\,2})_{i,\,i} \cdots, \quad \mathfrak{F}_{i,\,2} = (x_i^{\,2})_{i,\,i}$

Then

$$\gamma \approx \sum_{k=0}^{4} \alpha_k \chi^k = \alpha_0 + \sum_{k=1}^{4} \alpha_k z_k$$

 $E_{X,2}$ Suppose $y \approx C_0 e^{C_1 x}$, then by defining $w_i = \log y_i$,

$$\gamma_{i} \approx C_{i} e^{C_{i} x_{i}} \implies w_{i} \approx log C_{i} + C_{i} x_{i}$$

So (x_i, w_i) has a linear relationship $w_i \approx \beta_i + \beta_i x_i$, with $\beta_0 = \log C_0$, $\beta_1 = C_1$.

$$\frac{\text{Solution}}{\text{X}}: \qquad \begin{array}{c} \left[\begin{array}{cccc} 1 & x_{1,1} & \cdots & x_{1,p-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & \cdots & x_{n,p-1} \end{array}\right] \in \mathbb{R}^{n \times p}, \quad \beta = \begin{bmatrix} \beta & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \beta & \beta & 0 \end{array}\right] \in \mathbb{R}^{p}$$

least squares solution:

Theorem The minimizer
$$\beta$$
 is
$$\beta = (X^TX)^{-1}X^Ty$$
, provided that $X^TX \in \mathbb{R}^{p\times p}$ is invertible (requiring $n \ge p$)

Statistical analysis

Statistical modeling:
$$y = X\beta + e$$
, $E[e] = o$, $C_{ov}(e) = \sigma^2 I_n$

Then: • $E[\beta] = \beta$
• $C_{ov}(\beta) = \sigma^2(X^TX)^{-1}$
• $C_{ov}(\beta) = \sigma^2(X^TX)^{-1}$
• $E[\frac{11}{N}y - X\beta]I^2] = \sigma^2$ (motivating the estimator $\sigma^2 = \frac{11}{N}y - X\betaI^2$ for σ^2)
• $G^2[(X^TX)^{-1}]_{33}^{23}$
• $G^2[(X^TX)^{-1}]_{33}^{23}$

Pf. • $e = y - X\beta = y - X(\beta + (X^TX)^{-1}X^Te)$

$$= y - x\beta - X(X^TX)^{-1}X^Te)$$

$$= y - x\beta - X(X^TX)^{-1}X^Te)$$

$$= (I - X(X^TX)^{-1}X^Te)$$

$$= (I$$